
VisualApplets
User Documentation

Imprint

Basler AG
Konrad-Zuse-Ring 28
68163 Mannheim, Germany
Tel.: +49 (0) 621 789507 0
Fax.: +49 (0) 621 789507 10

© Copyright 2024 Basler AG. All rights reserved.

Document Version: 1.9
Document Language: en (US)

Last Change: November 2024

Table of Contents iii

VisualApplets User Documentation Release 3

Table of Contents
Part I. User Manual .. 1

1. Introduction ... 2
1.1. VisualApplets .. 2
1.2. How to Use This Documentation ... 4
1.3. System Requirements .. 4

2. Getting Started .. 5
2.1. Writing Your First Applet .. 5
2.2. Running Your Applet on Hardware ... 11
2.3. Further Reading .. 13

3. Basic Functionality .. 14
3.1. Basic Principles ... 14
3.2. Workflow .. 15
3.3. Main Program Window ... 17
3.4. Entering a Design ... 28
3.5. Data Flow .. 35
3.6. Rules of Links .. 40
3.7. Diagram Parametrization .. 53
3.8. Allocation of Device Resources .. 70
3.9. Design Rules Check ... 74
3.10. Simulation .. 76
3.11. FPGA Resource Estimation .. 108
3.12. Build .. 112
3.13. Framegrabber SDK .. 120

4. Extended Functionality ... 122
4.1. Hierarchical Boxes ... 122
4.2. User Libraries ... 128
4.3. Custom Operator Libraries .. 147
4.4. Multiple Processes ... 211
4.5. Target Hardware Porting ... 213
4.6. PixelPlant Designs ... 214
4.7. System Settings .. 215
4.8. Design Settings ... 225
4.9. Build Settings ... 227
4.10. Tcl Scripting .. 236
4.11. Script Collection (Tcl) ... 237
4.12. Tcl Export ... 238
4.13. Print / Screenshot .. 244
4.14. Migration from Older Versions ... 245

5. Embedded VisualApplets (eVA) .. 246
5.1. Introduction .. 246
5.2. Common Interfaces for all Platforms .. 253
5.3. Defining the IP Core Properties ... 258
5.4. Embedding and Simulating the IP core ... 302
5.5. Runtime Software Interface .. 317
5.6. Licensing Model .. 330
5.7. Application Notes .. 331

6. Miscellaneous .. 338
6.1. Command Line Options .. 338
6.2. Keyboard Shortcuts ... 339
6.3. Error Reporting ... 340

Part II. Tutorial and Examples .. 341
7. Introduction .. 342
8. Hardware Applet: From Idea to Application ... 343

8.1. Workflow Description ... 343
8.2. Designing an Applet in VisualApplets ... 343
8.3. Building the Applet in VisualApplets ... 352
8.4. Running the Applet on Hardware ... 353

9. Basic Design Theory .. 358
9.1. Applet Parameterization ... 358
9.2. Multiple DMA Channel Designs .. 365

Table of Contents iv

VisualApplets User Documentation Release 3

9.3. Synchronization of Asynchronous Image Pipelines .. 377
10. Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 385

10.1. Basic Acquisition Examples for Camera Link Cameras for microEnable IV VD4-
CL/-PoCL Frame Grabber .. 387
10.2. Basic Acquisition Examples for GigE Vision Cameras for microEnable IV Frame
Grabber .. 393
10.3. Basic Acquisition Examples for Camera Link Cameras for marathon, LightBridge
and ironman Frame Grabbers .. 395
10.4. Basic Acquisition Examples for CoaXPress Cameras for marathon and ironman
Frame Grabbers ... 402
10.5. Basic Acquisition Examples for Cameras for CoaXPress 12 imaFlex Frame
Grabber .. 408

11. imaFlex CXP-12 Quad and Penta Implementation Examples 412
11.1. Functional Example for the FrameBufferMultRoiDyn Operator on the imaFlex
CXP-12 Penta Platform ... 412
11.2. Functional Example for the FrameBufferMultRoi User Library Element on the
imaFlex CXP-12 Penta Platform .. 412
11.3. Functional Example for the FrameBufferMultRoi User Library Element on the
imaFlex CXP-12 Quad Platform .. 413
11.4. Functional Example for Loading Test Images Using ImageInjector 413
11.5. Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting .. 414
11.6. Functional Example for the JPEG_Encoder_Color_iF User Library Element on
the imaFlex CXP-12 Quad Platform .. 414
11.7. Functional Example for the JPEG_Encoder_Color_iF_Penta User Library
Element on the imaFlex CXP-12 Penta Platform ... 414
11.8. Example for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform ... 415

12. Processing Examples .. 416
12.1. Advanced ... 416
12.2. Binarization ... 429
12.3. Blob Analysis .. 430
12.4. Color .. 431
12.5. Co-Processor ... 463
12.6. Debugging and Test ... 464
12.7. Difference Images ... 478
12.8. Filter .. 479
12.9. Geometry ... 484
12.10. High Dynamic Range and Image Composition .. 520
12.11. Lookup Tables ... 536
12.12. Loop .. 537
12.13. Object Features ... 543
12.14. Shading Correction .. 557
12.15. Trigger ... 559

13. Operator Examples .. 578
13.1. Functional Example for Specific Operators of Library Accumulator and Library
Logic .. 578
13.2. Functional Example for Specific Operators of Library Synchronization: Dynamic
Append and Cut .. 578
13.3. Functional Example for Specific Operators of Library Memory and Library Signal
... 579
13.4. Functional Example for Specific Operators of Library Memory and Library Signal
... 579
13.5. Functional Example for Specific Operators of Library Signal 580
13.6. Functional Example for Specific Operators of Library Synchronization, Base and
Filter .. 581
13.7. Functional Example for Specific Operators of Library Arithmentics:
Trigonometric Functions .. 581
13.8. Functional Example for Specific Operators of Library Color, Base and Memory ... 582
13.9. Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters .. 582

14. Parameter Library Examples .. 584
14.1. Parameter Redirection .. 584
14.2. Parameter Translation .. 584

Table of Contents v

VisualApplets User Documentation Release 3

14.3. User Library Parameter .. 585
14.4. Parameter Selection ... 585
14.5. Link Parameter Translation .. 586

15. Using Applets During Runtime ... 587
15.1. Filling LUT with Content With the Basler Framegrabber API 587

Part III. Operator Reference .. 589
16. Introduction .. 590
17. Library Overview ... 591
18. Library Accumulator ... 593

18.1. ColMax ... 595
18.2. ColMin .. 597
18.3. ColSum .. 599
18.4. Count ... 601
18.5. FrameMax ... 604
18.6. FrameMin ... 606
18.7. FrameSum .. 608
18.8. Histogram ... 610
18.9. ModuloCount ... 612
18.10. Register .. 616
18.11. RowMax .. 618
18.12. RowMin .. 620
18.13. RowSum ... 622

19. Library Arithmetics .. 624
19.1. ABS ... 626
19.2. ADD ... 628
19.3. ARCCOS ... 630
19.4. ARCCOT ... 633
19.5. ARCSIN .. 636
19.6. ARCTAN .. 639
19.7. ClipHigh ... 642
19.8. ClipLow .. 644
19.9. COS ... 646
19.10. COT ... 649
19.11. DIV .. 652
19.12. MULT .. 654
19.13. RND ... 656
19.14. SCALE .. 658
19.15. ShiftLeft ... 661
19.16. ShiftRight ... 663
19.17. SIN .. 666
19.18. SQRT ... 669
19.19. SUB ... 670
19.20. TAN .. 672

20. Library Base ... 675
20.1. BRANCH ... 678
20.2. CastBitWidth ... 679
20.3. CastColorSpace ... 682
20.4. CastKernel .. 683
20.5. CastParallel ... 687
20.6. CastType .. 689
20.7. CONST ... 691
20.8. ConvertPixelFormat .. 693
20.9. Coordinate_X .. 697
20.10. Coordinate_Y ... 699
20.11. Dummy .. 701
20.12. DynamicROI .. 702
20.13. EventToHost .. 705
20.14. EventDataToHost .. 711
20.15. ExpandToKernel ... 714
20.16. ExpandToParallel .. 715
20.17. GetStatus ... 717
20.18. HierarchicalBox .. 718

Table of Contents vi

VisualApplets User Documentation Release 3

20.19. ImageNumber ... 720
20.20. KernelRemap ... 722
20.21. MergeComponents ... 724
20.22. MergeKernel .. 727
20.23. MergeParallel ... 729
20.24. MergePixel .. 732
20.25. NOP ... 734
20.26. PARALLELdn .. 736
20.27. PARALLELup .. 739
20.28. PseudoRandomNumberGen .. 742
20.29. SampleDn ... 747
20.30. SampleUp ... 750
20.31. SelectBitField ... 752
20.32. SelectComponent ... 754
20.33. SelectFromParallel .. 756
20.34. SelectROI ... 758
20.35. SelectSubKernel ... 760
20.36. SetDimension .. 762
20.37. SplitComponents .. 764
20.38. SplitKernel .. 767
20.39. SplitParallel ... 768
20.40. Trash .. 770

21. Library Blob .. 771
21.1. Definition .. 771
21.2. Definition of Object Features ... 773
21.3. VisualApplets Operators .. 777
21.4. Blob_Analysis_1D .. 778
21.5. Blob_Analysis_2D .. 793

22. Library Color ... 801
22.1. BAYER3x3Linear .. 802
22.2. BAYER5x5Linear .. 805
22.3. ColorTransform .. 809
22.4. HSI2RGB .. 812
22.5. RGB2HSI .. 814
22.6. RGB2YUV .. 816
22.7. WhiteBalance .. 818
22.8. WhiteBalanceBayer .. 820

23. Library Compression .. 822
23.1. ImageBuffer_JPEG_Gray ... 823
23.2. JPEG_Encoder_Gray ... 826
23.3. JPEG_Encoder ... 832

24. Library Debugging ... 838
24.1. ImageAnalyzer .. 840
24.2. ImageStatistics ... 846
24.3. StreamAnalyzer ... 854
24.4. Scope .. 860
24.5. ImageInjector ... 864
24.6. ImageTimingGenerator ... 868
24.7. ImageFlowControl .. 874
24.8. StreamControl ... 878
24.9. ImageMonitor .. 881

25. Library Filter ... 884
25.1. DILATE ... 886
25.2. ERODE ... 888
25.3. FIRkernelNxM .. 890
25.4. FIRoperatorNxM ... 896
25.5. HitOrMiss .. 899
25.6. LineNeighboursNx1 .. 901
25.7. MAX ... 903
25.8. MEDIAN .. 904
25.9. MIN ... 905
25.10. NumberOfHits .. 906

Table of Contents vii

VisualApplets User Documentation Release 3

25.11. PixelNeighbours1xM .. 908
25.12. SORT ... 910

26. Library Logic ... 911
26.1. AND ... 913
26.2. CASE ... 916
26.3. CMP_AgeB .. 918
26.4. CMP_AgtB ... 920
26.5. CMP_AleB ... 922
26.6. CMP_AltB .. 924
26.7. CMP_Equal .. 926
26.8. CMP_NotEqual ... 928
26.9. IF .. 930
26.10. IS_Equal ... 933
26.11. IS_GreaterEqual .. 935
26.12. IS_GreaterThan ... 937
26.13. IS_InRange ... 939
26.14. IS_LessEqual ... 941
26.15. IS_LessThan ... 943
26.16. IS_NotEqual .. 945
26.17. NOT ... 947
26.18. OR ... 949
26.19. XNOR ... 951
26.20. XOR ... 952

27. Library Memory ... 953
27.1. CoefficientBuffer .. 957
27.2. FrameBufferMultiRoiDyn .. 964
27.3. FrameBufferRandomRead .. 971
27.4. FrameBufferRandomRead (imaFlex) .. 975
27.5. FrameMemory ... 981
27.6. FrameMemoryRandomRd .. 984
27.7. ImageBuffer .. 987
27.8. ImageBufferMultiRoI .. 992
27.9. ImageBufferMultiRoIDyn ... 997
27.10. ImageBufferSC .. 1002
27.11. ImageBufferSpatial ... 1006
27.12. ImageFifo .. 1010
27.13. ImageSequence ... 1014
27.14. KneeLUT ... 1017
27.15. LineBuffer (imaFlex) ... 1024
27.16. LineMemory ... 1029
27.17. LineMemoryRandomRd .. 1033
27.18. LUT .. 1036
27.19. RamLUT .. 1039
27.20. RamLUT (imaFlex) .. 1046
27.21. ROM ... 1051

28. Library Parameters ... 1053
28.1. EnumParamReference ... 1067
28.2. EnumParamTranslator ... 1072
28.3. EnumVariable .. 1079
28.4. FloatFieldParamReference .. 1082
28.5. FloatParamReference .. 1088
28.6. FloatParamTranslator .. 1093
28.7. FloatVariable ... 1101
28.8. IntFieldParamReference .. 1104
28.9. IntParamReference ... 1109
28.10. IntParamTranslator ... 1114
28.11. IntVariable .. 1122
28.12. IntFieldVariable .. 1125
28.13. LinkProperties .. 1129
28.14. LinkParamTranslator ... 1132
28.15. StringParamReference ... 1139
28.16. ResourceReference ... 1144

Table of Contents viii

VisualApplets User Documentation Release 3

28.17. IntParamSelector .. 1148
28.18. FloatParamSelector ... 1152

29. Library Hardware Platform .. 1156
29.1. AppletProperties .. 1160
29.2. BoardStatus .. 1168
29.3. ActionCommand ... 1184
29.4. CameraControl .. 1187
29.5. BaseGrayCamera ... 1190
29.6. BaseRgbCamera ... 1193
29.7. MediumGrayCamera ... 1197
29.8. MediumRgbCamera .. 1201
29.9. FullGrayCamera ... 1207
29.10. FullRgbCamera ... 1211
29.11. CameraGrayArea .. 1216
29.12. CameraGrayAreaBase ... 1218
29.13. CameraGrayAreaFull ... 1220
29.14. CameraGrayAreaMedium ... 1222
29.15. CameraGrayLine ... 1224
29.16. CameraGrayLineBase .. 1226
29.17. CameraGrayLineFull .. 1228
29.18. CameraGrayLineMedium .. 1230
29.19. CameraRgbArea ... 1232
29.20. CameraRgbAreaBase ... 1234
29.21. CameraRgbAreaMedium .. 1236
29.22. CameraRgbLine .. 1238
29.23. CameraRgbLineBase ... 1240
29.24. CameraRgbLineMedium ... 1242
29.25. CLHSDualCamera ... 1244
29.26. CLHSPulseIn .. 1248
29.27. CLHSPulseOut .. 1252
29.28. CLHSSingleCamera ... 1256
29.29. CxpCamera ... 1261
29.30. CxpCameraMultiTap .. 1269
29.31. CxpAcquisitionStatus .. 1281
29.32. CxpPortStatus .. 1282
29.33. CxpRxTrigger ... 1292
29.34. CxpTxTrigger ... 1294
29.36. CXPDualCamera ... 1297
29.37. CXPQuadCamera .. 1305
29.38. CXPSingleCamera ... 1313
29.39. DigIOPort .. 1321
29.40. DmaFromPC .. 1322
29.41. DmaToPC .. 1325
29.42. GPI .. 1329
29.43. GPO ... 1333
29.44. LED .. 1337
29.45. NativeTrgPortIn .. 1340
29.46. NativeTrgPortInExt .. 1341
29.47. NativeTrgPortOut .. 1342
29.48. RxLink .. 1343
29.49. TrgPortArea ... 1345
29.50. TrgPortLine .. 1349
29.51. TriggerIn ... 1360
29.52. TriggerOut ... 1362
29.53. TxLink .. 1364
29.54. SignalToEvent .. 1366

30. Library Prototype ... 1368
30.1. COUNTER .. 1369
30.2. CustomSignalOperator .. 1371
30.3. HWMULT ... 1373
30.4. PackbitsRLE ... 1375
30.5. TrgBoxLine .. 1377

Table of Contents ix

VisualApplets User Documentation Release 3

30.6. RGB2XYZ .. 1396
30.7. XYZ2LAB ... 1399

31. Library Signal .. 1400
31.1. DelayToSignal .. 1403
31.2. Downscale .. 1406
31.3. EventToSignal .. 1409
31.4. FrameEndToSignal .. 1411
31.5. FrameStartToSignal .. 1413
31.6. Generate .. 1415
31.7. GetSignalStatus ... 1421
31.8. Gnd ... 1423
31.9. LimitSignalWidth .. 1426
31.10. LineEndToSignal ... 1429
31.11. LineStartToSignal ... 1431
31.12. PeriodToSignal ... 1433
31.13. PixelToSignal ... 1436
31.14. Polarity ... 1438
31.15. PulseCounter ... 1441
31.16. RsFlipFlop ... 1443
31.17. RxSignalLink .. 1445
31.18. Select ... 1447
31.19. SetSignalStatus ... 1450
31.20. ShaftEncoder ... 1453
31.21. ShaftEncoderCompensate .. 1457
31.22. SignalDebounce ... 1460
31.23. SignalDelay ... 1463
31.24. SignalEdge .. 1466
31.25. SignalGate .. 1468
31.26. SignalToDelay .. 1473
31.27. SignalToPeriod ... 1475
31.28. SignalToPixel ... 1477
31.29. SignalToWidth .. 1479
31.30. SignalWidth ... 1481
31.31. SyncSignal .. 1485
31.32. TxSignalLink .. 1487
31.33. Vcc .. 1489
31.34. WidthToSignal .. 1492

32. Library Synchronization .. 1495
32.1. AppendImage .. 1498
32.2. AppendImageDyn .. 1501
32.3. AppendLine ... 1503
32.4. AppendLineDyn .. 1505
32.5. CutImage ... 1507
32.6. CutLine ... 1509
32.7. CreateBlankImage .. 1511
32.8. ExpandLine ... 1514
32.9. ExpandPixel ... 1516
32.10. ImageValve ... 1518
32.11. InsertImage .. 1520
32.12. InsertLine ... 1523
32.13. InsertPixel ... 1526
32.14. IsFirstPixel .. 1528
32.15. IsLastPixel ... 1530
32.16. PixelReplicator ... 1535
32.17. PixelToImage ... 1537
32.18. RemoveImage .. 1540
32.19. RemoveLine ... 1542
32.20. RemovePixel .. 1544
32.21. ReSyncToLine ... 1549
32.22. RxImageLink ... 1551
32.23. SourceSelector ... 1554
32.24. SplitImage .. 1556

Table of Contents x

VisualApplets User Documentation Release 3

32.25. SplitLine ... 1560
32.26. SYNC .. 1562
32.27. TxImageLink .. 1575
32.28. Overflow ... 1578

33. Library Transformation .. 1580
33.1. FFT .. 1581

Appendix A. Device Resources .. 1584
A.1. Hardware Configuration of Supported Platforms .. 1584
A.2. Device Resources of Supported Platforms ... 1587
A.3. Shared Memory Concept .. 1590

Glossary .. 1593
Bibliography ... 1596
Index .. 1597

Part I
User Manual

Introduction 2

VisualApplets User Documentation Release 3

1. Introduction

1.1. VisualApplets

Welcome to the world of modern FPGA programming. By purchasing VisualApplets you own one of the
leading and most advanced tools for FPGA programming to realize image processing applications.

VisualApplets will:

• turn the frame grabber or camera into a flexible and intelligent high-performance image processor

• let you deploy the potential of modern FPGA technology at any customer

• enable you to realize real-time solutions for applications with image processing requirements in
minutes

• upgrade your application to a reliable hardware solution level

VisualApplets is a hardware programming tool for FPGAs, based on the use of graphical pipeline-
structure objects.

Image processing designs are arranged by the combination of operator modules, filter modules and
transport links. The provided libraries contain more than 200 hardware-based operators which cover
standard as well as advanced image processing functions.

Included in delivery are arithmetical and morphological operators for pixel manipulation, logical
operators for classification tasks, complex modules for color processing, operators for statistics analysis
and processing of image sequences. Additional operators are responsible for format conversion,
compression or conversion in pixel lists. Special features are the programming of the control signals
to individualize the trigger functionality, and the segmentation and classification functions in the blob
analysis operator. Complex operators can be combined by basic ones and stored in individual user
libraries. This allows building complex designs without losing clarity of the design.

The complete set of functions is implemented as hardware operators and guarantees image processing
in real-time. The complexity of image processing designs is mainly limited by the available resources
of the FPGA hardware. There is no need for a user to waste time debugging synchronization issues,
manually managing bandwidth and timing. Also, a build function and high level simulation are
integrated to offer full control over the final visual result of a design on bit accuracy from within the
development environment.

The complete process of the hardware design creation can be completed in a matter of minutes. The
hardware applet can immediately be verified by microDisplay, the viewer and configuration software,
or be integrated in applications by use of the pre-generated SDK example code.

Introduction 3

VisualApplets User Documentation Release 3

Although knowledge of hardware programming is advantageous, the software solution VisualApplets®
is addressed to application engineers in Machine Vision as a matter of priority.

VisualApplets is target hardware independent.

Figure 1.1. VisualApplets - From Idea to Image Processor in 15 Minutes

VisualApplets’s key benefits and features:

• a graphical interface to program FPGA hardware

• no knowledge required of circuitry, synchronization, timings or FPGA programming

• libraries with hardware modules representing available hardware configurations

• image processing libraries with various filter operators and imaging modules

• availability of VisualApplets® image processing libraries with special market, branch or customer
focus

• build and high-level simulation in software

• no need for a VHDL compiler

• accessible to hardware developers and application engineers alike

• closes the gap between standard and custom specific applets

Introduction 4

VisualApplets User Documentation Release 3

Figure 1.2. VisualApplets – Awarded Software Environment

Basler hopes you will enjoy the “world of VisualApplets” and wish a successful time in developing your
individual real-time applications.

1.2. How to Use This Documentation
This documentation is divided into three major parts.

The Part I, 'User Manual' lists and explains all functions of VisualApplets. If you are new to
VisualApplets, we recommend you start with Section 2.1, ' Writing Your First Applet '. To get an
overview over the range of functionalities VisualApplets offers, proceed with 3. Basic Functionality and
4. Extended Functionality. All information provided by the User Manual is additionally available directly
in the program as context-sensitive online help.

Part II, 'Tutorial and Examples' provides a deeper step-by-step introduction into VisualApplets.

In the Part III, 'Operator Reference' , you find a complete and detailed description of all operators.

New Layout of Operator Icons

The layout of the operator icons has been improved, so that the operator type (O
or M type) is very easy to recognize now. Some screenshots in this document might
not yet reflect these changes, but this will not have any impact on the clearness and
comprehensibility of this documentation.

1.3. System Requirements
System requirements, see Installing VisualApplets [https://docs.baslerweb.com/visualapplets/
installing-visualapplets]

https://docs.baslerweb.com/visualapplets/installing-visualapplets
https://docs.baslerweb.com/visualapplets/installing-visualapplets
https://docs.baslerweb.com/visualapplets/installing-visualapplets

Getting Started 5

VisualApplets User Documentation Release 3

2. Getting Started

2.1. Writing Your First Applet

To get a first impression on VisualApplets, this chapter gives you a short introduction into the tool.
All steps required to generate an image processing application with VisualApplets are presented. You
will learn how fast applications can be realized and how easy it is without the need on FPGA or any
other hardware-specific knowledge.

2.1.1. Designing the Applet

1. Start VisualApplets by clicking on the VisualApplets program icon in the Windows Start menu or
on the Desktop. At first, the main window will open with no project loaded.

Figure 2.1. VisualApplets Main Window

You can now immediately start implementing your first design. The first step will be to start a new
project.

2. Click on File -> New (Ctrl+N) or use the New icon from the File icon bar. A New Project window
will open which allows you to specify project name, target hardware platform, and target runtime.
If you don't know these settings at the current step of development, just give a name to your
project and use the default settings. You can always change these settings later on.

3. To follow our example here, just use the following settings:

• Project Name: "helloWorld"

• Hardware Platform: microEnable IV VD4-CL frame grabber

• Target Runtime: Microsoft Windows 64-bit system.

4. Confirm your settings by clicking on OK.

Getting Started 6

VisualApplets User Documentation Release 3

Figure 2.2. Start of a New Project

VisualApplets will now start a new project. You will see a blank design window in the center of your
program window. (If you selected microEnable 5 as hardware platform, the two obligatory control
operators Applet Properties and Board Status are automatically inserted into the empty design.) In
the Project Info tab on the right, information regarding your current project like project name, target
hardware, target platform etc. is displayed.

In VisualApplets, image processing operations are represented by operators. All these operators can
be found in the operator library on the right of the VisualApplets design window. Using drag-and-drop,
you can very easily place operators into the design window. An instance of an operator in the design is
called a module. Operators can have input and output ports. Operators in a design (i.e., modules) can
be connected using these ports. Connections between modules are called links which are represented
in the design window by arrows. These modules and links represent the image- (or signal-) processing
pipeline; hence, the order of operations is determined by the order of modules.

For our first design, we will need the following three operators:

• Operator CameraGrayAreaBase from the mE4VD4-CL library

• Operator ImageBuffer from the Memory library

• Operator DmaToPC from the mE4VD4-CL library

To use these operators in your design:

5. Locate the operators in their libraries and drag them into your design window as shown in the
following:

Getting Started 7

VisualApplets User Documentation Release 3

Figure 2.3. Dragging Operators from Libraries into the Design Window

The next step will be to connect the modules in your design via links.

Clicking on a port will start a new link which can be finalized with a second click on the target port.

6. To connect the camera module with the buffer module, click on the output port of the camera
module and then on the input port of the buffer module.

7. Connect the buffer module with the DMA module in the same way.

Save your Design. If you save your design for the first time, the Save dialog will offer the project
name as the name for your design file.

File Name and Project Name

If you save your design for the first time, or if you use the Save as... option, the Save/Save
as... dialog will offer the project name as the name for your design file.

2.1.2. Parametrizing

Now you have finished your first design. In the next step, you have to specify the settings of the
individual modules and links (otherwise, the design will use the preset default properties).

1. To parametrize a module, just double-click on the module. A dialog window will open where all
parameters of the module are listed.

2. Set the properties as you need them for your design. For this first sample applet you are designing
right now, simply change the names of your modules to "Camera", "Buffer", and "DMA".

3. Click on Apply.

4. Close the properties windows by clicking on Close.

5. Save your Design.

Operator Parameters

Parameters are always operator-specific; therefore, the setting options differ from
operator to operator.

Getting Started 8

VisualApplets User Documentation Release 3

Figure 2.4. Module Properties

The next step is to edit the properties of the links of your design. In the sample applet you are creating
just now, there is no need to change any of the link properties. You can simply use the default settings.

However, whenever you need to parametrize the links of your design, you should proceed as follows:

6. Double-click on the link you want to parametrize.

7. Enter the desired settings.

8. Click on Apply.

9. Close the properties window by clicking on Close.

2.1.3. Design Rules Check (DRC)

You have now fully implemented your first application which is a simple image acquisition. Proceed by
checking your design for errors using the Design Rules Check (DRC) functions of VisualApplets.

1. Click on Analysis -> Design Rules Check Level 1 (Ctrl+F7) or use the icon Design Rules
Check Level 1 from the Build icon bar.

2. In the Project Info window on the right, change to the DRC Log tab.

Here, The DRC analysis result is displayed as you can see in the following figure:

Getting Started 9

VisualApplets User Documentation Release 3

Figure 2.5. Successful DRC

Important

If the DRC detects an error, you have to correct it before continuing with the next step.
Detected errors are listed in link format. If you click on one of the listed errors, the
respective module or link will be highlighted in the Design Window.

After successful DRC, save your design:

3. Click on File -> Save (Ctrl+S) or use the Save icon from the File icon bar.

2.1.4. Editing the Build Settings

You need to edit the build settings, if

• You create designs for a microEnable 5 (ironman and marathon) or LightBridge platform.

• You work with Xilinx Vivado.

• You work with a Xilinx ISE version higher than 9.2.

You can skip this section and proceed with Section 2.1.5, 'Building the Final Hardware Applet', if

• you design for microEnable IV frame grabbers and use Xilinx ISE 9.2 for building these designs.

mE 4 Users

If you are designing for a microEnable IV platform and use a Xilinx ISE version 9.2 or
lower, skip this section and proceed with Section 2.1.5, 'Building the Final Hardware
Applet'.

To set the build settings for your specific environment, proceed as follows:

1. Click menu Settings -> Build Settings.

The Build Settings dialog opens.

Getting Started 10

VisualApplets User Documentation Release 3

2. Click on the Add button.

3. Select the target hardware platform (frame grabber) for these build settings on and confirm with
OK.

4. Give a name to the new set of build settings you are just creating.

5. Activate the option Active configuration (directly behind the filed where you entered the name).

6. Leave Precondition Check activated.

7. Under Xilinx Build Flow, select the Xilinx Tool you want to use (Xilinx ISE or Xilinx Vivado).

8. Disable the option Use system environment instead.

9. Select a Xilinx settings batch file from your file system. You find the batch file in the Xilinx
installation folder.:

• ISE: \Xilinx\<version_number>\ISE_DS\settings64.bat.

• Vivado: \Xilinx\Vivado\<version_number>\settings64.bat.

We recommend to use the 64-bit Windows operating system when developing applets for
microEnable 5 platforms. Make sure you select the batch file that matches the operating system
you are using, e.g., "settings64.bat" which is the file for the 64-bit Windows OP.

10. Keep all other settings as they are.

11. Click OK.

Figure 2.6. Build Settings for microEnable 5 / Xilinx Vivado

Getting Started 11

VisualApplets User Documentation Release 3

For further details on build settings options, refer to section Section 4.9, 'Build Settings'

2.1.5. Building the Final Hardware Applet

The last step is the build of your design.

Build Preconditions

The build process can only be performed if the XILINX tools are properly installed. Refer
to section Installing the Xilinx Toolchain [https://docs.baslerweb.com/visualapplets/
installing-visualapplets#installing-the-xilinx-toolchain] for more information on XILINX
tool installation.

If you create designs for microEnable 5 (ironman and marathon) or LightBridge frame
grabbers, or if you work with a Xilinx ISE version higher than version 9.2, you need to
define the build settings before proceeding, see section Section 2.1.4, 'Editing the Build
Settings '.

To create the bit stream (*.hap file):

1. Click on Build -> Build (F7) or use the Build icon from the Build toolbar.

The Build dialog opens.

2. Under Xilinx configuration, select the build configuration you want to use (out of the configurations
you defined in the Build Settings dialog).

3. Click on Start to actually start the bitstream generation.

VisualApplets will now use the XILINX tools to translate the application into the FPGA bitstream, i.e.,
the "program" or "applet".

Prolonged Build Time Possible

The duration of the Place and Route process depends on the complexity of the design.

The build of highly complex designs might take several hours.

After successful build, the applet is fully generated.

The name of your applet (*.hap file) is the same as the name of the design file (*.va). The project
name has no influence on the name of the applet (*.hap file).

At this point, you are done with VisualApplets and can use the applet in real FPGA hardware.

An explanation on how to run a VisualApplets design on hardware you will find in section Section 2.2,
'Running Your Applet on Hardware'.

2.2. Running Your Applet on Hardware

Prerequisites:

• A programmable (V Series) microEnable frame grabber (hardware) is installed on your
system.

• The Framegrabber SDK is installed on your system.

How you get your applet running depends on the frame grabber generation you are using.

https://docs.baslerweb.com/visualapplets/installing-visualapplets#installing-the-xilinx-toolchain
https://docs.baslerweb.com/visualapplets/installing-visualapplets#installing-the-xilinx-toolchain
https://docs.baslerweb.com/visualapplets/installing-visualapplets#installing-the-xilinx-toolchain

Getting Started 12

VisualApplets User Documentation Release 3

microEnable 5 (marathon and ironman) and LightBridge: With microEnable 5 and LightBridge
frame grabbers, you first have to load your *.hap file (applet) via firmware flasher tool onto your frame
grabber, prior to selecting and starting the applet (see Section 2.2.1, 'Flashing').

microEnable IV: With microEnable IV, you can immediately select the applet (*.hap file) from your
local file system and start it on the frame grabber.

You can

• directly see and test the image processing results of your applet with the tool microDiagnostics
(which comes as part of the Framegrabber SDK) (see https://docs.baslerweb.com/frame-grabbers/
managing-applets-micro-diagnostics).

• start the applet via the application programming interface (see Section 2.2.3, 'Starting the Applet
in your own Software').

2.2.1. Flashing

You need to flash your frame grabber with the new applet, if you use a microEnable 5 (marathon,
ironman) or a LightBridge frame grabber.

If you are going to use the new applet on a microEnable IV frame grabber, just skip this section.

To flash your frame grabber:

1. Start the tool microDiagnostics.

2. Select the frame grabber you want to use.

3. Click the button Flash Selected Board(s). A new window opens.

4. Go to the directory where you store your *.hap file created in VisualApplets, and select the file.

5. Click on Open and confirm by clicking on Yes.

6. Wait until the new firmware is completely installed. You get an according message in
microDiagnostics.

7. Follow the instructions in the message.

For detailed information how to flash your specific frame grabber, refer
to the User Manual of your specific frame grabber (Flashing Applets onto
marathon Frame Grabbers [https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-
diagnostics#flashing-applets-onto-marathon-frame-grabbers]).

2.2.2. Testing your Applet in microDisplay

To test your applet and to set some first parameters, you can use the tool microDisplay:

1. Save the *.hap file you created in VisualApplets into the Framegrabber SDK installation directory:

[Framegrabber SDK installation directory]/Hardware Applets.

2. Start the tool microDisplay, either directly from VisualApplets by clicking on Build -> microDisplay
(F5), or via Windows START menu.

3. In the dialog I want to…, select Load Applet.

4. In the Load Hardware Applet dialog, select the frame grabber you want to use under Board.
Immediately, all applets available for the selected board are displayed.

With microEnable 5, only one applet (the one you flashed your board with) will be available.

5. Select the *.hap file you want to use.

https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics#flashing-applets-onto-marathon-frame-grabbers
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics#flashing-applets-onto-marathon-frame-grabbers
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics#flashing-applets-onto-marathon-frame-grabbers
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics#flashing-applets-onto-marathon-frame-grabbers

Getting Started 13

VisualApplets User Documentation Release 3

6. Click on the Load button to load the selected applet (*.hap file) onto the frame grabber.

7. Close the Load Hardware Applet dialog.

8. Configure the frame grabber using the parameter panel of the microDisplay program window.

When working with more than one camera, first select the port you are going to configure. Configure
all ports you are using.

Set the parameters to your needs, e.g., image height and image width. To do so, right-click directly
on the value and select Edit.

Configure specific operation modes you want to use (e.g., trigger settings).

9. Start image acquisition on the frame grabber by clicking on the button Grab and display an infinite
number of frames.

The grabbed images are now displayed in microDisplay.

10. To stop the acquisition, click on the Stop button in microDisplay.

2.2.3. Starting the Applet in your own Software

To start using the Applet in your own software:

1. In the Framegrabber API, use the call Fg_Init to start the applet.

Specify the path to the location of the *.hap file you created with VisualApplets.

Starting the Camera

Depending on the type of camera interface, it might be helpful to start GenICam
explorer tools as well in order to control the camera. For details, please refer to
the Framegrabber SDK documentation [https://docs.baslerweb.com/frame-grabbers/
configuring-the-camera-micro-display-x].

2.3. Further Reading
You have just successfully implemented your first VisualApplets design. If you are interested in a
deeper step-by-step introduction into VisualApplets we recommend to read our tutorial which you can
find in Part II, 'Tutorial and Examples'.

If you want to learn more about the functionalities of the program, just proceed by reading the next
chapters of this user manual in Part I, 'User Manual'. Here you will find all functions of VisualApplets
explained in detail.

All information provided in the User Manual you can also access directly in VisualApplets. Click on a
Help button in the program and you will be automatically directed to the respective explanations in
the user manual.

If you prefer a directed tool introduction, Basler offers VisualApplets workshops and coaching. Feel
free to contact us via Basler Sales [https://www.baslerweb.com/en/sales-support/sales/].

https://docs.baslerweb.com/frame-grabbers/configuring-the-camera-micro-display-x
https://docs.baslerweb.com/frame-grabbers/configuring-the-camera-micro-display-x
https://docs.baslerweb.com/frame-grabbers/configuring-the-camera-micro-display-x
https://www.baslerweb.com/en/sales-support/sales/
https://www.baslerweb.com/en/sales-support/sales/

Basic Functionality 14

VisualApplets User Documentation Release 3

3. Basic Functionality
This chapter outlines the fundamental ideas and functions of VisualApplets. First, you get an overview
over the basic principles of VisualApplets, the typical workflow of the design process, and the graphical
user interface you will use for creating your designs. Afterwards (starting with Section 3.4, 'Entering
a Design'), all functions vital to generate VisualApplets designs are explained in detail. This includes
operator insertion, module and link parametrization, verification, simulation and, finally, the build
process.

A detailed description of the extended functions of VisualApplets you will find in 4. Extended
Functionality. If you prefer a step-by-step introduction into the program, we recommend reading Part
II, 'Tutorial and Examples' in detail.

3.1. Basic Principles
The basic principles of VisualApplets are very simple.

• Image processing or signal processing functions are represented by abstract operators.

• Operators are selected in accordance with the intended functionality of the applet. They can be
chosen from extensive libraries.

• The operators are inserted into the user's design. The instance of an operator in a design is called
module.

• A data flow model which represents the processing chain is build by linking modules.

• All modules and links can be parametrized to meet the requirements of the user's application and
make the implementation fast and efficient.

• After successful offline verification, the design is built into a hardware applet file which can be loaded
onto the hardware devices.

The following figure shows a screen shot of a simple VisualApplets design. As you can see, the modules
in the design window are combined via links which are represented by arrows. The order of the modules
define the functionality of the final applet. In this example, we acquire images from a camera (module
Camera), buffer the images in an on-board memory (Buffer), and output the result to the host PC
using the operator DmaToPC.

Figure 3.1. Simple VisualApplets Design

After all operators have been placed into a design, have been connected using links and parametrized,
the design has to be verified. The program offers multiple functionalities to check consistency,
bandwidth, and resources. One very important part of the verification is the functional simulation.
Here, the design can be simulated with data from image files without the need of any target hardware.

Finally, the design is build to become a hardware applet file (HAP) which can be used on the target
hardware devices. The next section will outline the workflow in detail.

Basic Functionality 15

VisualApplets User Documentation Release 3

3.2. Workflow

The required steps to generate or modify a VisualApplets project are the same for each project:

1. Design Entry:

The design is build by using operators from the operator libraries and inserting them into the
design. This way, the operators become instanciated. The instance of an operator within a design
is called module. The modules of a design are connected via links. The order of the operators
determine the functionality of design.

2. Design Parameterization:

All modules and links of a design can be parameterized to define correct behavior, processing
speed, and resource efficiency.

3. Design Verification:

The verification of the design is a very important part of the design process. Two levels of design
rule checks (DRC) verify the consistency of the design and show errors in parameterization and
link formats, or resource conflicts.

A functional simulation is used to verify the behavior of the implementation. Image files serve
as source data. The simulation is performed completely offline, without the need of any target
hardware.

4. Build:

During the build process, the design is transformed into the binary hardware applet file (HAP)
which can be directly loaded onto the hardware.

5. SDK Generator:

To ease the integration of the applet into user applications, VisualApplets includes an SDK generator
tool which generates a C++ project. The project can be immediately loaded and compiled and will
provide examples on how to use and parameterize the new applet.

6. Applet Run:

The applet can now be included and used in your application. To run applets, the Framegrabber
SDK must be installed.

Figure 3.2, 'The Design Workflow' illustrates the steps described above. As you can see, during the
design time of the applet, a *.va file is edited. After the build process, the final *.hap file is integrated
into the user application.

Basic Functionality 16

VisualApplets User Documentation Release 3

Figure 3.2. The Design Workflow

Basic Functionality 17

VisualApplets User Documentation Release 3

3.3. Main Program Window
VisualApplets offers a graphical user interface for applet design. No scripting, no programming code is
required to be edited. The user interface is very simple and especially designed for easy learning by
users. No technical background in programming is required.

The VisualApplets main program window consists of several bars and panels:

Figure 3.3. Main Program Window

The main menu bar provides direct access to the program features. Use the toolbar buttons for quick
access to important functions. You can change the size of the toolbar icons in Settings -> System
Settings -> Common:

Three panels provide different information and possibilities:

• Design panel: The design panel shows your VisualApplets project. You always have one main design
window, but, depending on the structure of your project, you may additionally work with several sub
windows. In the Window menu, multiple views can be selected (Tile, Cascade, Tabbed View). Using
the menu entries you find in Window -> Diagram Windows (Ctrl+F8), you can easily select
the design diagram window you want to work on at the moment.

• Information panel: In default setting of the main program window, the information panel is always
displayed. It offers different information windows in tabbed view:

• Project Info

• Module Info

• Parameter Info

• DRC Log

• Build Log

• Help
(For details on each information window, see below.)

Basic Functionality 18

VisualApplets User Documentation Release 3

• Library panel: In default setting of the main program window, the library panel is always displayed.
It offers three library windows in tabbed view:

• Operator Library: The Operator Library is a collection of sublibraries that contain VisualApplets
operators, i.e. the individual image processing functions.

• User Library: The User Library can include custom libraries with user-defined combinations of
operators (hierarchical boxes). For more information see Section 4.2, 'User Libraries'.

• Custom Library: To import operators into the Custom Library you need either an Expert license
or the VisualApplets 4 license.

Specific Operators

Some operators displayed in the operator library may not be available for the platform
you are currently designing for. If not available for the platform you selected, the operator
is grayed-out.

Figure 3.4. Operator not available for currently selected target hardware platform

3.3.1. The Windows of the Information Panel

3.3.1.1. Project Info

The Project Info window summarizes information on the current project.

Basic Functionality 19

VisualApplets User Documentation Release 3

Figure 3.5. Project Info

The following information is provided:

• Name: Name of project (=file name)

• Creation Date: Date of creation

• Last Modified: Date of last modification

• Version: Version number of the project; this entry can be edited from the Design -> Project Details
menu (see Section 4.8.2, 'Project Properties')

• Description: Verbal description of the project; this entry can be edited from the Design -> Project
Details menu (see Section 4.8.2, 'Project Properties')

• Type: Displays the FPGA type currently used on the target hardware (see Section 4.5, 'Target
Hardware Porting')

• Target Runtime: Displays the target runtime (see Section 4.8.1, 'Target Runtime')

• Design Rules Check Level 1: Indicates found errors or successful performance (see Section 3.9,
'Design Rules Check')

• Hardware Applet: Indicates the existence of a hardware applet. The entry is checked if VisualApplets
previously generated a HAP file of the project.

• Resources: Shows the results of the resource estimation. See also Section 3.11, 'FPGA Resource
Estimation'.

Basic Functionality 20

VisualApplets User Documentation Release 3

•
System: Displays the found XILINX version, the available Framegrabber SDK version, and the
Framegrabber SDK installation directory. This information is used by VisualApplets to build a HAP
and for the final HAP output. See Section 3.12, 'Build' for more information.

3.3.1.2. Module Info

The Module Info window shows a list of all modules used in the project (as long als the input field of
the window is empty). The list is structured by the hierarchy of the project.

Figure 3.6. Module Search

In the Module Info window, you can easily search for a certain module or module type. This is very
helpful when working in large designs. Before you start your search, you should define the filter
settings:

• If you want to search for the individual name you gave to the module, activate "Names".

• If you want to search for the module type (the name of the operator the instance of which you are
currently searching for), activate "Types".

Basic Functionality 21

VisualApplets User Documentation Release 3

Figure 3.7. Module Search

You can now enter your search string. It is sufficient to enter only part of a name. A click on one of
the modules listed in the Module Info window will bring the respective design window into focus (in
the design panel), with the module selected and highlighted.

3.3.1.3. Parameter Info

The Parameter Info view shows all parameters and their operators of the active design. You can also
edit the parameters in the Parameter Info view.

Basic Functionality 22

VisualApplets User Documentation Release 3

Figure 3.8. Parameter Info

The Parameter Info view provides a search function that allows you to search for parameters, parameter
values, or operator names. You can use the Runtime Parameter Only filter to display only the dynamical
parameters, i.e. parameters that you can edit during runtime.

3.3.1.4. DRC Log

The DRC Log window displays the results of the last Design Rules Check. A click on one of the module
names listed under a warning/error message will bring the respective design window into focus (in the
design panel), with the module selected and highlighted.

Basic Functionality 23

VisualApplets User Documentation Release 3

Figure 3.9. DRC Log Information

3.3.1.5. Build Log

The Build Log window displays the results of the last Build.

Basic Functionality 24

VisualApplets User Documentation Release 3

Figure 3.10. Build Log Information

3.3.1.6. Help

The Help window offers context-sensitive help on individual operators.

To open the context-sensitive help you can either:

1. Select the operator you want information on directly in you design and press F1 to open and display
the corresponding information in the Help window.

2. Select a operator from the Operator Library window. The Help window will always show the help
for the current selection.

Basic Functionality 25

VisualApplets User Documentation Release 3

Figure 3.11. Example: Displaying Information on the MergeKernel Operator

If you press F1 in any other window or click on a help button, the context sensitive user manual help
for the current selected window or function will open. Of course, you can access the operator help
directly form this user documentation, too. See Part III, 'Operator Reference'.

3.3.2. The Windows of the Library Panel

The library panel displays the Operator Library window, the User Library window and the Custom
Library window in tabbed view.

All libraries (Operator Library, User Library, and Custom Library with all their sublibraries) are organized
in a tree structure. Each library contains operators.

The visualization of the structure can be changed by selecting either "Tree", "List", or "Icon" view.

Figure 3.12. Library Panel with Operator Library on Display

Basic Functionality 26

VisualApplets User Documentation Release 3

In the search field, a search string can be entered to filter the list for only the required operators.
Camera for example will list all operators containing camera in their name.

3.3.2.1. Operator Library

The Operator Library is a collection of sublibraries that contain VisualApplets operators, i.e. the
individual image processing functions.

You can get detailed information on each operator by clicking on the operator name in the Operator
Library window and clicking on the Help tab in the information panel.

Figure 3.13. Library Panel with Operator Library on Display

See Section 3.4.4, 'Inserting Operators' on how to add new operators to a diagram. A detailed
documentation of all operators is given in Part III, 'Operator Reference'.

3.3.2.2. User Library

The User Library can include custom libraries with user-defined combinations of operators (hierarchical
boxes). For more information see Section 4.2, 'User Libraries'.

3.3.2.3. Custom Library

To import operators into the Custom Library you need either an Expert license or the VisualApplets
4 license.

Basic Functionality 27

VisualApplets User Documentation Release 3

3.3.3. Adapting the Main Program Window

You have various options to adapt the main program window of VisualApplets to your personal
preferences:

3.3.3.1. Adapting Toolbars

Toolbars can be rearranged by drag and drop or added/removed by a right click.

3.3.3.2. Restoring the Default Setting of the Main Program Window

If you accidentally arranged the windows or toolbars in a way you didn't want to, you can restore the
default setting by Window -> Reset Dock Windows (Ctrl+O) or by clicking the corresponding
icon in the View toolbar.

3.3.3.3. Number of Files under File -> Recent Designs

Under File -> Recent Designs VisualApplets offers you a list of recently opened VisualApplets files
(*.va). You can configure the actual number of files displayed.

To define how many recently opened files are displayed:

1. Go to menu Settings -> System settings and select category Common.

2. Under Recent designs, define the number of files you want to have displayed (up to 24).

3. Confirm with Ok.

Figure 3.14. Configuring the number of displayed recent designs

Basic Functionality 28

VisualApplets User Documentation Release 3

3.4. Entering a Design

VisualApplets offers a graphical user interface for applet design. No scripting, no programming-code
is required to be edited. The user interface is very simple and especially designed for easy learning by
users. No technical background in programming is required.

3.4.1. Creating a New Project

To create a new VisualApplets project file:

1. Click File -> New (Ctrl+N) or use the icon New from the file icon bar in the main window. A
New Project window will open which allows you to specify a project name.

2. Enter the project name. The project name will be the suggested file name later on.

3. You also have to specify the target hardware platform and the target runtime. If you are not sure
which platform and runtime will be used, you can always change these settings later on (Design
-> Change Platform and Design -> Change Target Runtime). Finalized applets can only be
used in a runtime which corresponds to the target runtime defined in the applet.

Figure 3.15. Start of a new Project

For each project, a version number (string) and a project description can be added.

4. Click Properties to open the Project details window. Here, you can enter the version of your design
project and a project description. This information will be displayed in the Project Info window of
the information panel.

Basic Functionality 29

VisualApplets User Documentation Release 3

Figure 3.16. Edit Project Details

After all settings have been made:

5. Click OK to close all windows and to start the new project. VisualApplets will now open your new
project.

Tip

Only one project can be loaded at a time. If you want to open several projects at the
same time, simply use a second VisualApplets instance.

3.4.2. Opening an Existing Project
To open an existing project:

1. Click File -> Open (Ctrl+O) or use the icon Open from the file icon bar.

2. Select the VisualApplets project file from your file system an click Open.

Opening Designs created in older VisualApplets versions

If you are opening a project file which has been edited with a previous version of
VisualApplets, the program might ask you to convert the file to the new version. For
more information on migrating from previous versions, see Section 4.14, 'Migration from
Older Versions'.

Alternatively, you can select a project you have currently worked on directly:

1. Go to File -> Recent Designs. VisualApplets offers you a list of recently opened VisualApplets
files (*.va).

2. Select the project file you want to proceed working on.

Number of displayed files

You can configure the actual number of files displayed. How to do that, see section Section
3.3.3.3, 'Number of Files under File -> Recent Designs'.

Basic Functionality 30

VisualApplets User Documentation Release 3

3.4.3. Defining the FPGA Clock (mE5 marathon only)

If you are designing for another hardware platform than mE5 marathon, skip this section and proceed
with the following one.

If you are designing for a mE5 marathon hardware platform, you can specify the FPGA clock frequency.
You can select any value between 125 MHz and 312.5 MHz.

To define the FPGA clock:

1. In menu Design, select menu item Change FPGA Clock.

Figure 3.17. Menu Design, menu item Change FPGA Clock

2. Specify the desired frequency via slider or spin box.

Figure 3.18. Slider and spin box for selecting FPGA clock frequency

The selected clock frequency (Design Clock) is displayed in operator AppletProperties.

3.4.4. Inserting Operators

Inserting new operators into a project is very easy:

Basic Functionality 31

VisualApplets User Documentation Release 3

1. Select the required operator in the library panel (see Section 3.3.2, 'The Windows of the Library
Panel' if you want to know how to find the operator you are looking for).

Figure 3.19. Operator Libraries

2. To add an operator from the library list into your diagram window, simply drag and drop the operator
into the design window. The selected operator is now added to your project.

Operator Instances in Your Design

As soon as you drag and drop an operator into your design, the operator gets instantiated
and you work with an instance of the chosen operator. This instance in your design we
call a design module. You can give an individual name to each module of your design
(the module name). This way, you can even give an individual name to each of several
instances of the same operator.

3. Move the modules in your design into the right position by using drag and drop.

Quick Insertion of New Modules

There is an alternative method to add operators into a project. You can use the Add
Operator window which you open via Design -> Add Operator ... (Ctrl+I). This
window is especially useful if you need to add a series of operators you know by name.
The shortcut for accessing the window, in combination with the window's search field
facilitate the efficient and fast insertion of multiple operators. The operator you chose in
this window is added to the design window currently in focus.

3.4.5. Deleting Modules

If you want to delete a module:

1. Select the module and press the DEL key, or right click the module and select Delete from the
menu.

3.4.6. Adding Links

The modules of a project have to be connected via links. To connect your modules using links:

Basic Functionality 32

VisualApplets User Documentation Release 3

1. Click the output port of a module and hold the mouse button.

2. Move the mouse to the input port of the next module and release the mouse button.

Now, the link will be established. You can also connect modules from an output port to an input port,
i.e. draw in reverse direction.

There are two alternative ways to connect modules which you might find efficient:

• Click the output port of the first module you want to connect. Then, click the input port of the module
you want to connect to the first module. Now, the link will be established. Or,

• Drag one of the modules and drop it on the port of the module you want to connect it with. This will
generate a link between the touching ports.

Some Linking Rules

• It is not possible to add more than one link to a single port.

• An input port always has to be connected to an output port. It is not possible to connect
two input ports or two output ports.

• Loops are generally not allowed in projects. See Section 3.6, 'Rules of Links' for more
information.

A drag and drop of an existing link to another port can change the connection. The link path of an
established link can be changed by moving the line using drag and drop. However, new edges can't
be inserted.

Tip

You can delete a link by selecting it and pressing the DEL key (or, right-clicking it and
selecting Delete).

3.4.7. Clipboard

Modules and links in a project can be copied and pasted to and from the clipboard.

1. Select the operators and links to be copied, for example by drawing a rectangular selection area.

2. Copy the selection via Edit -> Copy (Ctrl+C) or from the context menu, select Copy.

3. To insert, select Edit -> Copy (Ctrl+V) or from the context menu, select Paste.

If you use the context menu, the inserted modules and links will be positioned at the current mouse
position. Otherwise, the inserted modules and links are positioned in the center of the currently visible
part of the design window currently in focus.

Modules are copied with all their parameter settings. Links between modules are copied, too. However,
a link which is not connected to two copied modules can't be copied as it is not allowed to have single-
sidedly connected links. This can result in a changed output link format of a copied module.
Verify the parametrizations after using the clipboard.

Copying & Pasting to Other Projects

You can copy parts of a project to other projects in different program instances. However,
you should not use the clipboard between different versions of VisualApplets.

Some operators (e.g., EventToHost) are available only for specific platforms. If you copy
such an operator to a design for a target hardware platform that does not support this
operator, DRC1 delivers an according error message:

Basic Functionality 33

VisualApplets User Documentation Release 3

Figure 3.20. Error message in case an operator is not applicable for another hardware
platform

3.4.8. Undo / Redo

Undo and redo operations are possible in VisualApplets.

If you want to undo your last action:

• Select Edit -> Undo (Ctrl+Z).

If you want to redo your last action:

• Select Edit -> Redo (Ctrl+Shift+Z).

The operations require some seconds to be processed.

3.4.9. Saving a Project

The project is not automatically saved.

1. To save your design, use File -> Save (Ctrl+S) or File -> Save As... (or use the according
menu options / toolbar buttons).

You can save your design either in the *.vad file format or in the *.va legacy file format. If you want
to open your design in VisualApplet version 3.3.2 or older, save your design in the *.va legacy file
format. Basler recommends to always use the *.vad file format, if possible.

Designs saved in the *.va legacy file format are backwards compatible, which means you can still
open them in VisualApplets and you can still save your design in the *.va file format. However, if your
design in the *.va legacy file format contains a protected user library element, the content of the
protected element isn't saved along with the design. In this case, the user library that contains this
element must be imported in VisualApplets when you want to open the *.va legacy file format.

File Name and Project Name

If you save your design for the first time, or if you use the Save as... option, the Save/Save
as... dialog will offer the project name as the name for your design file.

3.4.10. Navigating Your Design

A design might consist of a large network of modules in several design windows. Therefore, it is very
helpful to have some navigation tools which facilitate to keep track with the details of your design.

These are the most important ones:

• Changing design windows

To change between the windows in a design, you can use Window -> Diagram Windows (Ctrl+F8
).

• Finding a module in your design

To find a specific module in your design, you have two possibilities:

Basic Functionality 34

VisualApplets User Documentation Release 3

• You can use the search options of the Module Info window. Click the Module Info tab in the
information panel, and enter your search string. You don't have to enter a full module or operator
name. Entering a few characters is often enough. Make sure you use the right filter for your search:
Use the Name filter if searching for an individual module name. Use the Type filter if searching for
the name of the operator your looked-for module is an instance of.

• Alternatively, you can also use the Search Module window which you open via Design -> Search
Module... (Ctrl+F). Enter your search string. You don't have to enter a full module or operator
name. Entering a few characters is often enough. Make sure you use the right filter for your search:
Use the Name filter if searching for an individual module name. Use the Type filter if searching for
the name of the operator your looked-for module is an instance of.

• Selecting a module:

To select a module in a design window, click the module.

• Using the module menu:

To use the available menu for a module, right-click the module and choose the option you need
from the menu.

Basic Functionality 35

VisualApplets User Documentation Release 3

3.5. Data Flow
In Section 3.1, 'Basic Principles' the VisualApplets idea of building FPGA applications using operators
and links was explained. This chapter will explain the data flow model of FPGA data processing.

FPGA implementations differ from software programs run on a microprocessor. All implemented
functionalities of an FPGA implementation exist and can be used at the same time (i.e., in parallel)
while the functions of a microprocessor program are executed sequentially. This is a very important
difference and one of the tremendous advantages of FPGA implementations. As everything is working
in parallel, data is processed in a pipeline structure. As mentioned, modules (instantiated operators)
are connected by links. Each module starts the processing of image or signal data as soon as data is
available. The results are forwarded to the next module via link. Most modules do not buffer the input
image data. They output the calculated results as soon as the information is available. Let's have a
look on our project from the 2. Getting Startedguide once again:

Figure 3.21. Simple VisualApplets Design

The project consists of three modules; namely, the camera, a buffer, and a DMA operator. The camera
operator is an image source module. It receives the images sent from the camera. But instead of
collecting a full frame and outputting the image after full acquisition, the module will forward the
pixels to the next module as soon as they arrive. The buffer module ImageBuffer is a buffer which can
store image data but will output available data as soon as the output is not blocked. The DMA module
transfers the images to the host PC.

The result of this pipeline structure is that image pixels are transferred to the host PC while other
pixels of the same image are still transferred from the camera. Thus, no images are stored inside the
modules. The advantage of this non-buffered pipeline is that all modules can run in parallel and are
efficiently used. Furthermore, the latency (the time a pixel needs until it is fully processed) is reduced
to a minimum.

Note

Always keep in mind that all modules can run in parallel and output their results as soon
as they are available and the output is not blocked. Imagine the pipeline like a water
pipeline with valves, branches, and small and wide tubes.

In difference to a microprocessor program the number of operations, i.e., the number of operators, will
not influence the processing speed as everything is running in parallel. However, the more operators
are used in an applet, the more hardware resources are required.

3.5.1. Bandwidth of an Applet

The bandwidth of a pipeline in an applet depends on the processing speed of the operators and on
the connecting links. A link has several “link properties” (see Section 3.7.2, 'Link Properties'). One
of them is the parallelism which defines the bandwidth. The parallelism defines how many pixels are
transferred in parallel between two operators in one design clock cycle. The higher the parallelism, the
higher the bandwidth. Operators are automatically adapted to meet the required bandwidth of a link;
if this is not possible, they redefine the bandwidth.

Let's assume a simple example. A parallelism of four will result in four pixels being transferred in
parallel. This means the first four consecutive pixels of an image are transferred from the camera
module to its successive module (in our case the buffer) in parallel. Next, the next four pixels are
transferred from the camera module to the buffer module. Meanwhile, the first four pixels have been
processed in the buffer module and are forwarded to the next module in the image processing chain.

Basic Functionality 36

VisualApplets User Documentation Release 3

As mentioned before, the parallelism defines the number of pixels transferred in parallel in one clock
cycle of the design clock frequency. The frequency depends on the used hardware device. For example,
the frame grabbers of the microEnable IV series use a design clock frequency of 62.5MHz.

Calculating the Bandwidth

The bandwidth b of a link is determined by the product of the parallelism p and the
frequency f:

b = f£ p

A parallelism of four will therefore result in a bandwidth of 62:5MHz ¤ 4Pixel = 250MPixel=s . If we assume
a bit width of 8 bit per pixel, this will result in a bandwidth of 250MB/s. A list of the basic design clock
frequencies for all hardware platforms can be found in Appendix A, 'Device Resources'.

Operators may change the parallelism between the input and the output link. Thus, the bandwidth is
not constant throughout the design. That's because the required bandwidth might change. Suppose
an operator reduces the image size. Thus, the required output bandwidth is reduced, too.

The bandwidth calculated with the formula above is a theoretic value. The actual bandwidth is slightly
less than the theoretic value.

Important

Some operators cannot process the full bandwidth given at the input link. You will find
detailed information for all operators concerned in the Part III, 'Operator Reference'.

Note the difference between the bandwidth and the latency. The latency is defined individually by each
operator and mostly depends on the algorithmic implementation.

Visualization on GUI

For visualization of the according link properties, VisualApplets provides two GUI buttons
in the toolbar of the program window:

Display Link Info displays the bit width and the parallelism for every link in the
diagram:

Display Link Throughput displays the maximum pixel throughput in megapixels
per second for every link in the diagram:

3.5.2. Pixel Order

As previously explained, in VisualApplets, pixels are transferred through the pipeline one after another.
If a link parallelism is greater than one, multiple pixels are transferred in parallel. The order of the

Basic Functionality 37

VisualApplets User Documentation Release 3

transfer of pixels in images or lines is the following: In general, pixels of frames (two-dimensional
images) are transferred from a camera starting with the first pixel at the upper left corner, and finishing
with the last pixel at the bottom right corner. If VisualApplets operators require the pixel position for
their processing, the same order, that is, left -> right and top -> down, is expected. The following
figure illustrates this order:

Figure 3.22. Pixel Order

However, some sources like cameras do not comply with this order. In these cases, VisualApplets
operators and designs can be used to correct the pixel order. To do this, you should have some
knowledge on the protocol of a pixel transfer. You get the according information in the section Section
3.5.3, 'Image Protocols, Image Dimensions and Data Structure'.

3.5.3. Image Protocols, Image Dimensions and Data Structure

The Image Protocol defines the image dimension and data structure of the transfered pixel and
data. The Image Protocol is another link property besides the previously mentioned link property
Parallelism.

There are three types of image protocols:

• “2D” VALT_IMAGE2D

The 2D image protocol is used for the transfer of images, mostly used with area scan cameras. A
link transports the information

• when a pixel is transferred (pixel valid signal)

• when a line is completed (end-of-line signal)

• when a frame is completed (end-of-frame signal)
Thus, a 2D image can have:

• an arbitrary number of pixels in a line

• an arbitrary image height

Figure 3.23. Model of a 2D Image Protocol

Basic Functionality 38

VisualApplets User Documentation Release 3

The pixel position itself within a line or row is not transfered. The position results out of the number
of antecedent lines and antecendent pixels within the current line. It is not possible to have gaps
between the pixels in a line. It is possible to have arbitrary line lengths. A line may have no pixels,
i.e., empty lines are possible. As a minimum, a frame has to consist of one empty line.

• “1D” VALT_LINE1D

The 1D image protocol is used to transfer lines, mostly used with line scan cameras. A link transports
the information

• when a pixel is transfered (pixel valid signal)

• when a line is completed (end-of-line signal)
Thus, a 1D image can have:

• an arbitrary number of pixels in a line

• an unlimited image height

Figure 3.24. Model of a 1D Image Protocol

Again, the pixel position itself within a line is not transfered. The position results out of the number
of antecedent lines and antecendent pixels within the current line. It is not possible to have gaps
between the pixels in a line. It is possible to have arbitrary line lengths. A line may have no pixels,
i.e., empty lines are possible.

• “0D” VALT_PIXEL0D

In the 0D image protocol, no information on image dimensions is preserved. It is simply a stream
of pixels. Still, time-gaps between pixels may exist, i.e., a pixel comes with a valid signal. The 0D
protocol is mostly used for data transfers such as measurement results.

Figure 3.25. Model of an 0D Image Protocol

• “Signal” VALT_SIGNAL

In the signal protocol, transfers are reduced to single bit data transfers which are always valid (valid
at every clock cycle). Thus, the protocol does not include any control signals such as pixel valid or
line/frame completed. The signal protocol is used for signal operators used in trigger and signal
processing systems.

The image protocol is a link property. Each operator decides individually which link properties are
accepted at its inputs and available at its outputs. See Section 3.7.2, 'Link Properties' for more
information about link parameterization.

3.5.4. Flow Control

In the previous sections, the pipeline structure of VisualApplets designs was explained. As mentioned
before, data is transferred between the modules of a project via links. As soon as a module has

Basic Functionality 39

VisualApplets User Documentation Release 3

processed an input pixel and is finished with calculating the output value, the result is output at the
output link(s). However, the next module might not be able to process the data as it is still processing
another pixel. In this case, the flow control of VisualApplets is applied and the pipeline is blocked.
Thus, modules can block their inputs. In this case the antecedent module will not output its results
and will propagate the blocking state backwards in the pipeline.

Let's have a look at the simple example shown in Figure 3.21, 'Simple VisualApplets Design'. Suppose
a slow PC is used which cannot process the bandwidth generated by the camera. In this case, the
DmaToPC module will not be able to transfer the data to the host PC. Thus, it will block its input from
time to time. The blocking signal is propagated in the design up to the image buffer module. Now,
the image buffer will not output any data while the blocking is active. As the ImageBuffer module is
a buffer, all further incoming data will be buffered and the fill level of the buffer will increase. When
the camera stops sending data, no new input data is transfered to the buffer and data will be output
until it is empty.

Tip

Again, you can imagine the flow control like a pipeline of water. If a valve is closed, no
more water can be transported. A buffer operator is like a reservoir which is filled with
water if the drain cannot consume the input stream.

Basic Functionality 40

VisualApplets User Documentation Release 3

3.6. Rules of Links
Any diagram created in VisualApplets is a network of operator instances (modules). It may combine
several sub-networks.

Like other programming languages, the diagrams you create in VisualApplets are subject to a set of
rules with allowed, not allowed, and limited constructs. The following sections define the basic rules
of connecting modules.

3.6.1. Operator Types

At first, let us have a look at the different types of operators you are working with.

In VisualApplets, you have three types of operators:

The universal type
“O” (round shape):

The more complex
type “M” (square
shape):

In older versions of
VisualApplets and some
examples
in documentation oval
shape:

The special type “P”
(square shape):

In older versions of
VisualApplets and some
examples
in documentation oval
shape:

Table 3.1. Operator Types

You can see by the shape of an operator if it belongs to the universal “O” type or to one of the more
complex “M” or “P” types. (For information on the type of a specific operator, check the documentation
for that operator in Part III, 'Operator Reference'.)

The functionality of O-type operators is rather simple. Therefore,

• O-type operators do not change the number of pixels/data between input and output. The number
of input pixels/data of all input links is equal to the number of output pixels/data, i.e. for each input
value, the operator will output a value.

• O-type operators do not add a delay between input and output.

• O-type operators can be linked as desired in series or in parallel.

The functionality of M-type operators is more complex:

• They can change the number of pixels/data between input and output.

• They may delay the output.

• Linking of M-type operators requires attention to the rules of links and to the functionality of the
linked operators.

• M-type operators may block the input.

• Every source operator in a diagram (such as e.g. CameraGrayAreaBase) is an M-type operator.

• Every final-destination operator in a diagram (such as e.g. DmaToPC) is an M-type operator.

Basic Functionality 41

VisualApplets User Documentation Release 3

P-type operators are similar to M-type operators, but

• P-type operators do not reduce the bandwidth. (For more information on this issue, see Section
3.6.9, 'Infinite Sources / Connecting Cameras'.)

• P-type operators will not generate more data than given at the input(s).

• P-type operators never block the input actively. (See Section 3.6.8, 'P-Type Operators' for detailed
information on the blocking behavior of P-type operators.)

In the following, all rules defined for M-type operators also apply for P-type operators if no exception
for P-type operators is mentioned.

3.6.2. O-Type Networks

An O-type network is a combination of O-type modules. In an O-type network, modules may be
combined in series as well as in parallel. An O-type network always starts and ends with M-type
or P-type modules. On the basis of this definition, an important rule can be defined:

O-Type Network Rule

In an O-type Network, no matter how complex it might be, each O-type module has to
be sourced by the same M-type or P-type module. It may be connected to this source
via other O-type modules or even O-type (sub)networks. (Please note that this rule does
not apply to signal links.)

The following figure shows an O-type network including parallel and serial connection of modules. As
you see, all O-type modules are sourced by the same M-type module (M_source).

Figure 3.26. O-Type Network

In contrast, the next figure shows an O-type network which violates the O-Type Network Rule as the
ADD module is sourced by different M-type modules (M_source_0 and M_source_1).

Figure 3.27. Failing O-Type Network

Basic Functionality 42

VisualApplets User Documentation Release 3

VisualApplets (version 2.2 and higher) reliably indicates directly in the design diagram whenever a
synchronization rule is violated. The respective links are highlighted in purple. The links are highlighted
from the operator that receives not correctly synchronized data back to the according M operator
sources.

Figure 3.28. Display of not correctly synchronized data flow in VisualApplets 2.2 and higher

DRC 1 and DRC 2 display according warnings.

For example, for the above design, DRC 1 creates the following warning:

Exception: Signal Links

The O-type network rule does not apply for O-type operators transporting signal links
(see Section 3.6.10, 'Differing Rules for Signal Links').

3.6.3. M-Type Networks

Any network of modules that contains M-type modules not only as source and destination, but also
in between for image processing purposes, is called an M-type network. In M-type networks, M-type
modules can be linked in parallel as well as in series. M-type modules can also be branched without
limitations. M-type networks may turn out pretty complex, as parallel linking of M-type modules may
demand synchronization of image dimensions and synchronization of timing. (Remember: M-type
modules can change the number of pixels/data between input and output; they also may delay the
output.)

The following figure shows a very simple example of an M-type network. The M-type modules of this
diagram are only connected in series, or branched. Since the only O-type network in the diagram is
sourced by the same M-type module (ImageBuffer), the diagram follows all diagram rules we know
so far:

Basic Functionality 43

VisualApplets User Documentation Release 3

Figure 3.29. M-type and O-type Network

In most cases, M-type networks are much more complex. If, in contrast to the example above, M-
type modules are linked in parallel (i.e., the merging paths are sourced by different M-type sources),
we have to synchronize the timing and the image dimensions. This is done by M-type operators using
multiple inputs.

3.6.4. M-type Operators with Multiple Inputs

If you want to merge networks sourced by different M-type sources, you have to use M-type operators
with multiple inputs. (You can't use O-type operators with multiple inputs as this would violate the
rules for O-type networks as described above.) But before going into detail on synchronization, let's
have a look at M-type operators with multiple inputs in general.

M-type operators with multiple inputs can have two kinds of inputs:

• Synchronous inputs

• Asynchronous inputs

Synchronous Inputs and Synchronous-Input Groups

If some inputs of a module are synchronous, these synchronous inputs form together one synchronous-
input group. Thus, an synchronous-input group is a set of synchronous inputs. The inputs of an
synchronous-input group always have to be sourced by the same M-type source through an arbitrary
network of O-type operators. An M-type operator can have an arbitrary number of synchronous-input
groups.

On the picture below, you see an example of the use of an M-type operator with a synchronous-
input group. Both inputs of the RemoveImage operator are sourced by the same M-type operator
(ImageBuffer). The two inputs together form the group of synchronous inputs. The operator
RemoveImage does not allow to use different M-type sources at its input ports.

Basic Functionality 44

VisualApplets User Documentation Release 3

Figure 3.30. M-type Operator with One Synchronous Input Group

Asynchronous Inputs

Asynchronous inputs are not synchronous. They may be sourced by different M-type operators through
an arbitrary network of O-type operators. Moreover, some M-type operators with multiple inputs
actually have to be sourced by different M-type operators. Whether an M-type operator with multiple
inputs has to be sourced by different M-type operators or not depends on the features of the operator
itself. You find detailed information on all operators in Part III, 'Operator Reference'. An M-type operator
can have an arbitrary number of asynchronous inputs.

The following screenshot shows a typical example of an M-type operator with two asynchronous inputs.
Both inputs of the SYNC module are sourced by different M-type sources, namely DRAM0 and DRAM1.

Figure 3.31. M-type Operator with Asynchronous Inputs

The SYNC module is followed by a MergePixel operator. This operator can't be used to merge the two
M-type sources without the SYNC operator in-between.

M-Type Operator Inputs

The inputs of M-type modules may be sourced by different M-type sources.

Basic Functionality 45

VisualApplets User Documentation Release 3

However, the inputs of a synchronous-input group have to be sourced by the same M-
type source through an arbitrary network of O-type operators.

The documentation for each M-type operator with multiple inputs explains the possible or required
inputs for the operator in great detail. For a comprehensive description of all operators, see Part III,
'Operator Reference'.

3.6.5. Synchronization of Different Image Dimensions

M-type operators may synchronize different image dimensions at their inputs. One important example
is the operator SYNC. See Part III, 'Operator Reference' for a detailed description of this operator.

3.6.6. Timing Synchronization

For O-type networks, VisualApplets automatically performs timing synchronizations.

For M-type networks, the synchronization has to be carried out by M-type operators.

If a timing synchronization is not designed correctly,

• a so called deadlock-condition will occur,

• the bandwidth is not sufficient, or

• data will get lost.

Ensure correct timing synchronization

Since the timing synchronization depends on the behavior of the algorithm you implement
in VisualApplets, you have to make sure the timing synchronization in your diagram is
correct.

In the following examples, we will have a closer look at timing synchronization.

1. Synchronization of Independent Sources

Let's have a look at a simple two-camera stitching example which is shown in Figure 3.32,
'Synchronization of Independent Sources'. In the example, two cameras are used as a source. The
ImageBuffer operators will buffer the data. Finally, the M-type operator InsertLine will multiplex
the lines of both cameras into one output link. This operator merges the two parallel links.

Figure 3.32. Synchronization of Independent Sources

Imagine what happens if the two cameras are not synchronous. Suppose the frame rate of one
camera is higher than the framerate of the other. The InsertLine operator will strictly multiplex the

Basic Functionality 46

VisualApplets User Documentation Release 3

lines, i.e. will use the inputs one after another. Due to the different frame rates, one of the DRAM
buffers will need to actually buffer data. Its fill level will be constantly increasing. As soon as an
overflow condition occurs, no more data can be buffered, and data will get lost.

Ensure Equal Data Rate

Thus, if asynchronous streams are merged together, ensure that the line rate/frame
rate/pixel rate is equal and can be synchronized.

2. Synchronization of Data from the Same Source

Some M-type operators create a delay until they can output their results. A prominent example is
the operator FIRkernelNxM which is used in the diagram we explore in the following figures. This
operator outputs a pixel together with its surrounding neighbors to form a kernel. To output the
neighbored pixels, the operator has to wait until they (the required neighbored pixels) are available
at the input. It will store the intermediate results. In our example, the FIRkernelNxM operator can
output the first results only after four full lines have been fed into the operator. Thus, the operator
generates a delay of four image lines in its current configuration.

Let's have a closer look at this example.

Precondition

The first pixels are send from a camera through the buffer into the branch. Here, data is duplicated
and forwarded to the SYNC and FIRkernelNxM modules. As explained, the FIRkernelNxM has a
delay of four lines and therefore is not able to output the first pixels immediately:

Figure 3.33. Deadlock at SYNC, figure a

Deadlock

The SYNC operator tries to synchronize both inputs. As no data is coming from the second input, it
generates a STOP-signal at the first input. This STOP-signal is propagated backwards in the pipeline
up to the buffer. Now, we have the deadlock condition: The kernel operator requires more data until
it is able to output data, but no new data are available because the SYNC blocks all further inputs.

Figure 3.34. Deadlock at SYNC, figure b

Fixing the Deadlock

To solve the deadlock, we have to add a buffer to the upper path, so that the delay of the kernel
operator can be compensated as shown in the following:

Basic Functionality 47

VisualApplets User Documentation Release 3

Figure 3.35. Fixed Deadlock

Avoiding the Deadlock

The best solution is to avoid synchronization at all. This is often possible. In the solution example
below, there is only a serial pipeline of M-type operators in the diagram and therefore, no
synchronization at the merge is required.

Figure 3.36. Deadlock Avoided

3.6.7. Bandwidth Bottlenecks

Another important phenomenon in M-type networks is the reduction of bandwidth in an operator
together with a possible propagation of this limitation backwards in the network of modules. The
following figure shows a diagram which will generate a bandwidth limitation.

Figure 3.37. Bandwidth Limitation

Basic Functionality 48

VisualApplets User Documentation Release 3

In this diagram, the combination of ModuloCount and RemoveLine operator will delete every second
line. As we know from Section 3.5.1, 'Bandwidth of an Applet', the maximum bandwidth depends on
the used parallelism. After the RemoveLine operator, the required bandwidth has been reduced by a
factor of two. Therefore, we can reduce the parallelism by a factor of two using operator PARALLELdn
("Parallel down"). However, this will also reduce the bandwidth in the upper path by factor two for
every second line.

While a line is deleted at the RemoveLine operator, no pixels are fed into the PARALLELdn module. The
full parallelism as given at the input of the diagram can be used in both paths. In contrast, when a line
is not removed by the RemoveLine operator, the pixels of the current line are forwarded to the input
of the PARALLELdn. PARALLELdn will now reduce the parallelism by two, i.e., it requires the double
number of cycles to output a value compared to the input. Thus, the PARALLELdn operator will block
its input every second clock cycle. As no buffer is used between the first Branch and the PARALLELdn
operator, this blocking signal is propagated backwards in the pipeline. Therefore, the upper path is
blocked every second clock cycle, too.

A solution to this problem is to add an extra FIFO before the PARALLELdn operator which is able to
buffer a minimum of one line and thus compensates the peak and idle periods. The following figure
shows this solution:

Figure 3.38. Bandwidth Limitation Compensated

3.6.8. P-Type Operators

P-type operators are similar to M-type operators, with one exception: They can not block the input
actively.

Nevertheless, when a module further up the processing pipeline blocks its input, the input blocking
is propagated backwards the line. If a P-type operator is positioned further down the line, the P-
type operator`s input port gets blocked, too (passively). P-type operators propagate the blocking
information backwards to the next module down the processing line.

Example: The M-type operator PARALLELdn requires more time to output the results compared to the
time the data is fed into the operator. Therefore, it will block the input from time to time. In contrast,
a P-type operator PARALLELup will always have a higher bandwidth at the output compared to the
input bandwidth. This behavior is very important when connecting infinite sources with P-type and M-
type operators. A detailed description of infinite sources is presented next in Section 3.6.9, 'Infinite
Sources / Connecting Cameras'.

3.6.9. Infinite Sources / Connecting Cameras

Infinite sources are operators which cannot be stopped by the VisualApplets flow control. One example
are the camera operators. On their input link, these operators receive data from the camera. On their
output link, they forward this data to the successive module in the diagram. As there is no buffer
within the camera operators, and as they are not able to tell the cameras to stop the transfer, these
operators are infinite sources.

Basic Functionality 49

VisualApplets User Documentation Release 3

Infinite sources can only be connected to M-type operators which accept infinite sources. Whether an
individual M-type operator can be connected to an infinite source or not is described in the respective
documentation for this operator (see Part III, 'Operator Reference'). If an infinite source is connected
to an M-type operator which does not accept infinite sources, the DRC level 2 will generate an error:

Figure 3.39. Infinite Source Connection Error

All P-type and O-type operators can be connected to infinite sources. The infinite source information will
propagate through operators until an operator in the pipeline will convert the infinite source data stream
into a controllable data stream. Usually, these conversion operators are buffers. A buffer operator is
able to use the flow control at its output and buffers the input data stream without the need to block
the input.

Thus, if we swap the operators of the previous example, the DRC level 2 will not generate an error:

Basic Functionality 50

VisualApplets User Documentation Release 3

Figure 3.40. Infinite Source Connection OK

The behavior of some of the conversion operators can be changed to whether they accept infinite
sources or not. These operators include a parameter called InfiniteSource which can be set to Enabled
or Disabled.

A conversion operator which is not connected to an infinite source must be set to Disabled.

Basic Functionality 51

VisualApplets User Documentation Release 3

Figure 3.41. Infinite source conversion module (Buffer1) connected to a non-infinite source

Warning

If the parameter InfiniteSource of an respective module is set to Enabled, the module
must be connected to an infinite source.

A conversion operator which is not connected to an infinite source must be set to Disabled.

Tip

Always set the parameter to Disabled if you are not sure, and change the failing modules
after the DRC level 2 check.

For a detailed description of the parametrization of modules, see Section 3.7.1, 'Module Properties'.

3.6.10. Differing Rules for Signal Links

Signal links transport one-bit signal data which is valid at every clock cycle. The rules of links for
modules with signal transporting input links differ in two ways from the rules of links described so far:

• All O-type and M-type modules with signal link inputs may be sourced by different M-type sources.

• Modules with signal link inputs may always be connected to infinite sources.

Basic Functionality 52

VisualApplets User Documentation Release 3

Figure 3.42. O-type module with signal link inputs, sourced by different M-type modules

Find more information on signal links in Section 3.5.3, 'Image Protocols, Image Dimensions and Data
Structure'.

3.6.11. Summary

In this chapter you have been introduced to the rules of links. The rules of links are most important
when implementing a VisualApplets application.

O-type networks always start and end with an M-type module. Each O-type module has to be sourced
by the same M-type or P-type module through an arbitrary network of other O-type modules. Merges
of different M-type sources can only be performed by M-type modules.

M-type networks may be arbitrarily linked in a serial sequence as well as they may be branched
arbitrarily. Merging of different M-type sources in a module requires timing synchronization and image
dimension synchronization. M-type modules with multiple inputs can have synchronous-input groups.
Synchronous-input groups have to be sourced by the same M-type source through an arbitrary O-
type network.

Timing synchronization will synchronize different sources which are timely delayed. Timing
synchronization requires knowledge of the user implementation. A bad timing synchronization will
result in deadlocks or buffer overflows.

An infinite source cannot be controlled by the integrated flow control. Only M-type operators which are
allowed to be connected to infinite sources may be connected to infinite sources.

To modules with signal link inputs, the general synchronization rules apply with two modifications:
The signal link inputs (of M-type and O-type modules) may be sourced by different M-type sources.
Modules with signal link inputs may always be connected to infinite sources.

Warning

VisualApplets cannot detect logic synchronization errors as they depend on the user
project implementation. Read the documentation of each M-type operator carefully to
learn about its behavior in timing and delay.

Basic Functionality 53

VisualApplets User Documentation Release 3

3.7. Diagram Parametrization

In the previous sections, the data flow model, the layout and the rules of links of VisualApplets projects
were explained. This chapter will outline the parametrization of diagram modules and links.

Application behavior and bandwidth do not only depend on the operators you use in your design,
but also quite strongly on the parametrization of the modules and links. Module properties define the
behavior of each module, while link properties describe the protocol between the modules. Module and
link properties directly depend on each other and mutually influence their availability or ranges.

3.7.1. Module Properties

You can change module properties either in the Module Properties dialog or in the Parameter Info
view. The Parameter Info view displays all parameters of all operators in the active design and thus
provides a good overview of all configured parameters. The Module Properties dialog provides more
details about the parameters. You can edit parameters in both views, however, adding metadata is
only possible in the Module Properties dialog.

3.7.1.1. The Parameter Info View

The Parameter Info is located in the Information Panel in the top right side of the VisualApplets main
window.

Figure 3.43. The Parameter Info View

If the Parameter Info doesn't open up at start, you can open it via the menu bar by selecting Window
-> Dock Windows -> Parameter Info.

Basic Functionality 54

VisualApplets User Documentation Release 3

The Parameter Info view shows all parameters and their operators of the active design. You can also
edit the parameters in the Parameter Info view.

Basic Functionality 55

VisualApplets User Documentation Release 3

Figure 3.44. Parameter Info

The Parameter Info view provides a search function that allows you to search for parameters, parameter
values, or operator names. You can use the Runtime Parameter Only filter to display only dynamical
parameters, i.e. parameters that you can edit during runtime.

3.7.1.2. The Module Properties Dialog

1. To access the Module Properties dialog, double-click a module, or right-click on a module and select
Properties.

Basic Functionality 56

VisualApplets User Documentation Release 3

The Module Properties dialog lists all required settings a module. Note that for each module a different
set of parameters is available (depending on the operator that has been instantiated for creating the
module).

The following figure shows the parameters of an ImageBuffer operator in the Module Properties dialog:

Figure 3.45. Module Properties Dialog

The Module Properties window lists all available parameters of a module. In this context, each
parameter represents a module property. The parameters are displayed with entries in the following
columns:

• Parameter Name:

The name of the parameter.

When adding a parameter to a module (see below), you can enter a name for the new parameter
here.

• Parameter Value

The actual value of an parameter.

You can edit this field to change a value.

• Parameter Unit

The unit of a parameter. Can be pixel, seconds, lines, etc.

• Parameter Type

Here, you can set a parameter to static or dynamic. Static parameters cannot be changed after the
build process of an applet, while dynamic parameters can be changed when the applet is already

Basic Functionality 57

VisualApplets User Documentation Release 3

in use on the frame grabber hardware. Mostly, static parameters will require less FPGA resources
than dynamic parameters.

• Parameter Flag

The flag of a parameter indicates whether a parameter is

• read only (Read), or has

• read & write access (Write).

• Value Type

The type of the parameter value. There are four different types of parameter values:

• String

Any string, e.g., file names.

• Values

Values of different types (unsigned, signed, double) and ranges.

• Enumerations

A list of enumeration values such as Disabled or Enabled.

• Field Parameters

A field parameter consists of an array, a list, or a matrix of values. It is mostly used for kernel
coefficients, lookup tables and other lists. Value ranges and size of list can be dynamic. Note that
the displayed bit width is not equal to the actual parameter range. Moreover, a parameter is always
unsigned, even if it is declared as a signed value in the column.

Differences Between Modules

How many parameters and which parameters are available for a certain module is
different from module to module (depending on the underlying operator). Nevertheless,
each module will possess at least one parameter called Name.

3.7.1.3. Parameter Editing

No Undo option

It is not possible to cancel a change. All changes are immediately applied.

To edit a parameter:

1. Click on a parameter value and type in the new value.

Some value types have special editing options:

String: A string parameter you can edit by simply typing in the new string. Some string parameters
are file name parameters. In this case, a file selection dialog will open.

Values: For editing a value, use the spin box next to the parameter value to increase or decrease
the value. The step size of the parameter defines the minimal increase/decrease.

Fields: With field parameters, a new window will open for editing which shows all field elements
of the parameter. The following figure shows the fields of a FIRoperatorNxM operator:

Basic Functionality 58

VisualApplets User Documentation Release 3

Figure 3.46. Field Parameter Edit Window

There are three different ways you can edit the field parameter values of a module:

a. You can simply edit each field element individually.

b. Alternatively, you can use a list from file to fill the field parameter values.

• You can import the file by clicking on the File button.

• You can also export the current field parameter setting to file by clicking the Export button.

File Format of Import File

• The import file has to contain a list of ASCII values.

• Each value has to be stated in a separate line.

• The lines have to be separated by carriage return (CR) and line feed (LF).

• The file has to be in text only format ([NameOfFile].txt).

If the file contains more values than there are in the field, the first values of the
file are used (as many as are required to fill the field). The following values in
the file have no effect.

If the file contains less values than there are in the field, all values of the file
are used exactly one time. The last positions of the field (for which there are no
values in the file) will remain unchanged.

c. A third possibility to edit the elements of a filed is the Parameter function dialog.

• Click on Function to open the function dialog (see next figure).

Using this dialog, a linear function can be used to edit the elements. A linear function consists
of the elements a = slope, b = offset, and x = index of field element. In the dialog, a and
b can be edited.

• Enter values for a and b.

The first element of a filed has index 0. For matrix elements, the elements are consecutively
numbered row by row.

Basic Functionality 59

VisualApplets User Documentation Release 3

Figure 3.47. Function Dialog to Edit Field Parameters

Disabled Parameters

Some parameters are disabled and cannot be edited. Whether a parameter is disabled
or enabled depends on the settings of other parameters, the input format, or the output
format. Check the respective operator reference for more information. The following
screenshot shows two disabled parameters. In this case, the y parameters are disabled
because the input link has image protocol VALT_LINE1D (this means, the image is one-
dimensional (just a line of pixels) and thus, there is no y-coordinate).

Figure 3.48. Disabled Parameters

After a parameter has been edited, it has to be applied.

2. Click on Apply in the Module properties window to apply the settings.

Basic Functionality 60

VisualApplets User Documentation Release 3

A new parameter value is discarded if it is not within the allowed parameter value range.

Click Apply before closing the window

It is recommended to click on Apply before closing the parameter. This way, you will see
warnings if the value you entered is not accepted.

3. Close the Module properties window by clicking on Close.

3.7.1.4. Autocompletion and Syntax Highlighting for Translator and
Reference Operators

Most operators of the Parameters library provide an autocompletion and syntax highlighting
functionality for specific parameters. Autocompletion is available for the following parameters in the
following operators:

Operators Parameters Activation
WriteAction, ReadAction Typing “${”

EnumParamTranslator
DisplayHierarchy TAB key

WriteAction, ReadAction Typing “${”
FloatParamTranslator

DisplayHierarchy TAB key

WriteAction, ReadAction Typing “${”
IntParamTranslator

DisplayHierarchy TAB key

LinkParamTranslator WriteAction Typing “${”

Reference TAB key
EnumParamReference

DisplayHierarchy TAB key

Reference TAB key
FloatFieldParamReference

DisplayHierarchy TAB key

Reference TAB key
FloatParamReference

DisplayHierarchy TAB key

Reference TAB key
IntFieldParamReference

DisplayHierarchy TAB key

Reference TAB key
IntParamReference

DisplayHierarchy TAB key

Reference TAB key
ResourceReference

DisplayHierarchy TAB key

Reference TAB key
StringParamReference

DisplayHierarchy TAB key

Reference TAB key
IntParamSelector

DisplayHierarchy TAB key

Reference TAB key
FloatParamSelector

DisplayHierarchy TAB key

EnumVariable DisplayHierarchy TAB key

FloatVariable DisplayHierarchy TAB key

IntVariable DisplayHierarchy TAB key

Table 3.2. Availability of Autocompletion and Syntax Highlighting

Basic Functionality 61

VisualApplets User Documentation Release 3

To use the autocompletion for a reference operator, click into the Parameter Value field of the Reference
or DisplaHierarchy parameter, and press the TAB key. VisualApplets then offers you a selection of valid
values in a drop-down list box.

Figure 3.49. Autocompletion for Reference Parameters

If you click the three dots next to the Parameter Value field, the Enter data for <operator>/
<parameter> dialog opens up. In this dialog, you see the data with syntax highlighting and can further
use the autocompletion feature:

Figure 3.50. Autocompletion in "Enter data for <operator>/<parameter> Dialog

Basic Functionality 62

VisualApplets User Documentation Release 3

Figure 3.51. Syntax Highlighting in "Enter data for <operator>/<parameter> Dialog

Syntax highlighting also works in the Module Properties:

Figure 3.52. Syntax Highlighting in Module Properties Dialog

To use the autocompletion functionality in the WriteAction and ReadAction parameters of translate
operators, type “${” into the Parameter Value field:

Basic Functionality 63

VisualApplets User Documentation Release 3

Figure 3.53. Autocompletion for Translator Operators

Syntax highlighting also works for the WriteAction and ReadAction parameters of translator operators.

To use autocompletion for the DisplayHierarchy parameter of translate operators, click into the
Parameter Value field of the DisplaHierarchy parameter, and press the TAB key.

3.7.1.5. Illegal Parameter Value States

The allowed value range of a parameter might change when link properties or by the setting of other
properties. If this happens, the old parameter value might be in an illegal state. In this case, the
parameter is marked red, to indicate, that the current setting will not pass the design rule check. You
have to correct the parameter value until it is in the valid range.

Figure 3.54. Parameters in Illegal States

Basic Functionality 64

VisualApplets User Documentation Release 3

The previous figure showed an example of parameters in an illegal state. In this case, the parameter
value is not within the allowed range, as the XLength + XOffset is greater than the parametrized
maximum image width of the input link.

3.7.1.6. Metadata

For each module, metadata parameters can be added. Metadata parameters are string parameters.
To add a metadata parameter click on the Add Metadata button in the module properties window.
A new parameter is now added to the parameter list. By clicking the name and the value, both can
be edited. Metadata parameters are read / write parameters. To delete a metadata parameter, simply
select the parameter and click on Delete Metadata.

 Metadata parameters are often used for versioning and commenting.

Figure 3.55. Metadata Parameter

3.7.2. Link Properties

Each link between modules is defined by its link properties. You access link properties via double click
on a link or via right click and selection Properties.

Each link has the following link properties:

• Bit Width

Defines the bit width of the link for one pixel. Thus if color links are used, the bit width represents
all color planes. For image protocol VALT_SIGNAL the bit width is always one bit.

• Arithmetic

The arithmetic of a link. Can be signed or unsigned. If set to signed, a two's complement signed
arithmetic is used. The sign bit is included in the bits specified with property bit width. For image
protocol VALT_SIGNAL the arithmetic is always set to unsigned.

• Parallelism

Basic Functionality 65

VisualApplets User Documentation Release 3

Specifies the number of pixel which are transferred in parallel between two modules within one design
clock cycle. For image protocol VALT_SIGNAL the parallelism is always set to one. More information
about the parallelism can be found in Section 3.5.1, 'Bandwidth of an Applet'.

• Kernel Columns

Defines the number of kernel columns. For image protocol VALT_SIGNAL the number of kernel
columns is always set to one.

• Kernel Rows

Defines the number of kernel rows. For image protocol VALT_SIGNAL the number of kernel rows is
always set to one.

• Image Protocol

The image protocol defines which protocol to transfer data is used by the link. The following protocols
are available:

• VALT_IMAGE2D: Two-dimensional images, e.g., area scan cameras.

• VALT_LINE1D: One-dimensional images, i.e., images with an unlimited image height, e.g., line
scan cameras.

• VALT_PIXEL0D: A simple stream of pixels with no image dimension information.

• VALT_SIGNAL: One bit signals which are valid at every clock cycle. Used for signal processing such
as trigger systems.

More information on image protocols is presented in Section 3.5.3, 'Image Protocols, Image
Dimensions and Data Structure'.

• Color Format

The color format can either be VAF_GRAY, VAF_COLOR or VAF_NONE. For image protocol
VALT_SIGNAL the color format is always set to FL_GRAY.

• Color Flavor

Defines the flavor of the color format. For image protocol VALT_SIGNAL the color flavor is always
set to FL_GRAY.

• Max. Image Width

Defines the maximum image width of a link. Images transported on the link must not exceed this
value but may be less than the value. The Max. Image Width has no influence on links with Image
Protocol VALT_PIXEL0D and VALT_SIGNAL. For these image protocols the Max. Image Width is
ignored. More information can be found in Section 3.5, 'Data Flow ' and in Section 3.5.3, 'Image
Protocols, Image Dimensions and Data Structure'.

• Max. Image Height

Defines the maximum image height of a link. Images transported on the link must not exceed this
value but may be less than the value. The Max. Image Height has no influence on links with Image
Protocol VALT_LINE1D, VALT_PIXEL0D and VALT_SIGNAL. For these image protocols the Max. Image
Height is ignored. More information can be found in Section 3.5, 'Data Flow ' and in Section 3.5.3,
'Image Protocols, Image Dimensions and Data Structure'.

Visualization on GUI

For visualization of the according link properties, VisualApplets provides two GUI buttons
in the toolbar of the program window:

Display Link Info displays the bit width and the parallelism for every link in the
diagram:

Basic Functionality 66

VisualApplets User Documentation Release 3

Display Link Throughput displays the maximum pixel throughput in megapixels
per second for every link in the diagram:

3.7.2.1. Properties Ranges and Disabled Properties

Each module defines the ranges of the link properties at its output itself. Some properties cannot be
modified, some properties can only be modified in a specified range while others can arbitrarily be
modified. A detailed explanation of the allowed output link formats is given in the respective operator
reference in Part III, 'Operator Reference'.

3.7.2.2. Parameter Editing

To edit a parameter, simply click on a parameter in the "Value" column of the link properties window.

The link properties dialog consists of three columns:

• Value

This is your editing column. Edit your link property values in this column by clicking on the values. If
the edited value is not within the allowed parameter range or step size, the edited value is discarded
or cannot be inserted. Confirm the new value by leaving the focus of the field or by pressing the
Enter key.

• Source Port

After a new value has been entered in the Value column and has been confirmed, the source operator
checks if the new value is accepted. If the new value is not accepted, the parameter and the link
will get a red color to show a link property conflict. Thus, if a link property in column source port
is dyed red, the source operator does not allow the settings. The values in this column cannot
be modified!

• Destination Port

A click on Apply or Close or Window Close (X) or pressing Esc will apply the new settings for
the link. If the new settings are not accepted by the destination operator input port, the link as well
the parameter in column Destination Port will be dyed red to indicate the conflict. The values in
this column cannot be modified!

A change of a link property can cause the change of another link property or a module parameter
value. Canceling changes is not possible. Each change will immediately be applied.

Let's have a look at some examples. The following figure shows a conflict at the source port. The source
operator, in this case a CastParallel operator, does not accept a parallelism of three at its output because
of the bit width. After the output parallelism has been changed to four, two or one, the conflict is solved.

Basic Functionality 67

VisualApplets User Documentation Release 3

Figure 3.56. Invalid Source Port Link Properties

Screenshot Figure 3.57, 'Invalid Destination Port Link Properties' shows a conflict at the destination
port. The destination operator, in this case a DmaToPC operator, does not accept RGB images with this
parallelism and bit width. After the parallelism has been reduced to four or five, the conflict is solved.

Basic Functionality 68

VisualApplets User Documentation Release 3

Figure 3.57. Invalid Destination Port Link Properties

3.7.3. Propagation and Dependencies of Operator Parameters and Link
Properties

The link properties are defined by the operator. Some link properties can directly be changed at the
operator output links, while others are fixed or are defined by the operator parameters. Moreover, most
operators define their link properties in addition from the input link properties. This can result in a link
property modification chain through multiple modules. Thus, if a link property has been changed, the
parameters and link properties of successive module might change, too.

This propagation chain can result in three results:

• The modification has been accepted by all successive modules and links. VisualApplets will display
all links which have been changed in green, to inform the user about modified link properties.

• The link modification is not accepted at the link of some module. In this case, check the link for
the error. Read the documentation of the source or destination operator to learn about the allowed
link formats.

Basic Functionality 69

VisualApplets User Documentation Release 3

• The modification causes a conflict with a module parameter. In this case, the module is dyed red
as well as the respective module parameter. Check the operator reference for link and parameter
dependencies to resolve the conflict.

Basic Functionality 70

VisualApplets User Documentation Release 3

3.8. Allocation of Device Resources
Applets and included modules require resources. The required resources differ for each project. Mostly,
the FPGA internal resources are used. An explanation of the internal resources is given in Section 3.11,
'FPGA Resource Estimation'.

Besides the FPGA internal resources, applets require external frame grabber hardware resources as
well as logic resources. Some of these resources are listed and allocated in the Device Resources dialog
window, which you can open via Design -> Device Resources.

Figure 3.58. Device Resource Allocation Window

The following table lists all types of resources.

Type Description Listed in Device
Resources Window

CAM The camera port index yes

RAM Index of frame grabber RAM yes

DMA The DMA channel index. Both, DmaToPC and
DmaFromPC operators use this resource.

yes

CameraControl For Camera Link frame grabbers: The camera
port index of the four camera control outputs.

yes

TriggerOut Frame grabber digital outputs no

TxLink / RxLink Links between a pixelPlant hardware and the
frame grabber.

no

Signal Channel
(operators
TxSignalLink/
RxSignalLink)

Used for arbitrary signal links which are not
shown in the diagram.

no

Basic Functionality 71

VisualApplets User Documentation Release 3

Type Description Listed in Device
Resources Window

Image Channel
(operators
TxImageLink/
RxImageLink)

Used for implementing loops into a design. no

Event Logic Event Name (Bit). no

EventSource Event source e.g. an operator. no

Table 3.3. List of Device Resources

Display of Device Resources

Not all of these device resources are listed in the Device Resources window. Some of
them are automatically assigned, while others are set in the modules which use the
device resource.

Some operators for microEnable 5 marathon designs use resources that are displayed,
but cannot be set in the Device Resources dialog since they are controlled by the operator.
These resources are grayed-out in the dialog:

Figure 3.59. Grayed-out resource CameraControl

All resources indices must only be used once. Moreover, some resources have to be in ascending order,
starting from zero. If these conditions are not given, the design rules check will fail and the allocation
has to be changed. The Device Resources window marks conflicts in red. Change the allocation until
all conflicts are solved. The following figure shows an example.

Basic Functionality 72

VisualApplets User Documentation Release 3

Figure 3.60. Device Resource Conflict

Instead of manually solving the conflicts, VisualApplets can automatically solve conflicts. Click on OK in
the Device Resources window. If a remaining conflict exists, VisualApplets will automatically resolve the
conflict. You can either click on Apply to accept all changes without verification and close the window.
Or you can click on Show Details... to see what has been changed (next figure). If you do not want
to accept the changes, click on Retry to undo changes and go back to the Device Resources window.

Basic Functionality 73

VisualApplets User Documentation Release 3

Figure 3.61. Auto Correction of Device Resource Conflicts

Please note that an automatic change might not always result in the desired solution. For example, an
automatic change might change the camera allocation.

List of Device Resources for all Supported Hardware Devices

In Appendix A, 'Device Resources' a detailed list of the available device resources for all
supported hardware devices is listed.

Device resources are used for interfacing the FPGA environment (Camera, DRAM etc.)

Basic Functionality 74

VisualApplets User Documentation Release 3

3.9. Design Rules Check

The design rules check (DRC) is an elementary function of VisualApplets. A design rules check checks
if a VisualApplets project does not contain any design errors. Projects which do not pass the DRC can
not be build or some functions are disabled.

The DRC log window which is part of the dock, lists the progress and results of the DRCs. It shows
important information on design errors and resource usage estimations. Some windows include a DRC
log as a sub-window. The DRC log can be saved in a HTML file using a right click in the text and the
selection of Save to file on the pop-up menu.

In VisualApplets includes two levels of design rules checks. DRC level 1 and DRC level 2 which are
explained in detail in the following sections.

3.9.1. DRC Level 1

The DRC level 1 checks the integrity of the project. Click on Analysis -> Design Rules Check Level 1
(Ctrl+F7) or use the icon Design Rules Check Level 1 from the Build icon bar to start the DRC level 1.
Besides the direct access, the DRC level 1 is automatically started by other VisualApplets functions such
as simulation, resource estimation, or build process. The DRC level 1 checks amongst others whether

• no open ports exist in a design.

• no link is in conflict state.

• no operator parameter is in conflict state.

• no conflicts for device resources exist.

The following figure shows four errors reported by the DRC level 1. In this example, three device
resource conflicts of the resources CAM, RAM, and DMA are shown as well as a resource index conflict
of Cam0 and Cam1. You can simply click on the module name to highlight the module in the diagram
which causes the error. This is very useful in complex projects with many diagram windows.

Basic Functionality 75

VisualApplets User Documentation Release 3

Figure 3.62. DRC Level 1 Error

3.9.2. DRC Level 2

The DRC level 2 can only be started after a successful DRC level 1. However, starting the DRC level
2 by a click on Analysis -> Design Rules Check Level 2 (Ctrl+F8) or a click on the icon Design
Rules Check Level 2 from the Build icon bar will automatically start DRC level 1, too. Besides the direct
access, the DRC level 2 is automatically started by other VisualApplets functions such as the resource
estimation and build process. The DRC level 2 performs a low level design rules check and estimates
the required FPGA resources.

Basic Functionality 76

VisualApplets User Documentation Release 3

3.10. Simulation
VisualApplets provides powerful, functional simulation features for simulating designs. You can use
simulation for a first test of the implemented image processing algorithm, and for its verification. You
can start a simulation directly after editing the design without the need to build a *.hap file.

The simulation in VisualApplets is functional, i.e., it emulates the behavior of the hardware
implementation. This makes it very fast compared to low level simulations. A side effect of the functional
simulation is that timing is not considered. The simulation behavior of operators is 100% equal to the
image processing of the final applet on real hardware.

To simulate the behavior of a design in VisualApplets, two kinds of simulation elements are provided:

• simulation sources, and

• simulation probes.

Simulation sources are used for data input. You can load one image or a whole image sequence into a
simulation source (from image files). You can place one simulation source or one simulation probe at
any link in your design. Thus, data transport along those links is overwritten by the connected source
module or inspected by the respective probe module.

Note

Some operators can function as an image source, too; e.g., operator CreateBlankImage.

You can save the resulting images of the simulation probes to image files.

Due to visualization optimizations, the VisualApplets simulation is based on 2D images.

Nevertheless, you can also simulate if the link the simulation source is connected to is 0D (stream of
pixels), 1D (stream of lines), or 2D (stream of frames), as long as the simulation source contains at
least one 2D image (see Section 3.5.3, 'Image Protocols, Image Dimensions and Data Structure').

3.10.1. Limitations

Simulation has the following limitations:

• The simulation of the SIGNAL image protocols is not possible. This is so, because the simulation of
the SIGNAL image protocols emulates the functionality, but not the timing of a design. However for
simulation of the SIGNAL image protocols, it would be necessary to simulate the timing, too.

• The simulation of the 0D image protocol is limited to exactly one simulation step. This is so, because
for simulation all pixel data of one source is aggregated to a single 2D frame. However, subsequent
steps can be simulated for the remaining design, but operators generating 0D content will only emit
data once during the first step.

• The operator PseudoRandomNumberGen does not return the same result in a simulation as on the
hardware. This is so, because the operator is non-deterministic. This exceptions is also described
at Part III, 'Operator Reference'.

• The operator Blob Analysis 1D does not return the same result in a simulation as on the hardware.
This is so, because the operator has the port FlushI, but as the flush is asynchronous to the image
data, it cannot be simulated to reflect the same behavior as in hardware. This exception is also
described at Part III, 'Operator Reference'.

• BMPs and TIFFs with indexed color palette are not supported.

3.10.2. Supported Image Formats

The following image formats are supported for simulation in VisualApplets for source images as well
as for saving the output images:

Basic Functionality 77

VisualApplets User Documentation Release 3

Bitmap BMP 1 bit black/white (row length has to be a multiple of 8)

BMP 8 bit gray

BMP 24 bit (R8 G8 B8) sRGB color space

Compression like RLE is not supported.

TIFF (Tagged Image File
Format)/TIF

TIFF 1 bit black/white (row length has to be a multiple of 8)

TIFF 8 bit gray

TIFF 24 bit color sRGB color space

TIFF 48 bit color sRRB color space

Compression: None, LZW, or PackBits

JPEG/JPG

PNG

GIF

PSD

Additionally, the following formats are supported as source images:

• SVG

• XCF

• RAW

• RSD (SiSoRawSimulationData)

Limitations

BMPs and TIFFs with indexed color palette are not supported.

3.10.3. Simulation Workflow

Simulating image data processing in your design comprises the following steps:

1. Inserting the simulation sources and probes you need into your design.

2. Loading the image file(s) you want to use for simulation to your simulation source(s).

3. Optimizing your image input via parameters, such as pixel merge and pixel alignment.

4. Setting the number of processing cycles for the simulation in the main simulation window and
starting the simulation.

5. Evaluating the simulation results.

6. Saving the simulation results.

In the following sections, these steps are be described in detail.

3.10.4. Inserting Sources and Probes into your Design

To prepare a simulation, you must first insert your simulation source(s) and probe(s) into your design:

1. From the main menu, select Analysis -> New Simulation Source / New Simulation Probe or
use the corresponding icons in the toolbar to insert your source(s) and probe(s) into the current
design window.

Basic Functionality 78

VisualApplets User Documentation Release 3

Figure 3.63. Creating New Simulation Sources and Probes

Simulation sources and simulation probes are both displayed as small image frames with a magnetic
anchor:

Figure 3.64. Simulation Sources Are Gray Image Frames, Simulation Probes Are Green Image Frames

2. Use the anchor to connect the source or probe to a link in the design. You can easily distinguish
simulation sources from simulation probes as sources are of gray, probes of green color.

3. Use drag and drop to position your source(s) and probe(s).

4. Use drag and drop to connect your source(s) and probe(s) to links in your design. If the anchor
icon changes to blue, the connection is valid.

Connecting Simulation Sources and Probes to a Link Transporting Kernels
or Signals

You can connect a simulation source to a link that transports kernels, but the simulation
source needs to provide exactly one input image per kernel. You can connect a simulation
probe to a link that transports signals, but this simulation probe then doesn't provide
any data.

3.10.5. Loading the Image File(s) to your Simulation Source(s)

3.10.5.1. The Simulation Source Viewer

In the Simulation Source Viewer, you can load test images or test image sequences and make them
available for simulation.

Basic Functionality 79

VisualApplets User Documentation Release 3

At first, let’s have a quick look at the Simulation Source Viewer.

1. To open the Simulation Source Viewer, double-click a source in your design.

The Simulation Source Viewer opens up:

Figure 3.65. Simulation Source Viewer

Directly under the menu, you find the toolbars. The icons of the toolbars offer the following options
(left to right):

•
 File toolbar for opening and saving image files.

•
 View toolbar offering different options for image display. These are

the same as the first options of the View menu:

Figure 3.66. Viewing Options

•
 The arrows for navigating through image sequences.

Basic Functionality 80

VisualApplets User Documentation Release 3

•
 Display of details on the image

currently visible in the display panel of the main viewer window (and magnifier): Displays the position
of the image in the image sequence loaded to the simulator, and the path to the image file

On the left hand side, you have the settings panel with two tabs:

Image File –
Mapping

Here, you can adjust the settings for simulation, e.g. enter a value for pixel
merge, or define the offset for pixel alignment.

Display Properties Here, you can define the settings for displaying the test images on your
own screen. Due to the fact, that monitors always use 8 bit color display, at
times you have to decide which part of a pixel you want to see on screen for
evaluating your test images. None of the settings you define under Display
Properties have influence on the simulation or its results.

In addition, you find here the color values of a selected pixel listed, together
with the display value. The display value is the mapped value for display on
the user monitor.

Figure 3.67. Pixel Values

On the right hand side, you have the display panel displaying the image
currently selected.

You can zoom in and out on the image displayed in the display channel
by either using the corresponding icons in the toolbar, or by using CTRL
+MouseWheelUp to zoom in and CTRL+MouseWheelDown to zoom out.

If you choose a very high zooming factor, a pixel grid is displayed for better
orientation and hex/dec values per pixel are displayed.

On the bottom of the simulation viewer, you have another panel: This is the Sequence viewer. If
you use more than one image in a source, here you can see all images of the image sequence, make
changes to the image order of the sequence, or select an image for display in the display panel and
magnifier.

The Magnifier is actually a second window of the Source Viewer which you can easily loosen from
the main Source Viewer window via drag & drop. The Magnifier always shows the same image as
is displayed in the display panel of the main Source Viewer. Its pointer is always in the center of
the Magnifier window and positioned exactly on the pixel you point at in the display panel. The great
advantage of the Magnifier window is that you can display a selection of the image with a completely
different zooming factor:

Basic Functionality 81

VisualApplets User Documentation Release 3

Figure 3.68. Zooming in the Magnifier

If you want to change the zooming factor of the Magnifier:

1. Activate the Tools -> Magnifier window.

2. Use CTRL+MouseWheelUp to zoom in and CTRL+MouseWheelDown to zoom out.

If you choose a very high zooming factor, a pixel grid is displayed for better orientation.

3.10.5.2. Loading Images into the Source

To load test images or test image sequences into your source,

1. Open the Simulation Source Viewer by double-clicking the source in your design.

Basic Functionality 82

VisualApplets User Documentation Release 3

2. From the main menu of the Simulation Source Viewer, select File -> Open or click the
corresponding icon in the toolbar. In the following dialog, select the simulation input image file
and click Open.

Note

You find some useful test images in the VisualApplets installation folder under
\Testimages.

Tip

Alternatively, you can simply drag & drop image files either from your Windows Explorer
into the viewer, or from your Windows Explorer onto the source in your diagram.

The input image is now displayed in the Simulation Source Viewer.

After closing the Simulation Source Viewer, you see a thumbnail of the image in the preview frame
of the corresponding source:

Figure 3.69. Thumbnail Display in Source

As soon as you connect a source to a link, the source takes over the parameter settings of the link
(such as maximal image dimension, bit width, and color format). If you load an image that is bigger
than the maximal image dimension of the link, a green rectangle is displayed on the image, enclosing
the part of the image that will be used for simulation:

Basic Functionality 83

VisualApplets User Documentation Release 3

Figure 3.70. Highlighted Image Section Used for Simulation

Convert your Images

It is not possible to load a color picture on a one-channel gray link and vice versa. If
your test image does not fit the properties of the link the source is connected to, you
need to convert the image. Use any image processing program that offers the necessary
functions to convert your test image. Use an image format supported by VisualApplets.
For information on supported image formats, see Section 3.10.2, 'Supported Image
Formats'.

3.10.5.3. Loading an Image Sequence into your Simulation Source

As soon as you load a new image to the source, the image shows up in the display panel of the
Simulation Source Viewer and is added to the image sequence of your source. You can see all images

Basic Functionality 84

VisualApplets User Documentation Release 3

of your image sequence in the Sequence Viewer, which is located at the bottom of the Simulation
Source Viewer.

Only the selected image displayed in the display channel is stored in the RAM of the computer. The
other images of the sequence are loaded into the RAM when necessary. Thus, loading long image
sequences onto a source has nearly no impact on RAM usage.

If you load an image sequence, you can change the order of images after load. In the Sequence
Viewer, use drag & drop to position an image to where you want it to be in the sequence.

You can easily delete one or more images of a sequence:

1. Press CTRL and select the images you want to delete.

2. Press DEL or select from the menu Edit -> Remove Selected.

In the Sequence Viewer, sim[x] indicates the image that is being simulated during the next
simulation step. You can reset sim[x] to the first image of the sequence in the Simulation dialog by
clicking the Reset button. If you want to know more about simulation steps and reset, see Section
3.10.7, 'Setting the Number of Processing Cycles and Starting the Simulation'. The simulation order is
not influenced by the image currently displayed in the display panel.

Figure 3.71. sim[x] Indicates the Image that Is Simulated in a Sequence

If you change the image properties by mapping (see Section 3.10.6.3, 'Image File Mapping '), the
thumbnails are not refreshed automatically. By default, the Sequence Viewer displays the thumbnails
of the original images.

You have two possibilities to adapt the thumbnail display. From the menu, select either

• View -> Mapped Thumbs to get a preview on how your images will look after applying the current
mapping settings in a simulation, or

• View -> Refresh to have thumbnails displayed that reflect the current look of your images.

3.10.6. Optimizing your Image Input via Parameters

You can now optimize your image input via parameters. All parameters are displayed in the Simulation
Source Viewer.

3.10.6.1. Pixel Values

On each pixel in the display panel, actually two crosshair cursors are displayed If you can’t see the
two crosshair cursors, zoom in on the picture in the display panel:

Basic Functionality 85

VisualApplets User Documentation Release 3

Figure 3.72. Crosshair Cursors in Display Window and Magnifier

The white/black crosshair cursor shows the position of your mouse cursor.

The colored one is positioned in the center of the pixel the mouse cursor points to. This crosshair cursor
is also displayed in the Magnifier on exactly the same pixel.

In the settings panel tab Display Properties the corresponding pixel values are displayed:

Basic Functionality 86

VisualApplets User Documentation Release 3

Figure 3.73. Pixel Values

You can choose whether you want to see the pixel values as decimal unsigned, decimal signed or hex
figures.

Display shows the value(s) displayed on your screen. This value/these values might be different from
the actual color values (or gray value) if a 16 bit or 48 bit image is loaded to your source, since on
screen, only 8 bit can be displayed per color channel.

3.10.6.2. Image Dimension

In the Simulation Source Viewer tab Image File – Mapping, you find a table with the image
dimensions of the current image (as it is loaded from file) on the left hand side and the image
dimensions of the link on the right hand side:

Figure 3.74. Image Dimensions

The column Merged Pixels is described at Section 3.10.6.5, 'Pixel Spitting and Merging'.

If an image file has a dimension smaller than the dimension of the link, the image is transferred onto
the link on the scale 1:1.

If the image file has a dimension that exceeds the dimension of the link, only part of the picture is
used for simulation. You can see in the display panel in the green rectangle which picture part is going
to be used for simulation. Also, the corresponding values are highlighted in yellow:

Basic Functionality 87

VisualApplets User Documentation Release 3

Figure 3.75. Exceeded Image Dimensions

Tip

If you cannot see the green rectangle in your display screen, set your viewing options
to View -> Fit to Window.

3.10.6.3. Image File Mapping

In the Simulation Source Viewer tab Image File – Mapping, you also find information on the bit
width of your test image (file) and on the bit width of the link the source is connected to:

Figure 3.76. Bit Widths of Image and Link

The column Merged Pixels is described at Section 3.10.6.5, 'Pixel Spitting and Merging'.

If you want to load an image that has a bit width higher than that of the link, you can choose which
bits of your image you want to use for simulation. You can make your selection by using a slider:

Basic Functionality 88

VisualApplets User Documentation Release 3

Figure 3.77. Defining Offset for Image Bits to Use

The bit width of the selection slider is the same as the bit width of the link. With the slider you can
define a new position for the offset. The offset is the starting point of your bit selection on the bit width
of your image. Based on these settings, the Simulation Source Viewer immediately calculates the
altered image and displays it in the display panel. In the screen shot above, the 4 upper bits have
been chosen out of the 8 bit of the 8-bit image. Thus, the test image used for the simulation will only
have 16 instead of 256 gray-scale values.

Visualization of Altered Test Image in the Simulation Source Viewer

Since the display on PC monitors is based on 8-bit information per pixel, an image with
only 16 gray-scale values cannot be displayed properly. Thus, for visualization on screen
the 16 gray-scale values of the test image are mapped to the 256 gray-scale values of
the 8-bit monitor display. This mapping doesn’t change the number of shades of gray
displayed (16), but enhances the contrast between them (0 = black, 15 = white).

Figure 3.78. Display Properties for 4-bit Image

If you, on the contrary, load an image that has a smaller bit width than the link it is loaded on (i.e. the
source module is connected to), you can use the same slider in tab Image File – Mapping to define an
offset for the bits of the image on the bit width of the link. The remaining bits of the link are set to NULL.

Basic Functionality 89

VisualApplets User Documentation Release 3

The picture below shows an example where an 8-bit gray-scale image has been loaded onto a link
with a bit width of 12 bit:

Figure 3.79. Defining Offset for Link Bits to Use

3.10.6.4. Display Alignment

You can define some settings for visualizing the altered test image in the Simulation Source Viewer
via display alignment:

If the bit width of a link is higher than 8 bit, you have to define which 8 bits out of the link bit width
you want to have displayed in the display panel. Since the display on PC monitors is limited to 8 bit
per color channel, a higher bit width cannot be displayed.

In the Simulation Source Viewer tab Display properties, you can define which 8 bits out of the
bits of a link you want to have displayed in the display panel. Use the slider to choose the offset for
the displayable 8 bits. This display alignment setting has no influence on the simulation.

In the example below, the link has a bit width of 12 bit. With the slider, you can decide which bits out
of the 12 you want to have displayed.

Figure 3.80. Display Alignment

Basic Functionality 90

VisualApplets User Documentation Release 3

3.10.6.5. Pixel Spitting and Merging

The BMP file format allows a maximum of 8 bit per color channel of a pixel. The TIFF format allows a
maximum of 16 bit per color channel. A higher bit width cannot be simply saved in standard image
file formats.

VisualApplets offers the possibility of pixel splitting to get around these limitations.

To store an image with a high pixel bit width in a standard image file format, each pixel is split into
multiple image file pixels. Thus, it is possible to store up to 64 bit per color channel in BMP or TIFF
file format, e.g., in 8 x 8-bit pixels. These images can be viewed in regular image file viewers or
image processing programs. Of course, the VisualApplets generated pixel-split-images will be displayed
horizontally expanded. Thus, in VisualApplets, pixel splitting is a mere storing option for images with
a high bit width (color depth).

To load an image with high bit width that has been stored as a BMP or TIFF file into your simulation
source, you have to merge the adjacent pixels that share the color information for one original
pixel back to one pixel. Thus, simulation source viewers can merge the pixel-split-images for correct
mapping. The splitting can be done in the Simulation Probe Viewer (see Section 3.10.8, 'Evaluating
the Simulation Results'). You can define the settings for pixel merge in the Simulation Source Viewer
tab Image File – Mapping:

Figure 3.81. Pixel Merge

In the following example, a 2048x1024 BMP file with a bit width (color depth) of 8 bit has been loaded
into the source. It is to be interpreted as a 16 bit 1024x1024 image.

If you enter 2 in the Merge N pixel into 1 pixel field, the bit width of the image in your source changes
from 8 bit to 16 bit per color channel, whereas the row length of the image in your source will be only
half as long, thus changing from 2048 to 1024 pixel.

Before merge:

Figure 3.82. Merging Factor = 1, Image Properties Do Not Fit Link Properties

Basic Functionality 91

VisualApplets User Documentation Release 3

After merge:

Figure 3.83. Merging Factor = 2, Properties of Merged Image Fit Link Properties

3.10.7. Setting the Number of Processing Cycles and Starting the
Simulation

After you have loaded a test image or test image sequence to your source and defined all settings for
the image, you can start the simulation.

Use Simulation Probes

Make sure you inserted (and connected) simulation probes on all positions where you
want to check image processing results (see Section 3.10.4, ' Inserting Sources and
Probes into your Design').

1.
From the main menu, select Analysis -> Start Simulation, or click the toolbar icon Start
Simulation. Now, VisualApplets automatically triggers a Design Rules Check 1.

The Simulation window opens up:

Basic Functionality 92

VisualApplets User Documentation Release 3

Figure 3.84. Simulation Window

In the upper pane, all simulation sources and simulation probes currently active in the design are
listed. The list serves only information purposes.

In the lower pane of the window, you see the results of Design Rules Check 1.

You can change the display of the list via a drop-down list box:

• Simulation Sources and Simulation Probes display only the sources and probes you have set
for simulation.

• All Sources and All Probes display all data sources and data destinations within your design.

Figure 3.85. Changing Source and Probe Display

Influence of Errors and cautions

A simulation can only be started if no error was detected during Design Rules Check 1.
Warnings created by Design Rules Check 1 do not prevent starting the simulation.

Basic Functionality 93

VisualApplets User Documentation Release 3

Note

Single operators cannot be selected for simulation. A simulation will always run through
all operators of a design.

If the list in the main simulation window shows a simulation source or probe marked by a yellow
warning triangle, this source/probe is not connected to a link of your design and will be ignored during
simulation.

Figure 3.86. Non-connected Simulation Modules

Note

Camera operators do not emit data during simulation. One needs to connect a simulation
source to the output link to provide data for the simulation.

In the Processing Cycle field, you can specify how many processing cycles you want the program to
carry out.

You can also configure the simulation and the processing cycles via the System Settings menu:
Settings -> System Settings -> Simulation:

Basic Functionality 94

VisualApplets User Documentation Release 3

Figure 3.87. Simulation Settings

Simulate data flow synchronization cleared: Each source in your design, e.g. simulation sources
and operators like CreateBlankImage, or CoefficientBuffer, emits one data set per cycle. The cycle
ends, if no more data is to be processed or transported. A simplified data management allows operators
to divert from the behavior of the corresponding entity in hardware. This means, instead of storing
incoming data inside the input ports, an operator might implement unrealistically large internal buffers.

Simulate data flow synchronization selected: The design as a whole is simulated once per cycle
from source(s) to sink(s). The focus is on precise modeling of dependencies and accurate data
management. Sources are permitted to provide one or more data sets per cycle. The simulation might
prevent sources from emitting data if previously generated data is still to be processed. Therefore,
operators leave incoming data inside their input ports until data processing requires it to be collected.
As long as valid data is stored in the incoming port, upstream operators are prevented from producing
data. This causes congestions and corresponds to the concept of inhibits in hardware and allows for
the detection of deadlocks.

Simulate 1D line by line: 1D data can be processed by aggregating several lines to one 2D frame
and simulates it like any other 2D data. This is fast and robust but limits the simulation to exactly
one simulation cycle. If you select Simulate 1D line by line, each line is processed individually
and thus allows multi-step simulations, e.g., to deal with 1D loops. This feature relies on data flow
synchronization, this means you can only select this option, if Simulate data flow synchronization
is selected.

Behavior of Simulation Probes During Simulate 1D line by line

For simulation probes connected to 1D links, incoming line data is appended to the
last frame in the simulation probe. After each processing cycle, the respective lines are

Basic Functionality 95

VisualApplets User Documentation Release 3

finalized and a new frame is started. While the simulation dialog is open, the Sequence
Viewer is locked.

After selecting the desired amount of Processing Cycles in the Simulation view, the simulation can
be run by clicking the Start button. As the internal status of all operations is maintained, consecutive
runs can be launched from the same window, as long as the simulation dialog is kept open. Once the
dialog is closed, all operators are reset to their initialization state.

Example: A given AppendImage operator expects three input images for concatenation. A connected
source provides one image per processing cycle. The simulation is run for two cycles, a simulation
probe connected to the output link of AppendImage does not show any data yet, since AppendImage
still lacks one additional image to start the processing.

Figure 3.88. Second Simulation Step

While the simulation dialog is still open, one can perform an additional (third) simulation cycle which
in turn provides data at the connected simulation probe.

Basic Functionality 96

VisualApplets User Documentation Release 3

Figure 3.89. Third Simulation Step

If the dialog was closed and reopened in the meantime, the additional simulation cycle would be
executed after initializing the design and therefore would provide the first of the three required images
for AppendImage.

Processing Order of Images within a Source Module

In a new processing cycle, always the next image of the image sequence loaded to the
source is processed. When all images of the sequence have been processed, the first
image of the sequence is processed again.

If only one image is loaded to the source, this image is processed again and again with each processing
cycle. For example, if you specify four processing cycles, the one image of the source is being processed
up to four times.

Depending on your design, the number of images fed into the design might differ from the number of
images you get as an output, for example when you use the operators SplitImage or RemoveImage.
Thus, for one processing cycle, you might get more or less images as result(s) in a probe than you
have source modules in your design. See also the example Section 9.2, ' Multiple DMA Channel Designs
' in the VisualApplets tutorial.

To clear the simulation and reset it to the start-up condition, use the Reset button.

A reset produces the following effects:

• The image sequence in all simulation sources is reset, that is, a new simulation will start with the
first image of the sequence again.

• The content of all probes is deleted.

• All operators are reset to their start-up condition (e.g., image counters, uncollected data in input
ports).

Now, you are ready to start the simulation of data processing as defined in your design.

2. Click Start to start the simulation.

Basic Functionality 97

VisualApplets User Documentation Release 3

The current simulation status is displayed in a progress bar at the bottom of the Simulation view.
Warnings and errors are displayed in the Log panel, which you can open or close by clicking the
Show Details/Hide Details button. As soon as warnings or errors occur, the Log panel is displayed
automatically.

Tip

If you want to, you can keep the viewer windows of your simulation modules open during
simulation. However, this will slow down simulation.

Figure 3.90. Successful Simulation

While a simulation is in progress, the simulation probe modules are filled with the resulting images.
Thumbnails of the simulation results are displayed in the preview image frames. After opening the
simulation viewer window of a simulation probe, the result(s) will be displayed in full size.

Automatic Simulation Reset

The simulation will automatically reset when you change your design. On reset, all
simulation probes are cleared, too.

3.10.8. Evaluating the Simulation Results

After the simulation, you find the simulation results in the probes.

Basic Functionality 98

VisualApplets User Documentation Release 3

Some Images Are Not Displayed in Probes

When simulation probes contain very large images, VisualApplets may fail to display
these images correctly due to memory limitations. In that case, a gray image (i.e. all
pixels have the value 205 (0xCD)) is shown. If this happens, use smaller images for your
simulation.

Double-click a probe in your design to open the Simulation Probe Viewer.

It looks similar to a Simulation Source Viewer (see Section 3.10.5, 'Loading the Image File(s) to your
Simulation Source(s) '): The settings channel is located at the left hand side, the display channel on the
right hand side, and the Sequence Viewer at the bottom of the Simulation Probe Viewer window.

In the Simulation Probe Viewer, you get the simulation results displayed for a first evaluation. You
can alter the display options by pixel alignment, and save the images to file. For saving, there are
several options available, like, e.g., pixel splitting.

You can zoom in and out on the image displayed in the display channel by either using the corresponding
icons in the toolbar, or by using CTRL+MouseWheelUp to zoom in and CTRL+MouseWheelDown
to zoom out.

If you choose a very high zooming factor, a pixel grid is displayed for better orientation and the
corresponding pixel values are textually represented.

3.10.8.1. Pixel Values

Like in the Simulation Source Viewer, on each pixel in the display panel two crosshair cursors are
displayed. If you can’t see the two crosshair cursors, zoom in on the picture in the display panel.
The white/black crosshair cursor shows the current position of the cursor of your mouse, whereas the
colored one is positioned in the center of the pixel the mouse cursor points on. This crosshair cursor
is also displayed in the Magnifier on exactly the same pixel.

In the settings panel, the corresponding pixel values are displayed:

Figure 3.91. Pixel Values Probe

You have different options to adjust the interpretation of color values for the selected pixel:

• You can choose whether you want to see them as hexadecimal numbers or as signed or unsigned
decimal numbers.

• You can set the number of fractional bits for an interpretation as fixed-point numbers.

Basic Functionality 99

VisualApplets User Documentation Release 3

• Additionally, you can define a scaling factor which is multiplied to the values. This is useful for
performing linear conversions like radiant to degree.

Display shows the value(s) displayed on your screen. This value/these values might be different from
the actual color values (or gray-shade value) if a 16 bit or 48 bit image is in your probe, since on
screen, only 8 bit can be displayed per color channel.

You may select a color map which performs tone mapping between the values in Display and the shown
color in the image window. This is especially useful when dealing with signed image data or when the
contained image characteristics are poorly visible in a grey-scale representation.

If the simulation probe is connected to a link which transports kernels, you can select the individual
kernel images in the kernel Row and kernel Column spin boxes in the Kernel panel.

3.10.8.2. Image Sequence

Once an image is simulated, it is instantaneously displayed in the Simulation Probe Viewer and
added to the Sequence Viewer.

You cannot change the order of images in the Simulation Probe Viewer.

However, you can delete one or more images of a sequence:

1. Press CTRL and select the images you want to delete.

2. Press DEL or select from the menu Edit -> Remove Selected.

If you change the image properties by mapping (for example, when you save 16-bit images in BMP
files), the thumbnails are not refreshed automatically. By default, the Sequence Viewer displays the
thumbnails of the original simulation results.

3.10.8.3. Varying Row Length

VisualApplets is not limited to processing and displaying rectangular images with homogeneous row
length. It can also display images with rows that are of different length.

The image size for such images is calculated by VisualApplets as follows:

Calculating Image Size for Images with Inhomogeneous Row Lengths

Image size = number of pixels of longest row * number of rows

Rows with row length NULL are counted as well. The undefined areas of the image are represented
in the display by a blue-to-cyan color gradient:

Figure 3.92. Display of Undefined Image Areas

Basic Functionality 100

VisualApplets User Documentation Release 3

Empty images are displayed by the symbol Empty Image and cannot be saved.

Figure 3.93. Empty Image Symbol

3.10.8.4. Display Alignment

The display panel of the Simulation Probe Viewer offers two ways of displaying the same image:

• If you activate Link View, the image is displayed as it looked like when it was passed to the probe
by the link.

• If you activate File View, the image is displayed as it will look when you save it with the current
settings to file.

Since monitors always use 8 bit per color channel, images with higher or lower bit width cannot be
displayed without further ado.

If a simulation result has a bit width higher than 8 bit, you can use the offset slider to select the 8 bit
you want to have displayed in the display panel:

Figure 3.94. Link View

In this example, the upper 8 bits of a 16-bit gray scale are chosen for display.

If the bit width of the image is smaller than 8 bit, the gray-scale values of the test image are
automatically mapped to the 256 gray-scale values of the 8-bit monitor display. This mapping doesn’t
change the number of shades of gray displayed, but enhances the contrast between them. Without this
mapping, the human eye might not be able to see an image at all. Take, for example, 1-bit images:
If the values 0 and 1 are used for monitor display without mapping, both are interpreted as black
by the human eye. In this case, the automatic bit width mapping of VisualApplets interprets 0 as 0
(black) and 1 as 255 (white).

Basic Functionality 101

VisualApplets User Documentation Release 3

3.10.9. Line Profile

The Line Profile view shows the individual color values or gray values of a line. You can open the
Line Profile via the menu Tools.

There are two output areas:

• Overview: The individual color values or gray values of the entire line are displayed.

• Detail: Enlarges an area marked in the Overview view. The area that is currently displayed in the
Detail view is highlighted in the Overview view with a white background. You can move the area
displayed in the Detail view with the scroll bar under the Detail view.

Figure 3.95. Line Profile View

Basic Functionality 102

VisualApplets User Documentation Release 3

With the spin box Line Index, you can select a certain line in the image and the line is marked in
the Display panel.

For color images, you can switch the individual color channels on or off with the checkboxes R, G, B,
and Y. Y stands for brightness. In addition, you can select a specific pixel position in the line via the
spin box Position X or with the cyan marker. To use the cyan marker, just move the mouse into the
Detail view. The values are then displayed in R, G, B, and Y.

3.10.10. Line Histogram

The Line Histogram view is a representation of the distribution of color values or gray values only of
the selected line in an image. You can open the Line Histogram via the menu Tools.

Figure 3.96. Line Histogram View

The histogram view is scaled so it always spans the full height of the diagram.

With the spin box Line Index, you can select a certain line in the image. As in the Line Profile view,
the line is then marked in the Display panel.

For color images, you can switch the individual color channels on or off with the checkboxes R, G, B,
and Y. Y stands for brightness. In addition, you can select a specific color value via the spin box Value
or with the cyan marker. To use the cyan marker, set the mouse cursor into the output view.

For larger color depths, for example 16-bit images, the spin box Bin is displayed instead of the spin

box Value and the bin ranges are displayed next to it:

Basic Functionality 103

VisualApplets User Documentation Release 3

For a selected Value or Bin number, the number of pixels with values in the corresponding range are
shown in Count. You can manually enter the number in Value or Bin or select the number by pointing
the mouse to the diagram.

For color images, the output is split into the basic color values RGB and the brightness value Y.

3.10.10.1. Displaying Statistical Data

The Line Histogram view also displays the following statistical values, which are calculated for the
selected line:

• Mean value

• Standard Deviation (St. Dev.)

• Minimal (Min.) value

• Maximum (Max.) value

3.10.11. Image Histogram

The Image Histogram view is a representation of the distribution of color values or gray values in
an image. You can open the Image Histogram via the menu Tools.

Figure 3.97. Image Histogram View

Basic Functionality 104

VisualApplets User Documentation Release 3

The histogram view is scaled so it always spans the full height of the diagram.

For color images, you can switch the individual color channels on or off with the checkboxes R, G, B,
and Y. Y stands for brightness. In addition, you can select a specific color value via the spin box Value
or with the cyan marker. To use the cyan marker, set the mouse cursor into the output view.

For larger color depths, for example 16-bit images, the spin box Bin is displayed instead of the spin

box Value and the bin ranges are displayed next to it:

For a selected Value or Bin number, the number of pixels with values in the corresponding range are
shown in Count. You can manually enter the number in Value or Bin or select the number by pointing
the mouse to the diagram.

For color images, the output is split into the basic color values RGB and the brightness value Y.

3.10.11.1. Displaying Statistical Data

The Image Histogram view also displays the following statistical values, which are calculated for the
selected image:

• Mean value

• Standard Deviation (St. Dev.)

• Minimal (Min.) value

• Maximum (Max.) value

3.10.12. Saving Simulation Results

You can save your simulation results in the image file formats TIFF/TIF, BMP, JPEG/JPG, PNG, GIF,
and PSD. The TIFF format offers native support of 8 and 16 bit per color channel, BMP offers only 8
bit per channel.

Before you actually save your image as TIFF/TIF or BMP file, you should define all saving settings in
the Save Options dialog.

1. To open the dialog, from the main menu of the Simulation Probe Viewer select File -> Save
Options. As a result, the Save Options panel opens up on the right hand side of the Simulation
Probe Viewer.

Basic Functionality 105

VisualApplets User Documentation Release 3

Figure 3.98. Save Options Dialog

In Destination File Format, you can define the format in which you want to save the image:

Figure 3.99. File Format Options for Saving

If you want to save a 1-bit simulation result in an 8-bit file format, check the box Normalize gray
values. Normalizing in this context means mapping 0 to 0 (black) and 1 to 255 (white).

3.10.12.1. Pixel Alignment
If the bit width of the image (= the bit width of the link) is the same as the bit width of the file format
you have chosen for saving, you can save the image 1:1.

If the bit width of the image is smaller than the bit width of the file format, you can change the pixel
alignment offset using the slider. This way, you can save the bits of the simulation result on a certain
location within the (larger) pixel of the file format. For example, save the bits of a 12-bit link on the
lowest 12 bits or the highest 12 bits of a 16 bit TIFF image.

If the bit width of the image is larger than the bit width of the file format, you can use the slider for
choosing which bits out of an image pixel you want to save to file and which bits can be discarded.

To get a preview on the (stripped) image as it will be saved to file: In the main window of the Simulation
Probe Viewer, set the radio button on top of the settings panel to File View.

3.10.12.2. Pixel Splitting
If you want to use the pixel splitting option of VisualApplets, you can define to how many pixels you
want to split the color information of one pixel (see also Section 3.10.6.5, 'Pixel Spitting and Merging') .

Basic Functionality 106

VisualApplets User Documentation Release 3

If you want to save, for example, a 16-bit simulation result in a 8-bit BMP file, set Split 1 Pixel into to
2 pixels. Now, the 16-bit pixel of the image is split into two 8-bit pixels.

Figure 3.100. Setting the Splitting Factor in the Save Options Dialog

By splitting, the row length is doubled, tripled, etc. (depending on the splitting factor). In our example,
the row length is doubled. Regular image visualization/processing programs can display these split
images. But since they assume a bit width of 8 bit, the image display is expanded horizontally.

Reconversion of Split Image

You can load a split image in a simulation source and re-convert it to its original bit width
by using the pixel merge option (see Section 3.10.6.5, 'Pixel Spitting and Merging').

3.10.12.3. Saving

Important

When selecting File -> Save from the main menu, all settings you have defined in the
Save Options dialog are applied.

For saving your simulation results to file, proceed as follows:

1. Select from the main menu File -> Save.

2. Define saving location and file name.

3. Click Save.

Basic Functionality 107

VisualApplets User Documentation Release 3

Saving an Image Sequence

You can also save a whole image sequence. To save an image sequence, select all images
you want to save in the Simulation Viewer. To do so, hold CTRL pressed and click on
the images. Then, select from the main menu File -> Save. The saved images are
automatically numbered.

3.10.13. Frequently Asked Questions

Q: I converted a color image to a gray-scale image and tried loading it to a simulation source. However,
VisualApplets denies loading the image onto a one-channel link. What is the problem?

A: The image still uses 3 channels (with 0% saturation) for color information. Just convert your image
to a one-channel image.

Q: My simulation probes do not include any results after simulation. What is the problem?

A: You might not have simulated enough simulation cycles. Increase the number of cycles. Moreover,
your algorithm might not generate any output images. Check the respective operator restrictions in
the operator references. Also, simulation probes connected to signal links never show output data.

Q: My simulation probes are cleared automatically. Why?

A: Each time the design is modified, the simulation probes might get cleared. This does not occur for
minor changes of your design like moving modules or modifying internal parameters of operators that
do not affect current ports. Probes are invalidated for changes that alter the topology of the design or
parameter changes that are propagated through links to connected operators.

Basic Functionality 108

VisualApplets User Documentation Release 3

3.11. FPGA Resource Estimation
FPGAs contain a fix number of resources. These resources are components like BlockRAM, FlipFlops,
LUTs, etc. An application design must be mapped into these resource components.

FPGA resources:

• BlockRAM is an FPGA-integrated memory used for saving FPGA internal data.

• FlipFlops are electronic circuits used for storing logical state information.

• LUTs (look-up-tables) are used for implementation of logic functions (AND, OR, XOR, etc.).

• RAM LUTs are LUTs-related FPGA internal memories.

• Embedded arithmetic logic units (ALUs or "embedded multipliers"") are hardware multipliers
integrated into the FPGA.

How many resources you can use for implementing a design depends on the type of the FPGA.

Resources of Supported Hardware Platforms

In Appendix A, 'Device Resources', you find information on all supported hardware
platforms.

Every module of a VisualApplets design (except branch, trash, etc.) uses part of the available resources
exclusively. Therefore, it is of utmost importance that you are informed about the current state of all
resources in use while you are creating your design.

No extra resources

You can only use the resources available.

Information on resource usage of individual operators you find in the operator reference (see, for
example, MULT or DIV in the Part III, 'Operator Reference', Arithmetics library).

3.11.1. Resource Usage Estimation on Design Level

The current resource usage of a design is in part calculated exactly and in part estimated by
VisualApplets. Calculation and estimation are executed in Design Rule Check 2 (DRC2) (see Section
3.9, 'Design Rules Check').

Exact calculation of resource usage during Design Rule Check 2:

• BlockRAM

• Arithmetic logic units (hardware multipliers)

Estimation of resource usage during Design Rule Check 2:

• LUT

• RAM-LUT

• FlipFlops

Information on the exact resource usage of LUTs, RAM-LUTs and FlipFlops is only available after a
successful build of an applet.

After Design Rule Check 2, the absolute result of the FPGA resource usage (followed by the percentage
usage) for the complete design is displayed in the information panel, tab Project Info, section Project/
Resources (see Section 3.3.1.1, 'Project Info').

Basic Functionality 109

VisualApplets User Documentation Release 3

Figure 3.101. Project Info Window

The resource usage of a design depends on the parallelism (link parameter) used in the design, and
on the number and complexity of the modules deployed.

Keep Parallelism Low

In order to save resources, you should always try to keep the parallelism of a design as
low as possible when defining the settings for the required band width (see description
of operator PARALLELdn in Part III, 'Operator Reference').

Estimated Values and Successful Build

If resource estimation values are slightly below 100%, build might fail. On the other hand,
even if resource estimation values are slightly over 100%, build might be successful. This
is due to the fact that the values are only estimated and the actual resource usage might
be slightly higher or lower.

3.11.2. Resource Usage Estimation on Module Level

Detailed information on the resource usage of the entire design as well as on the resource usage of
each individual module you can obtain by selecting from the main menu Analysis -> View FPGA

Resources or by clicking the View FPGA Resources button .

Basic Functionality 110

VisualApplets User Documentation Release 3

Figure 3.102. Detailed Information on FPGA Resource Estimation

For further comparison, you can export the estimated values as a coma-separated values (CSV) file
by clicking the Export as CSV button.

You can access information on the estimated FPGA resource usage of an individual module via the
context menu (right-click), selecting FPGA Resources.

Figure 3.103. Context Menu FPGA Resources

Basic Functionality 111

VisualApplets User Documentation Release 3

Figure 3.104. FPGA Resource Usage of Individual Module

Basic Functionality 112

VisualApplets User Documentation Release 3

3.12. Build
The applet build step is the final step in the design process of your applets. During the build step, the
VisualApplets implementation is translated into the hardware applet (HAP). It is also called synthesis
or compilation. The output of the build step is the hardware applet file *.HAP which can be loaded
onto the frame grabber hardware.

VisualApplets will call the external tools of the FPGA manufacturer XILINX for HAP generation. Make
sure these tools are installed in the right version and VisualApplets is configured accordingly.

Xilinx Installation

For a detailed description of the required Xilinx tools, and to learn all about their correct
installation, refer to the VisualApplets Installation Guide [https://docs.baslerweb.com/
visualapplets/installing-visualapplets].

Build Settings for microEnable 5

When designing for microEnable 5 or LightBridge, make sure you configured
VisualApplets accordingly, see section Section 4.9, 'Build Settings'.

The Project Info dock window shows the version of the detected XILINX software (Figure 3.105,
'Detected Xilinx tools').

Figure 3.105. Detected Xilinx tools

Open the Build Hardware Applets dilaog by clicking Build -> Build Hardware Applet, by using the

Build Harware Applet button from the tool bar or by using the shortcut F7.

Default Directory for Resulting Hardware Applet

VisualApplets will not ask the user where to store the resulting hardware applet (*.hap
file). The file is automatically generated and saved in the directory that is specified under
Section 4.7, 'System Settings' / Global Build Settings / Generation of Hardware Applets /
Path for storage of hardware applets (*.hap). By default, this is the installation directory
of VisualApplets.

https://docs.baslerweb.com/visualapplets/installing-visualapplets
https://docs.baslerweb.com/visualapplets/installing-visualapplets
https://docs.baslerweb.com/visualapplets/installing-visualapplets

Basic Functionality 113

VisualApplets User Documentation Release 3

If VisualApplets is installed on your system in a folder that requires administrator rights
(e.g., C:\Programs), you have to start VisualApplets with administrator rights in order
to use the default path, or to adapt the path setting under under Section 4.7, 'System
Settings' / Global Build Settings / Generation of Hardware Applets / Path for storage of
hardware applets (*.hap).

The file is copied into the Framegrabber SDK installation directory, if a Framegrabber SDK instance is
installed, matched with the design target runtime and recognized by VisualApplets. The output filename
is equal to the filename of the *.va file, i.e., myDesignName.hap. The project name has no influence
on the file name of the applet (*.hap file).

You can change the build settings. Read Section 4.9, 'Build Settings' for more information.

3.12.1. Selecting the Build Configuration

In VisualApplets, multiple build settings can be created in the in the Build Settings dialog which are
stored in the application.

In the Build Hardware Applets dialog under Xilinx configuration, you can select one of the build settings
you defined in the in the Build Settings dialog. The Build configuration you select here will be used for
the build you are going to start. Default value is the configuration you specified as Active configuration
in the Build Settings dialog.

1. Under Xilinx configuration, select the build configuration you want to use for the build.

Figure 3.106. Selecting the Build Configuration for Applet Build

3.12.2. Target Runtime Selection

In the same Build Hardware Applets dialog, you can specify the required target runtimes. By default, the
target runtime of the design file is selected. (See Section 4.8.1, 'Target Runtime') However, sometimes
the applet will be used on multiple target runtimes. In this case, multiple target runtimes can be
selected as can be seen in the next figure. VisualAppelts will generate a HAP file for all selected target
runtimes.

Basic Functionality 114

VisualApplets User Documentation Release 3

Figure 3.107. Target Runtime Selection during Applet Build

For the target runtime you defined the design file, the output file is located in the specified directory as
described above. The file name of this output file is the same as the name of the *.va design file, only
with the *.hap extention. The file is copied into the Framegrabber SDK installation, if the Framegrabber
SDK is installed.

All additional output files: VisualApplets will add target runtime information to the file name of all
additional output files, like “_Linux_AMD64”, “_Linux_IA32”, etc. These additional HAP files will NOT
be copied into the Framegrabber SDK installation directory.

Repacking the *.hap File for Other Target Runtimes at a Later Stage

You can easily create a new *.hap file for an additional target runtime at a later stage
without starting the whole build process again. This may save you a lot of time as the
repacking only takes some minuts. For details on how to repack a *.hap File for additional
target runtimes, see section Section 3.12.7, 'Repacking the *.hap File for Other Operating
Systems at a Later Stage'.

3.12.3. Build Settings for imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

The platforms imaFlex CXP-12 Quad and imaFlex CXP-12 Penta have one additional build setting:
Netlist synthesis engine.

Basic Functionality 115

VisualApplets User Documentation Release 3

Figure 3.108. Build Setting for imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

This setting has an effect on the build velocity and device ressources.

Standard:

• Builds your design in approximately one hour.

• Does provide a ressource estimation after the build.

• Does NOT work, if you have operators of the Blob library in your design. In this case, the build will
be aborted with an error message.

Enhanced:

• Builds your design in approximately three hours.

• The built design uses less ressources.

• Does NOT provide a ressource estimation after the build.

• Works for all operators.

Basler recommends to use always the Enhanced netlist synthesis engine.

3.12.4. Errors during Build

The build process will always execute design rules checks level 1 and level 2. If one of the fails, the
build process is aborted. Check Section 3.9, 'Design Rules Check' for more information on the design
rules checks.

Moreover, the build process can cause several further errors. The most likely errors is a resource
overmap or timing error. If an applet contains to much logic elements, the XILINX tools cannot map
all required elements to the physically available elements. In the case of a resource overmap, your
design has to be optimized to fit into the FPGA.

Basic Functionality 116

VisualApplets User Documentation Release 3

In case of a timing error, the XILINX tools cannot route all signals within the allowed constraints. This
mostly happens if almost all logic resources are used. The design has to be optimized to use less
resources in this case. Designs which have a timing error can still be completed. Keep in mind that a
hardware applet which did not meet timing might not work correct. It might result in time-
outs, failing data or other unexpected behaviors if used. Therefore, the use of a non-timing
matched applet should only be used with care and is at the user's own risk. If the required
resources of your design are far less than 100% and you still get timing errors, contact the Basler
Support [https://www.baslerweb.com/en/sales-support/support-contact/].

Other errors can be caused by an incorrect XILINX installation or disk volume access permissions.

Note that the build process might require some hours to be completed.

3.12.5. Applet Run

The usage and run of a hardware applet file (HAP) is described in the Framegrabber SDK
documentation [https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics].
The SDK generator of VisualApplets can help with the first steps of running an applet. See Section
3.13, 'Framegrabber SDK' for more information.

3.12.6. microDisplay

microDisplay is part of the Framegrabber SDK. It is a tool for first tests of the generated applets. If
the Framegrabber SDK is installed, microDisplay can directly be opened from VisualApplets by clicking
on Build -> microDisplay (F5). Alternatively, you can also use the icon microDisplay from the Build
icon bar.

3.12.7. Repacking the *.hap File for Other Operating Systems at a Later
Stage

You can create additional *.hap files out of an already existing *.hap file. This is especially helpful if
you want to use an applet on additional operating systems you did not specify before the first build.

You do not need to start the whole build process again. This saves you a lot of time. The repacking only
takes some minutes. Only the operating system specific parts of the original *.hap file are replaced
by VisualApplets during the repacking process.

Pre-Conditions

To repack an existing *.hap file for a new operating system, you must use the same
VisualApplets version that was used to build the original applet (VA 2.2 or higher).

Otherwise, you will get an according error message.

To create additional *.hap files for additional operating systems:

1. From the menu, select Build -> Repacking Hardware Applet Files....

The Repacking Hardware Applet Files window opens:

https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics

Basic Functionality 117

VisualApplets User Documentation Release 3

Figure 3.109. Repacking Hardware Applet Files Window

2. Select the original *.hap file using the browse button.

VisualApplet immeadiately checks if the original *.hap file was created with the same version of
VisualApplets (2.2 or higher) you are using now (which is a precondition for the repacking process,
see above).

If the VisualApplets version doesn't match, an according error message is displayed.

3. If everything is fine, click the Next button.

Basic Functionality 118

VisualApplets User Documentation Release 3

Figure 3.110. Fullfilled Repacking Preconditions

4. Under Runtime, select the target runtime (i.e., target operating system) you want to create the
new *.hap file for.

Figure 3.111. Selecting Target Operating System

VisualApplets offers a file name for the new *.hap file.

Basic Functionality 119

VisualApplets User Documentation Release 3

5. Adapt the output location and the file name for the new *.hap file to your needs.

6. Click Next.

VisualApplets displays all settings you have specified for the repacking:

Figure 3.112. Display of Specified Repacking Settings

If you need to adapt your settings, you can use the Back button.

7. Click Finish to start the repacking process.

After successful repacking, you get an according message:

Figure 3.113. Message after Successful Repacking

Basic Functionality 120

VisualApplets User Documentation Release 3

3.13. Framegrabber SDK

The Basler Framegrabber SDK is used to access the hardware devices in the runtime environment.
All VisualApplets implementations can be accessed using the API functions of the Framegrabber SDK.
VisualApplets can generate an individual SDK sample project for each VisualApplets implementation.

3.13.1. Generating an SDK Example

You can generate a Framegrabber SDK example code for each VisulApplets project. To generate an

SDK example, select Build -> Generate SDK example from the menu or select the icon in the
Build toolbar to generate the example. The Browse to Folder dialog opens up.

Figure 3.114. Selecting the Storing Location for the SDK Example

Select the location where you want your SDK example to be stored and click OK. Note that no
subdirectory is generated, therefore it is recommended to create a subdirectory. The SDK example is
generated and stored in the selected directory.

VisualApplets Warns in Case of Erroneous Designs

Before each SDK example generation, VisualApplets runs a DRC check and prompts a
warning, if the DRC check fails:

Basic Functionality 121

VisualApplets User Documentation Release 3

3.13.2. Using the Generated SDK Example

The SDK example includes the source files as well as a Microsoft VisualStudio 6 project file which you
can open also in newer versions of VisualStudio. You can compile and execute the example immediately.
All available parameters are included and parametrized examplarily.

For a detailed explanation on the usage of a VisualApplets in the Framegrabber API, refer to the
Framegrabber API documentation [https://docs.baslerweb.com/frame-grabbers/framegrabber-api].
Use the function Fg_getParameterIDByName() to obtain the unique parameter ID as shown in the
example. A header file is generated for all enumerations in VisualApplets operators. A namespace with
the name of the operator is created for each operator type used in the applet. Multiple enumerations
are embedded in this namespace.

https://docs.baslerweb.com/frame-grabbers/framegrabber-api
https://docs.baslerweb.com/frame-grabbers/framegrabber-api

Extended Functionality 122

VisualApplets User Documentation Release 3

4. Extended Functionality
In this chapter, you are introduced to the possibilities and functions VisualApplets offers to the advanced
user. This comprises, amongst other options, a clear structuring of larger designs, creating your own
libraries, creating multiple-process designs, defining settings for design and build, and working with
different program versions.

4.1. Hierarchical Boxes

The HierarchicalBox operator is a special operator in VisualApplets that allows to structure designs.
As the name implies, the operator has the function of a box. You can mark a part of your design and
make it the content of a hierarchical box.

The hierarchical box is visible in the design as an operator instance (of operator HierarchicalBox). The
content of the hierarchical box you can see and edit in an individual design window.

A hierarchical box contains a combination of operators and links and can connect them to an arbitrary
number of input and output links. The use of HierarchicalBox modules allows you to

• structure your design very clearly, and to

• administrate groups of modules.

In the design panel, the HierarchicalBox module is displayed as an M-type operator (oval shape);
nevertheless, its behavior depends on the operators inside the hierarchical box.

The following figure shows an example of a HierarchicalBox. As you can see, the operators included
in the hierarchical box are displayed in a separate design window. Depending on the window settings,
both diagrams can be viewed at the same time as shown in the example. See Section 3.3, 'Main
Program Window' for more information on how to arrange diagram windows.

Extended Functionality 123

VisualApplets User Documentation Release 3

Figure 4.1. Example of a Hierarchical Box

4.1.1. Creating a Hierarchical Box

There are several ways to add a hierarchical box:

• Making a part of your design a hierarchical box:

1. Select the modules of your design you want to assemble as hierarchical box. (Press the STRG
key on your keypad and click on the modules you want to assemble.)

2. Keep the STRG key pressed and right-click on an empty part of the design window to open the
context menu.

3. From the context menu, select Move to Hierarchical Box.

A new hierarchical box is created that contains all selected modules and the according in- and
out links.

4. Double-click on a hierarchical box to open the diagram window that shows the hierarchical box
implementation.

• Defining an empty hierarchical box:

1. Select the HierarchicalBox operator from the Base library and add it to your design, or

Right-click on an empty area in a diagram and select Insert -> Hierarchical Box, or

select Design -> Hierarchical Box from the main menu, or

Select the icon in the Edit toolbar.

Extended Functionality 124

VisualApplets User Documentation Release 3

2. In the window that occurs, define the number of input and output links of your new
HierarchicalBox.

3. Click OK.

The HierarchicalBox module is inserted into your diagram; it has the number of input and output
ports you just specified.

4. Double-click on the hierarchical box module to open its design window.

5. Add the operators you want to have in your hierarchical box.

6. Connect the design in the box to the input and output ports of the box via links.

4.1.2. Navigating between Design Windows

To go back to the design window of the process that contains the hierarchical-box module:

1. Click on the window tab in the design window:

Figure 4.2. Window tabs of the design window

To step back in the hierarchy:

1.
Select View -> Window Up (Backspace) or click the Window Up button in the View toolbar.

4.1.3. Editing Module Properties

To open the module properties:

1. Right-click on a hierarchical box and from the context menu, select "Properties". Here, you can
see and edit the parameters of the hierarchical box that are available for parametrization.

For information how to make parameters deeply nestled within a protected hierarchical box (or within
a protected hierarchical box that is part of another protected hierarchical box) visible and available at
this level, see the Operator Reference, library "Parameters".

4.1.4. Re-use of Hierarchical Boxes

You can use hierarchical boxes more than once by copy & paste. Each instance of a hierarchical box
is independent from its siblings,i.e., if you make changes to one of the copied hierarchical boxes, this
has no impact on the others.

For information on how to use hierarchical boxes as library elements and protected library elements,
see section Section 4.2.2, 'Creating a User Library Element'.

4.1.5. Inserting Additional Ports to Hierarchical Boxes

You can add further input and output ports to your hierarchical box anytime. To add a port:

1. Navigate to the design window that shows the hierarchical box module.

2. With the mouse pointer, go to an input port (if you want to insert an input port), or to an output
port (if you want to insert an output port) so that the port is highlighted.

Extended Functionality 125

VisualApplets User Documentation Release 3

Figure 4.3. Highlighting a Port

3. Right-click on the port.

4. From the context menu, select Insert Port Above or Insert Port Below.

The new port is inserted. It is given a default name. To give an individual name to the port, use context
menu item Rename Port (see below).

4.1.6. Deleting a Port of a Hierarchical Box

You can delete input or output ports of your hierarchical box anytime. To delete a port:

1. Navigate to the design window that shows the hierarchical box module.

2. With the mouse pointer, go to the port you want to delete so that it is highlighted.

3. Right-click on the port.

4. From the context menu, select Remove Port.

The port is deleted.

4.1.7. Re-naming the Ports of Hierarchical Boxes

To enhance the readability of your design, you can give names to the input ports and output ports
of a hierarchical box:

1. Navigate to the design window that shows the hierarchical box module.

2. With the mouse pointer, go on the port you want to re-name so that it is highlighted.

Figure 4.4. Highlighting a Port

3. Right-click on the port you want to re-name.

4. From the context menu, select Rename Port.

5. In dialog Rename Port, enter a name for the port.

Extended Functionality 126

VisualApplets User Documentation Release 3

Figure 4.5. Entering a port name

6. Click OK.

The new name is visible, for example, in the design window of the hierarchical box module:

Figure 4.6. Renamed ports of a hierarchical box

4.1.8. Re-ordering the Ports of Hierarchical Boxes

In quite the same manner as renaming, you can re-order the ports of a hierarchical box module:

1. Navigate to the design window that shows the hierarchical box module.

2. With the mouse pointer, go on the port you want to change the position of so that it is highlighted.

Figure 4.7. Highlighting a port

3. Right-click on the port you want to re-order.

4. From the context menu, select Move Port Up or Move Port Down.

The order of the ports is swapped. This is visible, for example, in the design window of the hierarchical
box module:

Extended Functionality 127

VisualApplets User Documentation Release 3

Figure 4.8. Reordered input ports of a hierarchical box

The re-arrangement of port order has no impact on the functionality of the hierarchical box. The re-
arranged ports are linked to the same inner and outer design elements as before.

Extended Functionality 128

VisualApplets User Documentation Release 3

4.2. User Libraries
In user libraries, you can encapsulate a combination of modules which you need more than once and
store this combination for later re-use.

You can define as many user libraries as you want. Each user library can contain as many user library
elements as you want.

A user library element contains a specific combination of modules and links. After you create them,
library elements are available in the library panel (tab User Library) and can be used like operators.

A user library element is pretty much the same as a hierarchical box (see Section 4.1, 'Hierarchical
Boxes'). The difference is that user library elements are stored in a (user-defined) user library and can
be inserted into different designs and projects, just as operators from the operator libraries.

Figure 4.9. User Libraries with Elements in the Library Panel

The instances of a user library element are independent from each other, that is, if you make changes
to one of the instances, this has no impact on the other instances of the same user library element.

User libraries are saved as *.val or *.vl files. These files are not part of a particular project. Thus,
they can also be used in other projects.

In the System Settings of VisualApplets, you can specify where you want the *.val or *.vl files to be
stored on your system (see Section 4.7, 'System Settings').

When you have inserted the instance of a user library element into a design, you do not need the
*.val or *.vl file for loading the project or for building the applet (*.hap file).

4.2.1. Creating a New User Library

To create a new user library, proceed as follows:

1. In the library panel, click the User Library tab.

2. Right-click in the user library window.

3. From the context menu, select Create New User Library.

(Alternatively, you can also use the main menu Library -> Create New User Library.)

4. The Create new User Library dialog opens up:

Extended Functionality 129

VisualApplets User Documentation Release 3

5. Give a name to your new user library.

6. By default, the new user library is saved in the *.val file format. If you want to open this library in
VisualApplet version 3.3.2 or older, select Legacy library format (.vl). Note that if your legacy
user library in *.vl file format contains a protected user library element, this element isn't saved
and can't be opened in the legacy file format.

7. Click OK

Now, an empty user library (functioning like a container) has been created which you can fill now with
your user library elements.

When you move the mouse over the user library name, a tooltip shows whether the library is saved
in the *.vl legacy file format:

4.2.2. Creating a User Library Element

There are two ways to create a new user library element. You can either

• save a hierarchical box as a user library element (for general information about hierarchical boxes,
see Section 4.1, 'Hierarchical Boxes'), or

• create a user library element from scratch (see Section 4.2.2.2, 'Creating a New User Library Element
from Scratch').

4.2.2.1. Saving a Hierarchical Box as a User Library Element

1. Right-click on a hierarchical box to open the context menu of the module.

2. Select Save to User Library.

A Save dialog pops up:

Extended Functionality 130

VisualApplets User Documentation Release 3

Figure 4.10. Saving a Hierarchical Box as a User Library Element

3. Select the user library you want to save the new element in (or, alternatively, click on New User
Library and define a new library).

4. Enter a name (under Element Type) for your new user library element.

5. Optionally: If you want to add information on your element (version number, short description,
individual GUI Icon, documentation in form of HTML help files):

a. Click on Details. A new dialog opens:

Extended Functionality 131

VisualApplets User Documentation Release 3

Figure 4.11. Adding documentation, version information, short description, and/or individual
GUI Icon

b. Enter a version number for your library element if you want to.

c. Enter a short description for your library element if you want to.

d. To specify a specific icon to be displayed together with the library element on the VisualApplets
GUI, in field Icon File specify the path to the PNG file or use the navigation button on the
right hand side of the field.

e. To add documentation describing your user library element, click the plus button under HTML
Help Files and navigate to the HTML file that holds the text of your documentation.

You may specify multiple HTML and image files. If you add multiple HTML files, the first HTML
file in the list will be the starting page of your documentation. The starting page is displayed as
documentation of your user library element (in the information panel, tab Help). The additional
files may contain images or further HTML files that are linked by the starting page.

Naming and Storage of Help Files

When you save your user library element later on, all the files you specify
here will be copied to the VisualApplets installation directory, sub-directory
LibraryCache. The starting page of your documentation (first HTML file
in the list) will be renamed and will have the name of the user library
element:<elementname>.html

To unlink an HTML file from the library element, select the file and click on the delete button.
The HTML file will be unlinked, but remains in your file system.

f. Confirm the details specification of your new user library element with OK.

Extended Functionality 132

VisualApplets User Documentation Release 3

6. If you want to protect your user library element, select the Protection option. This way, the user
library element is made a “black box”. (For details on element protection, see Section 4.2.4,
'Protecting User Library Elements'.)

7. Click Save.

The optional PNG and HTML files are copied to the VisualApplets installation directory, sub-directory
LibraryCache.

If you activated the Protection option, an additional dialog Protect User Library Element appeares.

a. Make sure protection mode Password is activated.

b. Enter your password and click OK.

Figure 4.12. Providing a password for a library element

All User libraries and their contents are available in the library panel (see Section 3.3, 'Main Program
Window'). Click on the User Library tab to display the User Library window.

The icon you selected is visible together with the library element.

Detailed information on an individual element is displayed in the tooltip:

Figure 4.13. Tooltip Information on User Library Element

If you select the new user library element, the according help information is displayed in the
information panel under tab Help.

Extended Functionality 133

VisualApplets User Documentation Release 3

The display within the design window has changed: Instead of "HierarchicalBox", the name of the
user library element is displayed. The icon for hierarchical boxes has been replaced by the icon
you selected for the library element. The name of the instance within the design (below the icon)
has remained the same.

Figure 4.14. Display of Your Library Element in Design

You can change your user library element any time later on (see section Section 4.2.5, 'Editing User
Library Elements'. However, these changes will not be promoted to the instances of the element. You
have various options for updating the instances of a user library element if you want to (see section
Section 4.2.6, 'Updating Instantiated User Library Elements'.

Analysis of User Library Elements

Design Rules Check Level 1 is possible.

Resource analysis, build, and simulation are not possible.

4.2.2.2. Creating a New User Library Element from Scratch

Alternatively, you can create new user library elements from scratch. For defining and/or changing
user library elements, you use the User Library Editor.

To define a new user library element from scratch:

1. From the main menu, select Library -> Edit User Library -> New User Library Element.

Now, the design editor closes. Together with the design editor, also the design you have been
working on is closed.

The user library editor opens. The user library editor behaves like the normal design editor.

2. Define a name for your new user library element.

3. Select the target hardware platform.

(However, the platform is only relevant if you include operators in your element that are dependent
on hardware issues, such as camera operators.)

4. Click OK.

5. As soon as you click OK, a dialog box opens where you have to specify the number of input and
output ports of your element. Make sure you specify the right number of input and output links
since it is not possible to change these numbers later on.

a. Specify the number of input ports you need.

b. Specify the number of output ports you need.

Extended Functionality 134

VisualApplets User Documentation Release 3

Define necessary number of links

Make sure you specify the right number of input and output links since it is not
possible to change these numbers later on.

6. Confirm the port definition with OK.

The user library editor opens with an empty element design containing only the imput and output
ports you just specified.

7. Edit the design of your user library element as you want.

8. When you are finished, save your element by selecting from the main menu File -> Save As.

Figure 4.15. Saving New User Library Element

9. Select the user library you want to save the new element in (or, alternatively, click on New User
Library and define a new library).

10. Optionally: If you want to add information on your element (version number, short description,
individual GUI Icon, documentation in form of HTML help files):

a. Click on Details. A new dialog opens:

Extended Functionality 135

VisualApplets User Documentation Release 3

Figure 4.16. Adding documentation, version information, short description, and/or individual
GUI Icon

b. Enter a version number for your library element if you want to.

c. Enter a short description for your library element if you want to.

d. To specify a specific icon to be displayed together with the library element on the VisualApplets
GUI, in field Icon File specify the path to the PNG file or use the navigation button on the
right hand side of the field.

e. To add documentation describing your user library element, click the plus button under HTML
Help Files and navigate to the HTML file that holds the text of your documentation.

You may specify multiple HTML and image files. If you add multiple HTML files, the first HTML
file in the list will be the starting page of your documentation. The starting page is displayed as
documentation of your user library element (in the information panel, tab Help). The additional
files may contain images or further HTML files that are linked by the starting page.

Naming and Storage of Help Files

When you save your user library element later on, all the files you specify
here will be copied to the VisualApplets installation directory, sub-directory
LibraryCache. The starting page of your documentation (first HTML file
in the list) will be renamed and will have the name of the user library
element:<elementname>.html

To unlink an HTML file from the library element, select the element and click on the delete
button. The HTML file will be unlinked, but remains in your file system.

f. Confirm the details specification of your new user library element with OK.

Extended Functionality 136

VisualApplets User Documentation Release 3

11. If you want to protect your user library element, select the Protection option. This way, the user
library element is made a “black box”. (For details on element protection, see Section 4.2.4,
'Protecting User Library Elements'.)

Protected Elements Can't Be Saved to the Legacy File Format

If you save your user library in the *.vl legacy file format, protected elements can't
be saved. In this case, either remove the protection or save the user library in the
newer and recommended *.val file format.

With the legacy file format you can open the user library in VisualApplets version
3.3.2 or older.

12. Click Save.

The optional PNG and HTML files are copied to the VisualApplets installation directory, sub-directory
LibraryCache.

If you activated the Protection option, an additional dialog Protect User Library Element appears.

a. Make sure protection mode Password is activated.

b. Enter your password and click OK.

Figure 4.17. Providing a password for a library element

All User libraries and their contents are available in the library panel (see Section 3.3, 'Main Program
Window'). Click on the User Library tab to display the User Library window.

The icon you selected is visible together with the library element.

Detailed information on an individual element is displayed in the tooltip:

Extended Functionality 137

VisualApplets User Documentation Release 3

Figure 4.18. Tooltip Information on User Library Element

If you select the new user library element, the according help information is displayed in the
information panel under tab Help.

13. If you want to proceed working on your design, close the user-library-element design and the user
library editor: From the main menu, select File -> Close.

Close element design via File->Close

It is not enough to close the element design by closing the tab of the design. You
need to close the user library editor, too.

To close both, click File -> Close. Only after closing the design of your user library
element (and thus the library editor) in this way, you can re-open the normal design
editor and thus your overall applet design.

14. To continue working on your design, open your design.

You can change your user library element any time later on (see section Section 4.2.5, 'Editing User
Library Elements'. However, these changes will not be promoted to the instances of the element. You
have various options for updating the instances of a user library element if you want to (see section
Section 4.2.6, 'Updating Instantiated User Library Elements'.

Analysis of User Library Elements

Design Rules Check Level 1 is possible.

Resource analysis, build, and simulation are not possible.

4.2.3. Using the User Library

4.2.3.1. Inserting User Library Elements into Your Design

You can create an instance of an element by a simple drag & drop into your design (as you do with
operators).

The instantiated module behaves like a hierarchical box, but knows it descends from the user library.

Extended Functionality 138

VisualApplets User Documentation Release 3

4.2.3.2. Adapting Element Instances to Your Design

You can adapt instances of user library elements to fit your overall design. You may need to

• modify individual operator parameters

• modify the layout (adding and deleting of operators and links)

Changing Link Properties

Changed link properties do not change the implementation of the library element
instance. Example: If a library element has been saved with a parallelism of 4, but its
instance is connected to a parallelism of 8, this of course has an influence on the links
inside the instance. However, this is not a change of the implementation of the instance
as no operator parameters are influenced by a change of the link properties.

After you changed an instance of a user library element - either by modifying individual operator
parameters, or by modifying the layout (adding and deleting of operators and links), the instance is
no more a mere copy of the user library element.

To keep you informed which instance contains changes, the modified user library element instance
is marked:

Figure 4.19.

This is very important for you to know, as updating the instances of a user library element (see section
Section 4.2.6, 'Updating Instantiated User Library Elements') overwrites the changes you made to an
instance. You should always carefully consider the pros and cons before selecting an automatic update
for an instance that contains changes.

4.2.4. Protecting User Library Elements

If you have purchased an Expert license or the VisualApplets 4 license, you can protect user library
elements. After protection has been enabled, the user library element is made a “black box”. However,
protected elements that contain dynamical parameters or parameters that are referenced from an
operator of the Parameters library are still visible in the runtime.

Protected Elements Can't Be Saved to the Legacy File Format

If you save your user library in the *.vl legacy file format, protected elements can't be
saved. In this case, either remove the protection or save the user library in the newer
and recommended *.val file format.

With the legacy file format you can open the user library in VisualApplets version 3.3.2
or older.

There are two ways to protect a user library element:

• Protection via password: The user library element can afterwards be opened and edited via password.
Users that do not have the password will not even be able to see which operators are used in the
user library element (black box).

• Irreversible protection: The user library element is made a black box for ever and cannot be re-
opened, not even by yourself.

To protect a user library element via password:

Extended Functionality 139

VisualApplets User Documentation Release 3

1. Right-click on the element.

2. From the context menu, select Protect User Library Element.

Figure 4.20. Protecting a user library element

3. Make sure protection mode Password is activated.

4. Enter your password.

Figure 4.21. Entering password for protected user library element

5. Click OK.

"One-Way" Protection Irreversible

If you select protection mode One Way (instead of Password), the user library element can
never be re-opened, not even by yourself. If you plan to enhance the element at a later
point of time, make sure you select protection mode Password instead. Alternatively,
you can save a copy of the element (as a hierarchical box or a non-protected operator)
before enabling this protection mode.

4.2.5. Editing User Library Elements

You can make changes to your user library elements. You can do this by either

• editing the library element itself in an library editor, or by

• overwriting it with a changed instance or a hierarchical box.

However, these changes are not propagated automatically. If you want an instance of a library element
to reflect the changes you made to the element, you need to update the instance (see section Section
4.2.6, 'Updating Instantiated User Library Elements').

4.2.5.1. Editing User Library Elements in the User Library Editor

You can edit your user library elements in the user library editor. To open the user library editor:

Extended Functionality 140

VisualApplets User Documentation Release 3

1. Save the design you are currently working on.

2. In the library pane, go to tab User Library.

3. Right-click the element you want to edit.

4. From the context menu of the element, select Edit.

Figure 4.22. Opening the User Library Editor

Now, the design editor closes. Together with the design editor, also the design you have been working
on is closed.

The user library editor opens. The user library editor behaves like the normal design editor.

5. Make your changes.

6. Save your changes.

If you want to edit the element description and version number:

7. From the main menu, select Library -> Element Details.

8. Save the edited element.

Analysis of User Library Elements: You can carry out Design Rules Check Level 1. However,
bandwidth analysis, resource analysis, build, and simulation are not possible.

Updating Instances

When you make changes to user library elements, the instantiated elements in your
designs are not updated with these changes. If you want an instance of a library element
to reflect the changes you made to the element, you need to update the instance (see
section Section 4.2.6, 'Updating Instantiated User Library Elements').

4.2.5.2. Editing a User Library Element via Overwriting

Alternatively, you can edit a user library element by simply overwriting it. To do so:

1. Save a hierarchical box or an instantiated user library element under the name of an already
existing user library element (as described in Section 4.2.2.1, 'Saving a Hierarchical Box as a User
Library Element').

Extended Functionality 141

VisualApplets User Documentation Release 3

Updating Instances

When you make changes to user library elements, the instantiated elements in your
designs are not updated with these changes. If you want an instance of a library element
to reflect the changes you made to the element, you need to update the instance (see
section Section 4.2.6, 'Updating Instantiated User Library Elements').

In the following sections you get information on how to update instantiated user library elements.

4.2.6. Updating Instantiated User Library Elements

In the normal workflow, it happens that user library elements need to be updated. The changes you
make to an element, however, have no influence on the instances of this element. To update the
instances of an element in your design(s), you can either add your changes manually, or use one of
the two update mechanisms provided by VisualApplets (see below).

4.2.6.1. Updating Manually

If you decide to update the instances of the changed element manually, you can select multiple
instances of the element in your design and change them all simultaneously in one step.

No Hierarchical Update

Hierarchical update of user library elements is not supported. If you select more than one
module of a hierarchy for updating, only the highest module of the hierarchy is updated.

4.2.6.2. Replacing Modules via Quick Update

You can update the instances of a user library element in a design via the function Quick Update.

Updating Overwrites Changes within Instances

Updating the instances of a user library element overwrites all changes you made to an
instance (parameter settings, or adding/deleting operators). You should always carefully
consider the pros and cons before selecting an automatic update for an instance that
contains changes.

To keep you informed which instance contains changes, modified instances of a library
element are marked:

To update the instance of a library element via Quick Update:

1. Select the instance you want to update.

2. From the main menu, select Library -> Quick Update from User Library.

The selected instance of the element is replaced by a new one that reflects the changes you made
to the element in the library.

Extended Functionality 142

VisualApplets User Documentation Release 3

Quick Update is only possible if the instances you want to update have the same number of input and
output ports as the edited user library element. It is not possible to use Quick Update for replacing the
instance of a user library element type A by an instance of user library element type B.

Via Quick Update, you can update multiple instances of an element at once:

1. Press the Ctrl key and hold it pressed while you select all instances you want to update.

2. From the main menu, select Library -> Quick Update from User Library.

All selected instances of the element are replaced by new ones.

4.2.6.3. Replacing an instance via Update from User Library

When you select this option, the instances you want to replace do not have to be of the same type as
the library element they are updated with. Thus, you can use this option to replace instances of user
library elements or hierarchical boxes by the instance of another user library element. For example,
you can replace the instance of a user library element type A by an instance of user library element
type B (in contrast to option “Quick Update”). Nevertheless, also Update from User Library is only
possible if if the instances you want to replace have the same number of input and output ports as
the user library element you want them to replace with.

To replace one or more instances of an element by instances of another user library element:

1. Select the modules you want to replace (holding the Ctrl key).

2. From the main menu, select Library -> Update from User Library.

The dialog window Update User Library Elements opens. The left-hand panel shows the module(s)
you have chosen for update. The right-hand panel shows your user libraries.

Figure 4.23. Replacement of Instances

3. In the right-hand panel, select the user library element you need. In the left-hand panel, all
modules which can be replaced as you desire are highlighted in green (if not, check if the numbers
of inputs and outputs fit).

4. Click Replace Modules.

Instantaneously, all listed modules with matching numbers of nodes are replaced by instances of
the new user library element.

Extended Functionality 143

VisualApplets User Documentation Release 3

Example above: The numbers of inputs and outputs do not fit in two cases. Module 28 has only 1 input
and 1 output port, whereas USRLibraryELement5 has three inputs and three outputs. Replacement of
modules 32, 31, and 33 by USRLibraryELement5 is possible as they have exactly the same number
of input and output ports as USRLibraryELement5.

4.2.7. Transforming a User Library Module into a Hierarchical Box

Sometimes you might find it helpful to unlink an element instance from the user library. To do so, you
can transform instances of user library elements into hierarchical boxes.

1. Select the module you want to transform in your design. (If you want to transform more than one
module, press the Ctrl key and select all modules you want to transform.)

2. From the main menu, select Library -> Change to Hierarchical Box.

Instantaneously, all selected modules are transformed into completely independent hierarchical boxes.

4.2.8. Delivered User Libraries

The VisualApplets delivery contains two user libraries:

• JPEG_Color

• imaFlex_CXP12_Tools

• imaFlex_CXP12_Tools_Advanced

If you don't see these delivered user libraries, right-click into the User Library panel, and select Rescan
User Library Directory from the context menu that opens up:

VisualApplets then opens the libraries that are located in the directory specified in System Settings
-> Path Settings -> Libraries/Path for storage of user libraries.

4.2.8.1. JPEG_Color User Library

The JPEG_Color user library contains the following elements:

Extended Functionality 144

VisualApplets User Documentation Release 3

Availability

The JPEG_Color user library is part of VisualApplets Expert.

To use elements of the JPEG_Color user library, you need either an Expert license, a
JPEG Compression Library license, or the VisualApplets 4 license.

• JPEGEncoder_Color_800MPs_VCX: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_800MPs_VCX is for CXPx2 frame grabbers and
provides a bandwidth of 800 MP/s at a clock rate of 160 MHz. The input parallelism is 8.

• JPEGEncoder_Color_1500MPs_VCX: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_1500MPs_VCX is for CXPx2 frame grabbers and
provides a bandwidth of 1200 MP/s at a clock rate of 160 MHz. The input parallelism is 8.

• JPEGEncoder_Color_2500MPs_VCX: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_2500MPs_VCX is for CXPx4 frame grabbers and
provides a bandwidth of 2400 MP/s at a clock rate of 160 MHz. The input parallelism is 16.

• JPEGEncoder_Color_300MPs_VCL: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_300MPs_VCL is for Camera Link (CL) frame grabbers
and provides a bandwidth of 300 MP/s. The input parallelism is 4.

• JPEGEncoder_Color_600MPs_VCL: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_600MPs_VCL is for Camera Link (CL) frame grabbers
and provides a bandwidth of 600 MP/s at a clock rate of 155 MHz. The input parallelism is 4.

• JPEGEncoder_Color_850MPs_VCL: With this user library element you can convert 8-bit color
images into JPEG images. JPEG_Encoder_Color_850MPs_VCL is for Camera Link (CL) frame grabbers
and provides a bandwidth of 850 MP/s at a clock rate of 170 MHz. The input parallelism is 8.

You find detailed documentation for the user library elements in the Help panel of your VisualApplets
installation.

Extended Functionality 145

VisualApplets User Documentation Release 3

4.2.8.2. imaFlex_CXP12_Tools User Library

Rather Use the imaFlex_CXP12_Tools_Advanced User Library

The imaFlex_CXP12_Tools user library is only delivered for backwards compatibility
reasons. If possible, use the imaFlex_CXP12_Tools_Advanced user library instead.

The imaFlex_CXP12_Tools user library contains the following elements:

• ImageBufferMultiRoI: This operator provides support for multiple regions of interest (ROI) for each
buffered image. The user library element ImageBufferMultiRoI as tool element for imaFlex platform
provides the same functionality as the VisualApplets standard operator ImageBufferMultiRoI, which
is not supported on imaFlex platform.

• ImageBufferMultiRoIDyn: This operator provides support for multiple dynamic regions of interest
(ROI) for each buffered image. The user library element ImageBufferMultiRoIDyn as tool element
for imaFlex platform provides the same functionality as the VisualApplets standard operator
ImageBufferMultiRoIDyn, which is not supported on imaFlex platform.

4.2.8.3. imaFlex_CXP12_Tools_Advanced User Library

The imaFlex_CXP12_Tools_Advanced user library contains the following elements:

• FrameBufferMultiRoi: This operator provides support for multiple regions of interest (ROI) for each
buffered image. The user library element FrameBufferMultiRoi as tool element for imaFlex platforms
provides the same functionality as the VisualApplets standard operator ImageBufferMultiRoi, which
is not supported on the imaFlex CXP-12 platforms.

• JPEG_Encoder_Color_iF_Penta: JPEG_Encoder_Color_iF_Penta allows you to convert 8-bit color
images into JPEG images.

Availability

The JPEG_Encoder_Color_iF_Penta user library element is part of VisualApplets
Expert.

To use elements of the JPEG_Encoder_Color_iF_Penta user library element, you need
either an Expert license, a JPEG Compression Library license, or the VisualApplets
4 license.

Extended Functionality 146

VisualApplets User Documentation Release 3

• JPEG_Encoder_Color_iF: JPEG_Encoder_Color_iF allows you to convert 8-bit color images into
JPEG images.

Availability

The JPEG_Encoder_Color_iF user library element is part of VisualApplets Expert.

To use elements of the JPEG_Encoder_Color_iF user library element, you need either
an Expert license, a JPEG Compression Library license, or the VisualApplets 4
license.

You find detailed documentation for the user library elements in the Help panel of your VisualApplets
installation. Also, there are examples available that show you how to use the user library elements,
see 11. imaFlex CXP-12 Quad and Penta Implementation Examples

Extended Functionality 147

VisualApplets User Documentation Release 3

4.3. Custom Operator Libraries

With VisualApplets, you have the possibility to convert image processing modules you have designed
in VHDL into VisualApplets operators.

You incorporate your modules as IP cores into VisualApplets. Each IP core builds one operator. After
implementation, these operators work like built-in VisualApplets operators. Operators implemented in
such a way are called custom operators.

Availability

The VisualApplets Custom Library feature is part of VisualApplets Expert.

To use the Custom Library, you need either an Expert license or the VisualApplets 4
license.

To make your custom operators available on the VisualApplets GUI, you also need to define one or
more custom libraries that contain the custom operator(s.) Each custom operator needs to be part of
one specific custom library.

Extended Functionality 148

VisualApplets User Documentation Release 3

4.3.1. Workflow

You add a new custom operator to VisualApplets in just a few steps. You can complete the whole
work flow by your own:

1. Specify the custom operator’s main properties and its interface directly on the VA GUI (operator
name, operator version, number and properties of required image in, image out, memory ports,
etc.).

2. Based on your input of step 1, let VisualApplets generate the VHDL code for the operator interface
(black box) and a VHDL test bench for testing your implementation.

3. Wrap your HDL code so that its interface matches the generated black box. For testing your
implementation the automatically generated test bench may help.

4. Create a net list of your implementation. Also create a constraints file if required.

5. Optionally, create the operator documentation (for the operator help window) and a simulation
model (that later allows to simulate a VA design containing the custom operator).

6. Edit the custom operator in VA again: Add the generated netlist and optionally also the help files
and simulation model.

After these steps, your image processing module is available as custom operator directly in
VisualApplets and can be used the same way as any other operator. The custom libraries are saved as
*.val or *.vl files (similar to the user libraries). They can be deployed and distributed in this format.

Extended Functionality 149

VisualApplets User Documentation Release 3

4.3.2. VisualApplets Custom Operator Functionality

VisualApplets (i.e., the VisualApplets Custom Operator Functionality) is used two times during this
work flow:

1. For the generation of an operator prototype in VisualApplets allowing to export HDL code for
defining the concerning IP core interface (black box and test bench).

2. For completing the operator by adding the necessary files for synthesis and (optionally) simulation
and help content.

Generation of Operator Prototype: The VA Custom Operator Functionality lets you create an
operator prototype which can immediately be used for instantiating the operator in Visual Applets.
For this operator prototype a black box interface and an RTL level simulation entity for emulating
the communication ports of the generated operator interface can be exported. Then you can start
coding (i.e., implementing your HDL code complying with the interface of the black box) and simulating
your custom operator design. The resulting FPGA design you then synthesize to an EDIF or NGC
netlist. Optionally, you add a constraints file, create a dynamic link library for VisualApplets high-level
simulation, and write HTML documentation for the VisualApplets GUI.

Completing the operator definition: The VA Custom Operator Functionality lets you specify the
netlist, simulation library and documentation files. Supplemented with these files the operator is ready
for use immediately.

4.3.3. Operator Types

VisualApplets knows different types of operators and ports, depending on the underlying flow control
mechanism. Operators may be of type O or type M.

Custom Operator Type: M

Custom operators are always of type M.

4.3.4. Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets basically
means that data of several ports is transferred synchronously, whereas ports which are asynchronous
to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from a SYNC
module; any constellation of O-operators may be between that source and the ports.

Depending on the relation of the operator input ports to each other, we differentiate between the
following options:

1. Synchronous inputs: All input ports are synchronous to each other. There is one output port.

2. Asynchronous inputs: Some of the input ports are asynchronous to each other and all outputs
are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs may only
have a single output. If more than one output is required, the inputs must be declared as being
asynchronous.

Defining Multiple Outputs

If you want to create an operator with multiple outputs, you need to declare its inputs
to be asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in Visual-Applets operators):

Extended Functionality 150

VisualApplets User Documentation Release 3

RemoveImage M-Operator with synchronous inputs and one output.

SYNC M-Operator with asynchronous inputs and multiple,
synchronous outputs.

4.3.5. Interface Architecture

VisualApplets custom operator interfaces are designed for smoothly integrating your new operators
so they behave inside VisualApplets like built-in operators. You can define any number of input and
output ports for your custom operators.

• Image In / Image Out: The Image In and Image Out ports may support multiple image formats.
They are driven by simple-to-use FIFO interfaces. The FIFOs reside in the VA part of the custom
operator, so that you only need to implement a flow control, but not the FIFO.

• Memory ports: You also can define any number of memory ports. They also use FIFOs residing in
the VA part of the custom operator.

• GPIO ports: In addition to the image ports, you can define general-purpose I/O ports, e.g., for
communicating asynchronous signals to the operator.

• Registers: To allow the final user of your operator to configure the operator and to get access to
status information, you can define any number of write and read registers.

• Clock: The ports for receiving clock pulses are set up automatically for every custom operator.

• Reset/Enable port: The ports for receiving reset or enable commands are set up automatically
for every custom operator.

Extended Functionality 151

VisualApplets User Documentation Release 3

The following sections describe the different types of interfaces shown in the above figure in detail.

4.3.5.1. Clock Interface

VisualApplets connects two clock inputs – the design clock and a second clock synchronous to the design
clock but with double frequency. All interfaces except the memory interface must be synchronous to the
design clock. The memory interface may be configured using the design clock or the double frequency
clock for the read and/or write interface.

4.3.5.2. Reset and Enable

The Reset and Enable inputs are driven by the according “process enable” and “process reset” signals
of the VA-process where the operator is instantiated. Make sure you implement the following behavior
as reaction to these signals into your operator:

• Assertion of Reset puts the operator in its init state.

• Assertion of Enable starts processing.

• Deactivating Enable stops processing.

Extended Functionality 152

VisualApplets User Documentation Release 3

• (When Enable=0, the output FIFOs of the operator are not read. Depending on the state of the
image processing pipeline some data may still be written to the input ports but the flow control safely
prevents that any FIFO content gets corrupted.)

• Reset is only asserted when Enable=0

The following behavior to these signals is implemented in the VA part of the custom operator:

• Reset will empty all port interface FIFOs.

• Reset and Enable have no effect on the parameters of the operator.

• Reset and Enable have no effect on the GPIO interface of the operator.

4.3.5.3. Register Interface
For communicating operator parameters and status, the custom operator may be supplied with an
arbitrary number of VisualApplets parameters. Each of the parameters translates to a separate register
port of the custom operator. VisualApplets cares for dispatching the accesses to and from the operator
registers.

4.3.5.4. Interfaces for Image Data

4.3.5.4.1. Image Protocols
You can define the image protocols that will be supported by the image in and image out ports of your
custom operator. The future user of your operator will then be able to select from the list of image
protocols you provide.

VisualApplets offers the following image formats to be supported by your operator’s ImgIn and
ImgOut ports:

• grayXxP: gray image with X bits per pixel and parallelism P

• rgbYxP: color image with Y/3 bits per color component (red, green, blue) and parallelism P

• hsiYxP: color image with Y/3 bits per color component (HSI color model) and parallelism P

• hslYxP: color image with Y/3 bits per color component (HSL color model) and parallelism P

• hsvYxP: color image with Y/3 bits per color component (HSV color model) and parallelism P

• yuvYxP: color image with Y/3 bits per color component (YUV color model) and parallelism P

• ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and parallelism P

• labYxP: color image with Y/3 bits per color component (LAB color model) and parallelism P

• xyzYxP: color image with Y/3 bits per color component (XYZ color model) and parallelism P

Additionally, the image dimension and the information whether pixel components are signed or
unsigned can be coded by optional suffixes.

The pixel data width X is limited to 64 bit. The width Y must be a multiple of 3 and is limited to 63
bit. The parallelism P defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8, 16, 32, 64}.

Packing of image data into words of a given interface width N must follow certain rules:

• The data of all P pixels must fit in a single word of length N. The data is stored LSB aligned which
means that for a pixel width Z (Z=X for grey, Z=Y for color) data is distributed as follows: Pixel[0]-
>Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

• For RGB images the three color components are packed LSB aligned into a sub word [0..Y-1] in
the following order: red uses the bits [0..Y/3-1], green the bits [Y/3..2*Y/3-1] and blue the bits
[2*Y/3..3*Y/3-1].

Extended Functionality 153

VisualApplets User Documentation Release 3

• For YUV color images the same rules than for RGB applies where Y takes the role of red, U that of
green and V the role of blue.

• For HSI color images the same rules than for RGB applies where H takes the role of red, S that of
green and I the role of blue.

• For LAB color images the same rules than for RGB applies where L takes the role of red, A that of
green and B the role of blue.

• For XYZ color images the same rules than for RGB applies where X takes the role of red, Y that of
green and Z the role of blue.

In VisualApplets, any link carries the properties maximum image width and maximum image height.
VisualApplets lets you define optional constraints for the maximum width and height for any of the
supported image protocols of the custom operator separately.

For an image interface port, you define a list of allowed image protocols. This list makes up a subset
of the possible VisualApplets image formats (see above). A format can be described by the following
properties:

• Data type uint or int

• Pixel data bit width N = [1..64]

• Gray or color format (single or three data components with aggregated width N)

• Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

• 2D, 1D, or 0D

• Parallelism P = {1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from zero
and therewith define an ID.

When working with the final operator in VisualApplets, the user of your operator can select any of the
formats you list here for the image communication port in question. According to the selection made
by the VA user, the corresponding ID will be output to the related custom operator port.

This enables the custom operator to adapt its behavior to the selected format.

4.3.5.4.2. Image Input Ports

Image input ports allow to communicate image data from the VisualApplets process to the custom
operator. These ports are named ImgIn. If you designed the custom operator to support configuration
of its input channel(s) (see section Section 4.3.5.4.1, 'Image Protocols'), several different protocols can
be driven through a single port selected by the corresponding format parameter within VisualApplets.
The interface basically consists of a FIFO and a parameter register providing an ID for the actually
used data format. The custom operator must care for reading the FIFO and interpreting the image
data according to the protocol of the selected image format. The operator must guarantee a correct
flow control according to the status pins providing information about the filling state of the FIFO, i.e.,
no data may be read when the FIFO is empty.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up
a subset of possible VisualApplets image formats (see section Section 4.3.5.4.1, 'Image Protocols')
where a format can be described by the following properties:

• Data type uint or int

• Pixel data bit width N = [1..64]

• Gray or color format (single or three data components with aggregated width N)

• Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

• 2D, 1D, or 0D

• Parallelism P = {1,2,4,8,16,32,64}

Extended Functionality 154

VisualApplets User Documentation Release 3

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from zero
and therewith define an ID.

When working with the final operator in VisualApplets, the user can select any of the formats you list
here for the concerning image communication port. According to the selection made by the VA user,
the corresponding ID will be output to the related Custom Operator port. This enables the custom
operator to adapt its behavior to the selected format.

4.3.5.4.3. Image Output Ports
Image output ports allow communicating image data from the custom operator to the VisualApplets
process. These ports are named ImgOut. If you designed the custom operator to support appropriate
configuration of its output channel(s) (see section Section 4.3.5.4.1, 'Image Protocols'), several
different protocols can be driven through a single port selected by the corresponding format parameter
within VisualApplets. The interface basically consists of a FIFO and a parameter register providing an
ID for the actually used data format. The custom operator must care for feeding the FIFO with image
data according to the protocol of the selected image format. The operator must guarantee a correct
flow control according to the status pins providing information about the filling state of the FIFO, i.e.,
no data may be written when the FIFO is full.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up
a subset of possible VisualApplets image formats (see section Section 4.3.5.4.1, 'Image Protocols')
where a format can be described by the following properties:

• Data type uint or int

• Pixel data bit width N = [1..64]

• Gray or color format (single or three data components with aggregated width N)

• Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

• 2D, 1D, or 0D

• Parallelism P = {1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from zero
and therewith define an ID.

When working with the final operator in VisualApplets, the user can select any of the formats you list
here for the concerning image communication port. According to the selection made by the VA user, the
corresponding ID will be output to the related custom operator port. This enables the custom operator
to adapt its behavior to the selected format.

4.3.5.5. General purpose I/O
The General Purpose I/O interface allows connecting dedicated signal pins of the custom operator.
Every GPIO port maps to a pin of the custom operator which is either an input or an output.

Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of type
SIGNAL.

Bidirectional Pins not Supported

The GPIO pins must be either an input or an output. Bidirectional pins are not supported.

4.3.5.6. Memory Interface
A custom operator may be set up for accessing one or more banks of memory. The concerning memory
ports have a FIFO like interface for write and read commands. The FIFOs reside in the VA part of the
custom operator, so that you only need to implement a flow control, but not the FIFO. The timing
of forwarding the FIFO content to the memory controller attached to the custom operator is fully
controlled by VisualApplets.

Extended Functionality 155

VisualApplets User Documentation Release 3

4.3.6. Defining an Individual Custom Operator via GUI

First of all, you need to enter some details describing your new custom operator.

VisualApplets uses these details for generating a VHDL black box for your custom operator and an
according test bench for simulation.

You enter the configuration for your individual custom operator via the VisualApplets GUI. VisualApplets
makes the specified operator available for use in a design immediately, even if the operator specification
is incomplete concerning netlist, simulation model and documentation.

Custom Library File

A custom library with all contained operators is stored as one single <LibaryName>.val
or <LibaryName>.vl file. <LibaryName> is the name of the custom library.

This file can be distributed and directly applied in VisualApplets. It simply needs to be
copied into the Custom Library directory which is specified in the VisualApplets settings.

Operator Configuration in XML Format

VisualApplets stores the custom operator specification in XML format. You can export the
XML content from the custom library to a file, e.g., for handling it in a version control
system. On the other hand you can import the XML for adding a custom operator (see
section Section 4.3.15.3, 'Importing and Exporting Individual Custom Operators'). You
do not need to know how this XML file looks like. However, if you want to have a look,
refer to section Section 4.3.17, 'XML Format for Custom Operator Specification'.

4.3.6.1. Creating a New Custom Library

Before you can start to define a new custom operator, you need to create a custom library where the
new operator belongs to.

If you already have a custom library available where the new custom operator will belong to, skip this
section and proceed with section Section 4.3.6.2, 'Creating a New Custom Operator'.

To create a new custom library:

1. In menu Library, select menu item Create New Custom Library.

2. Give a name to your new custom library.

Extended Functionality 156

VisualApplets User Documentation Release 3

3. By default, the new custom operator library is saved in the *.val file format. If you want to open
this library in VisualApplet version 3.3.2 or older, select Legacy library format (.vl).

4. Click OK

Comply with Conventions for Valid C Identifiers

When defining the library name, make sure you adhere to the conventions for valid C
identifiers.

Now, the new custom library is created. You can see it in the operator panel under the Custom Library
tab:

When you move the mouse over the custom library name, a tooltip shows whether the library is saved
in the *.vl legacy file format:

For creating a new custom library, you may need to specify a directory where all custom-library-related
files are stored. You do this under Settings -> System Settings -> Paths.

Extended Functionality 157

VisualApplets User Documentation Release 3

4.3.6.2. Creating a New Custom Operator

To define a new custom operator:

1. In menu Library, select menu item Edit Custom Library.

2. In the submenu that opens, select New Custom Library Element.

Extended Functionality 158

VisualApplets User Documentation Release 3

3. In the window that opens, select a custom library via double-click on the library name.

4. Enter a name for your custom operator:

Extended Functionality 159

VisualApplets User Documentation Release 3

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL
naming conventions.

VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar
object consists of a letter followed by any number of letters or numbers, without
space. A valid name is also called a named identifier. VHDL is not case sensitive.
However, an underscore may be used within a name, but may not begin or end the
name. Two consecutive underscores are not permitted.“

5. Before saving, you must define the properties of your new operator:

Extended Functionality 160

VisualApplets User Documentation Release 3

For detailed information about defining the properties of your new custom operator, see Section
4.3.6.3, 'Defining Basic Information about Custom Operator'.

6. Click the Create button.

The dialog Edit Custom Operator opens. Here, you can define your custom operator.

7. Click the Save button.

Now, your new custom operator is visible under the custom library it belongs to:

Once you have created a new custom operator and saved it to VisualApplets, you can interrupt your
work and proceed any time. To proceed, you go to the Custom Library tab, open the library, right-
click on the operator name, and from the sub menu, select Edit.

Extended Functionality 161

VisualApplets User Documentation Release 3

Use Operator Template Instead

Alternatively, you can use the custom operator template provided in your VisualApplets
installation to define new custom operators. How to use the template, see section Section
4.3.16.2, 'Custom Operator Template'.

4.3.6.3. Defining Basic Information about Custom Operator

In a first step, you define your custom operator’s interface.

1. Provide your vendor name. You can enter any string. This information is intended for operator
identification by the user.

2. Provide a version number for your operator, e.g., version 1.0. You can enter any number but
you should comply with the version scheme <major>.<minor>. This information is intended for
operator version identification by the user.

Extended Functionality 162

VisualApplets User Documentation Release 3

3. Proceed to the tab Inputs.

4.3.6.4. Defining the Image Input Ports

Under tab Inputs, you describe the properties of the image input ports.

1. First of all, you define the input mode of your custom operator’s ImgIn ports:

Extended Functionality 163

VisualApplets User Documentation Release 3

Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets
basically means that data of several ports is transferred synchronously, whereas ports
which are asynchronous to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from
a SYNC module; any constellation of O-operators may be between that source and the
ports.

Depending on the relation of the operator input ports to each other, we differentiate
between the following options:

Synchronous inputs: All input ports are synchronous to each other. There is one
output port.

Asynchronous inputs: Some of the input ports are asynchronous to each other
and all outputs are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs
may only have a single output. If more than one output is required, the inputs must be
declared as being asynchronous.

If you want to create an operator with multiple outputs, you need to declare its inputs
to be asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in VisualApplets operators):

RemoveImage M-Operator with
synchronous inputs and one
output

Extended Functionality 164

VisualApplets User Documentation Release 3

SYNC M-Operator with
asynchronous inputs and
multiple, synchronous
outputs

You can define one or more image input ports (ImgIn). Each ImgIn port may be used as often as
you specify.

1. Click on the Plus button to create a first image in (ImgIn) port.

2. Give a name to the ImgIn port and define the number of input ports in the Multiplicity field: >1
defines an array of ports with a name consisting of the base name and an index.

Immediately, the operator depiction in the program window displays the entered array of ImgIn
ports:

Extended Functionality 165

VisualApplets User Documentation Release 3

3. In the Properties panel, you specify the properties of the protocols that are supported by this
ImgIn port.

Extended Functionality 166

VisualApplets User Documentation Release 3

4. Under Port Width, specify the width of the ImgIn port.

5. Under Fifo Depth, specify the depth of the buffer FIFO for input data which at least needs to be
provided by the VA core. The value must be a power of two minus 1 between 15 and 1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described
by the following properties:

• Gray or color format (single or three data components with aggregated width N)

• Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

• Pixel data bit width N = [1..64]

• Parallelism P = {1,2,4,8,16,32,64}

• 2D (Aray), 1D (Line), or 0D (Raw)

• Data type uint or int

• Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image
below visible in the left hand column of the table in the Properties panel).

If you specify more than one protocol, you design the custom operator to support configuration of
its input channel(s). In this case, several different protocols can be driven through a single port.

The user of your custom operator can select the protocol he wants to use on a specific ImgIn
port. According to the selection made by the VA user, the corresponding ID will be output to
the related custom operator port. This enables the custom operator to adapt its behavior to the
selected protocol.

6. Under Format, specify the color format of the protocol.

The following color formats are allowed:

• grayXxP: gray image with X bits per pixel and parallelism P

• rgbYxP: color image with Y/3 bits per color component (red, green, blue) and parallelism P

• hsiYxP: color image with Y/3 bits per color component (HSI color model) and parallelism P

• hslYxP: color image with Y/3 bits per color component (HSL color model) and parallelism P

Extended Functionality 167

VisualApplets User Documentation Release 3

• hsvYxP: color image with Y/3 bits per color component (HSV color model) and parallelism P

• yuvYxP: color image with Y/3 bits per color component (YUV color model) and parallelism P

• ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and parallelism P

• labYxP: color image with Y/3 bits per color component (LAB color model) and parallelism P

• xyzYxP: color image with Y/3 bits per color component (XYZ color model) and parallelism P

7. Double-click in the field of column Pix.Width and specify the pixel data width for the specific
format:

The value range of Pix.Width depends on your choice under Format:

Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as Y) must be a multiple of
3 and is limited to 63 bit.

8. Double-click in the field of column Parall. and specify the parallelism for the specific format.

The parallelism defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8, 16, 32,
64}. Packing of image data into words of a given interface width N (specified under Port Width)
must follow certain rules:

• The data of all P pixels must fit in a single word of length N. The data is stored LSB aligned
which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is distributed as follows:
Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

• For RGB images the three color components are packed LSB aligned into a sub word [0..Y-1] in
the following order: red uses the bits [0..Y/3-1], green the bits [Y/3..2*Y/3-1] and blue the
bits [2*Y/3..3*Y/3-1].

• For HSI color images the same rules than for RGB applies where H takes the role of red, S that
of green and I the role of blue.

• For HSL color images the same rules than for RGB applies where H takes the role of red, S that
of green and L the role of blue.

• For HSV color images the same rules than for RGB applies where H takes the role of red, S that
of green and V the role of blue.

• For YUV color images the same rules than for RGB applies where Y takes the role of red, U that
of green and V the role of blue.

Extended Functionality 168

VisualApplets User Documentation Release 3

• For YCrCb color images the same rules than for RGB applies where Y takes the role of red, Cr
that of green and Cb the role of blue.

• For LAB color images the same rules than for RGB applies where L takes the role of red, A that
of green and B the role of blue.

• For XYZ color images the same rules than for RGB applies where X takes the role of red, Y that
of green and Z the role of blue.

9. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or 0D (Raw) images.

10. Max.Width/Max.Height: Using these optional fields you can define constraints for the image
width and image height.

11. Repeat steps 6 to 10 to define as many protocols as you want the ImgIn port to support.

12. Repeat steps 1 to 11 to define as many ImgIn ports you want your custom operator to provide.

Extended Functionality 169

VisualApplets User Documentation Release 3

4.3.6.5. Defining the Image Output Ports

Under tab Outputs, you describe the properties of the image output ports.

You can define one or more image output ports (ImgOut). Each ImgOut port may be used as often
as you specify.

1. Click on the Plus button to create a first image out (ImgOut) port.

2. Give a name to the ImgOut port.

3. Double-click in the field of the Multiplicity column to create an array of ports. Multiplicity >1
defines an array of ports with a name consisting of the base name and an index.

Extended Functionality 170

VisualApplets User Documentation Release 3

Immediately, the operator depiction in the program window displays the entered array of ImgOut
ports:

Extended Functionality 171

VisualApplets User Documentation Release 3

4. In the Properties panel, you specify the properties of the protocols that are supported by this
ImgOut port.

Under Port Width, specify the width of the ImgOut port.

5. Under Fifo Depth, specify the depth of the buffer FIFO for output data which at least needs to be
provided by the VA core. The value must be a power of two minus 1 between 15 and 1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described
by the following properties:

• Gray or color format (single or three data components with aggregated width N)

• Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

• Pixel data bit width N = [1..64]

• Parallelism P = {1,2,4,8,16,32,64}

• 2D (Aray), 1D (Line), or 0D (Raw)

• Data type uint or int

• Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image
below visible in the left hand column of the table in the Properties panel).

If you specify more than one protocol, you design the custom operator to support configuration of
its input channel(s). In this case, several different protocols can be driven through a single port.

The user of your custom operator can select the protocol he wants to use on a specific ImgOut
port. According to the selection made by the VA user, the corresponding ID will be output to
the related custom operator port. This enables the custom operator to adapt its behavior to the
selected protocol.

6. Under Format, specify the color format of the protocol.

The following color formats are allowed:

• grayXxP: gray image with X bits per pixel and parallelism P

• rgbYxP: color image with Y/3 bits per color component (red, green, blue) and parallelism P

• hsiYxP: color image with Y/3 bits per color component (HSI color model) and parallelism P

Extended Functionality 172

VisualApplets User Documentation Release 3

• hslYxP: color image with Y/3 bits per color component (HSL color model) and parallelism P

• hsvYxP: color image with Y/3 bits per color component (HSV color model) and parallelism P

• yuvYxP: color image with Y/3 bits per color component (YUV color model) and parallelism P

• ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and parallelism P

• labYxP: color image with Y/3 bits per color component (LAB color model) and parallelism P

• xyzYxP: color image with Y/3 bits per color component (XYZ color model) and parallelism P

7. Double-click in the field of column Pix.Width and specify the pixel data width for the specific
format:

The value range of Pix.Width depends on your choice under Format:

Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as Y) must be a multiple of
3 and is limited to 63 bit.

8. Double-click in the field of column Parall. and specify the parallelism for the specific format.

The parallelism defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8, 16, 32,
64}. Packing of image data into words of a given interface width N (specified under Port Width)
must follow certain rules:

• The data of all P pixels must fit in a single word of length N. The data is stored LSB aligned
which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is distributed as follows:
Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

• For RGB images the three color components are packed LSB aligned into a sub word [0..Y-1] in
the following order: red uses the bits [0..Y/3-1], green the bits [Y/3..2*Y/3-1] and blue the
bits [2*Y/3..3*Y/3-1].

• For HSI color images the same rules than for RGB applies where H takes the role of red, S that
of green and I the role of blue.

• For HSL color images the same rules than for RGB applies where H takes the role of red, S that
of green and L the role of blue.

• For HSV color images the same rules than for RGB applies where H takes the role of red, S that
of green and V the role of blue.

Extended Functionality 173

VisualApplets User Documentation Release 3

• For YUV color images the same rules than for RGB applies where Y takes the role of red, U that
of green and V the role of blue.

• For YCrCb color images the same rules than for RGB applies where Y takes the role of red, Cr
that of green and Cb the role of blue.

• For LAB color images the same rules than for RGB applies where L takes the role of red, A that
of green and B the role of blue.

• For XYZ color images the same rules than for RGB applies where X takes the role of red, Y that
of green and Z the role of blue.

9. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or 0D (Raw) images.

10. Max.Width/Max.Height: Using these optional fields you can define constraints for the image
width and image height.

11. Repeat steps 6 to 10 to define as many protocols as you want the ImgOut port to support.

12. Repeat steps 1 to 11 to define as many ImgOut ports you want your custom operator to support.

4.3.6.6. Defining the GPIO Ports

The General Purpose I/O interface allows connecting dedicated signal pins of the custom operator.
Every GPIO port maps to a pin of the custom operator which is either an input or an output.

Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of type
SIGNAL.

1. Go to tab GPIO.

2. Add as many GPIs and GPOs as you want, using the Plus button .

3. Double-click into the field to give a name to a specific GPI or GPO.

The defined GPIs and GPOs are immediately displayed in the depiction of the custom operator in the
upper left hand panel of the program window:

Extended Functionality 174

VisualApplets User Documentation Release 3

Bidirectional Pins Not Supported

The pins are either an input or an output. Bidirectional pins are not supported.

4.3.6.7. Defining the Memory Ports

A custom operator may be set up for accessing one or more banks of memory (DRAM, SRAM, …).

All memory ports have a FIFO-like interface for write and read commands. The FIFOs reside in the
VA part of the custom operator, so that you only need to implement a flow control, but not the FIFO.
The timing of forwarding the FIFO content to the memory controller attached to the custom operator
is fully controlled by VisualApplets.

Under the Memory tab, you can define that your operator gets access to external memory. You can
specify up to 4 ports. You can specify the memory interface properties the operator needs.

Comply with Memory Layout of Target Platforms

Keep in mind the memory layout of potential target platforms (on which the applets
containing the custom operator will run).

Extended Functionality 175

VisualApplets User Documentation Release 3

Parameter Name Type Description
Data Width Integer Data width

Address Width Integer Address width

Number of Write Flags (Width) Integer Width of flag for marking write
accesses. This parameter must be >=
1.

Number of Read Flags (Width) Integer Width of flag for marking read
accesses. This parameter must be >=
8.

SyncMode String This parameter signals the relation
of the memory interface clock and
the design clock. Following values are
possible:

SyncToDesignClk – memory interface
ports are synchronous to iDesignClk.

SyncToDesignClk2x – memory
interface ports are synchronous to
iDesignClk2x.

4.3.6.8. Defining the Registers of the Custom Operator

Under the Registers tab, you can define the write and read registers your custom operator will provide.
Each of this registers is accessed in VisualApplets via a dedicated operator parameter. (The parameter
name is the same as the register name.)

1. Go to the Registers tab.

Extended Functionality 176

VisualApplets User Documentation Release 3

2. Under Write Registers, define the write registers you want your custom operator to have.

3. Define a specific width for each write register.

4. Under Read Registers, define the read register you want your custom operator to have.

5. Define a specific width for each read register.

The related operator parameters are immediately displayed in the left hand lower panel of the
dialog window:

6. Click Save.

4.3.7. Generation of VHDL Black Box and Test Bench

After you have entered all details as described in section Section 4.3.6, 'Defining an Individual Custom
Operator via GUI', you are ready for the actual VHDL coding. First of all, you need VisualApplets to
generate the VHDL black box and test bench.

To trigger VHDL black box and test bench generation:

1. In the Library panel of the VisualApplets program window, go to the Custom Library tab.

2. Open the custom library and select the custom operator you want to implement.

3. Right-click on the operator name, and from the sub menu, select Export -> VHDL.

Extended Functionality 177

VisualApplets User Documentation Release 3

4. Specify the folder where you want the created VHDL files to be stored.

Now, the generation starts. After successful generation, a confirmation dialog opens up. Click OK to
confirm.

You find all generated files in the folder you specified.

4.3.8. Operator Interface Ports

The generated black box provides all ports you specified via the GUI (see Section 4.3.6, 'Defining an
Individual Custom Operator via GUI').

In this chapter, you find a detailed description of how these ports look like in the generated VHDL
black box.

4.3.8.1. Clock System, Reset and Enable

VisualApplets supports two clock domains. There is a base design clock and one derived clock which
is in phase with that clock and has double frequency. Accordingly, there are two clock inputs to the
custom operator. Additionally, there is a Reset and Enable input as described above.

Port Direction Width Description
iDesignClk In 1 Base design clock

iDesignClk2x In 1 Clock sync. to iDesignClk but
double frequency

iReset In 1 Reset of operator

iEnable In 1 Enable processing

4.3.8.2. Parameter Interface

The definition of write register ports as described in section Section 4.3.6, 'Defining an Individual
Custom Operator via GUI' leads to an interface as follows where PORTID is the register name and
PORTIDWidth is the defined register width.

Extended Functionality 178

VisualApplets User Documentation Release 3

Port Direction Width Description
ivReg_PORTID_D In PORTIDWidth Register data

iReg_PORTID_Wr In 1 Signal write access

The definition of read register ports as described in Section 4.3.6.8, 'Defining the Registers of the
Custom Operator' leads to the following interface, accordingly:

Port Direction Width Description
ovReg_PORTID_D Out PORTIDWidth Register data

iReg_PORTID_Rd In 1 Signal read access

4.3.8.3. Image Communication Interfaces

For communication of data between the VisualApplets core and a custom operator, image
communication ports as described in Section 4.3.6.4, 'Defining the Image Input Ports' may be
configured. Communication is done via a simple FIFO interface and an additional format identifier port.

4.3.8.3.1. Interfaces of Type ImgIn

An ImgIn channel for transferring data from the VisualApplets core to a custom operator leads to an
interface as follows where PORTID is the name of the corresponding port type name and X is a port
number for differentiating several ports of the same kind:

Port Direction Width Description
ivPORTIDXData In PORTIDWidth Data entering the custom

operator

oPORTIDXRead Out 1 Accept input data

iPORTIDXEndOfLine In 1 Signal end of line. If this
flag is activated data
doesn’t contain pixel
values.

iPORTIDXEndOfFrame In 1 Signal end of frame. If
this flag is activated data
doesn’t contain pixel
values. This flag is only
asserted when end of line
is signaled as well.

iPORTIDXFIFOEmpty In 1 Buffer FIFO is empty

ivPORTIDXFIFOCnt In Ceil
Log2(PORTIDFIFODepth)

Number of words in buffer
FIFO. This signal can be
used to generate FIFO flags
like Almost Empty.

ivPORTIDX_FID_D In Ceil Log2(N) Predefined parameter
which notifies about the
current image data format.
N is the number of image
formats specified for this
port.

The figure below illustrates the data flow at an ImgIn port. The port name component PORTIDX has
been substituted by ImgIn. The waveform shows the input of a two dimensional frame of size 3x2.

When the ImgIn port is part of several O-synchronous input ports, all of them must consume the FIFO
data simultaneously. In that case the FIFO fill level of all ports will exactly match so the operator only
needs to implement flow control according to the fill level of one out of several O- synchronous inputs.

Extended Functionality 179

VisualApplets User Documentation Release 3

4.3.8.3.2. Interfaces of Type ImgOut

An ImgOut channel for transferring data from a custom operator to the VisualApplets core leads to
an interface as follows where PORTID is the name of the corresponding port type name and X is a
port number for differentiating several ports of the same kind:

Port Direction Width Description
ovPORTIDXData Out PORTIDWidth Output data

oPORTIDXValid Out 1 Output data valid

oPORTIDXEndOfLine Out 1 Signal current write access
as end of line notification.
Write data is then not
interpreted as pixel data.

oPORTIDXEndOfFrame Out 1 Signal current write
access as end of frame
notification. Write data is
then not interpreted as
pixel data. This flag needs
to be correlated with an
end of line strobe at the
same time.

iPORTIDXFIFOFull In 1 Buffer FIFO is full, no
further data is accepted

ivPORTIDXFIFOCnt In Ceil
Log2(PORTIDFIFODepth)

Number of words in buffer
FIFO. This signal can be
used to generate FIFO flags
like Almost Full.

ivPORTIDX_FID_D In Ceil Log2(N) Predefined parameter
which notifies about the
current image data format.
N is the number of image
formats specified for this
port.

The figure below illustrates the data flow at an ImgOut port. The waveform shows the output of a
two dimensional frame of size 3x2. When the ImgOut port is part of several O-synchronous output
ports all of them must emit data simultaneously.

Extended Functionality 180

VisualApplets User Documentation Release 3

4.3.8.4. Memory Interfaces

A custom operator may be set up for having up to four memory ports. The I/O ports of the generated
interface get a suffix X where X is the index of the memory port.

Name Direction Width Description
ovMemWrDataX Out MemDataWidthX Write data output to

memory via VisualApplets
core

ovMemWrFlagX Out MemWrFlagWidthX Write flag output

ovMemWrAddrX Out MemAddrWidthX Write address

oMemWrAddrValidX Out 1 Emit write command

oMemWrPriorityX Out 1 Request priority for this
write port

iMemWrAlmostFullX In 1 Only single further write
command may be accepted

iMemWrFullX In 1 No write command is
accepted as concerning
FIFO is full

iMemWrEmptyX In 1 FIFO for write commands is
empty

ivMemWrCntX In 4 Number of buffered write
commands

ivMemWrFlagX In MemWrFlagWidthX Write flag output from the
VisualApplets core

iMemWrFlagValidX In 1 Write flag input valid –
signals that iMemWrFlagX
is valid, which means
that write access which
had been marked
with corresponding
oMemWrFlagX has been
executed.

ovMemRdFlagX Out MemRdFlagWidthX Read flag

ovMemRdAddrX Out MemAddrWidthX Read address

oMemRdAddrValidX Out 1 Emit read command

oMemRdPriorityX Out 1 Request priority for this
read port

iMemRdAlmostFullX In 1 Only single further read
command may be accepted

iMemRdFullX In 1 No read command is
accepted as concerning
FIFO is full

iMemRdEmptyX In 1 FIFO for read commands is
empty

ivMemRdCntX In 4 Number of buffered read
commands

ivMemRdFlagX In MemRdFlagWidthX Read flag input – only valid
when iMemRdDataValidX is
asserted

ivMemRdDataX In MemDataWidthX Read data input

iMemRdDataValidX In 1 Read data valid

Extended Functionality 181

VisualApplets User Documentation Release 3

The figure above illustrates the waveform of the memory interface protocol.

4.3.8.5. General Purpose I/O pins

Any GPIO input or output signal which has been defined in the interface description of the custom
operator (section Section 4.3.6, 'Defining an Individual Custom Operator via GUI') has a corresponding
input or output port in the resulting operator interface. The following ports will be created when the
general purpose pins are declared:

• iSig_NAME for a GPIO input signal called NAME.

• oSig_NAME for a GPIO output signal called NAME.

4.3.9. VHDL Simulation and Verification

For emulating a VisualApplets design which contains a custom operator module, VisualApplets creates
a simulation test bench for the interfaces connecting to the custom operator.

Each interface port is emulated independently, driven by File I/O. The simulation entity shall consist
of following elements:

• Emulation of register access. According to a stimuli file a set of registers can be written and read.

• Emulator for frame source connected to ports of type ImgIn. Stimulated by file these kinds of
modules output frame data to ImgIn.

• Emulator for frame sink connected to ports of type ImgOut. This kind of module emulates an
operator which is connected to ImgOut. The module writes the received data to file.

• Memory port emulator.

Extended Functionality 182

VisualApplets User Documentation Release 3

• GPIO emulator. Each GPIO signal for input is driven by a signal generator which is configured by a
file. Each GPIO signal output is monitored and changes of the signal are written to a report file.

4.3.9.1. Simulation Framework

For RTL level simulation, VisualApplets creates a VHDL file containing a package with the name
CustomOperator_<OPERATORNAME> where <OPERATORNAME> is the given operator name.

This package contains the components <OPERATORNAME> and <OPERATORNAME>_TB where the
latter is a test bench of the interface between the VisualApplets design and the custom operator. The
following shows the resulting code for a simple custom operator called RegExample consisting only of
a read and write register port (Ctrl and Status), each 4 bit wide:

component
RegExample port(
 iDesignClk: in std_logic := '0';
 iDesignClk2x: in std_logic := '0';
 iReset: in std_logic := '0';
 iEnable: in std_logic := '0';
 ivReg_Ctrl_D: in std_logic_vector(3 downto 0);
 iReg_Ctrl_Wr: in std_logic;
 ovReg_Status_D: out std_logic_vector(3 downto 0);
 iReg_Status_Rd: in std_logic
);
end component;

component
RegExample_TB generic(
 DesignClkPeriod: time := 16 ns;
 Register_StimuliFileName: string := ""
);
end component;

The test bench creates an instance of the custom operator and connects protocol emulation modules
to each interface ports. The following sections describe the different kinds of emulators, how they may
be controlled via stimuli files, and how output files are generated.

4.3.9.2. Emulation of Register Interface

The generated test bench implements an emulator for a register access interface. The emulator
is configured for addressing a design with a single process. Addresses of write and read registers
start from 0x4 where addresses for registers are counted up with an increment of 1 according
to the sequence of the register interface ports in the given custom operator component (like
the above example component RegExample). Register addresses for reading and writing are
counted independently. The emulator is driven by a text file which is set by the entity parameter
Register_StimuliFileName as provided in the above VHDL code.

The following commands may be present in the stimuli file:

Command Description
REM Rest of line is comment

GRS Emulate global reset

PRS Emulate process reset. This command has the following syntax: PRS <procNr>
where the parameter <procNr> must always be 0.

PEN Enable process. The syntax is as follows: PEN <procNr> <value> with
<procNr> being always 0 and <value> signaling the enable state.

WCK Wait for a number of clock cycles. The syntax is as follows, WCK <clock_ticks>
with <clock_ticks> giving the number of clock ticks in hexadecimal format

WRR Write to register: WRR <wrRegAddr> <value> With the parameters:
<wrRegAddr>: address of register (hex) <value>: hexadecimal register value

Extended Functionality 183

VisualApplets User Documentation Release 3

Command Description
RDR Read from register: RDR <rdRegAddr> with <wrRegAddr> being the register

address (hex).

After the last parameter of any command, a comment may be added preceded by “#”.

The following code is an example stimuli file which accesses the registers according to the above given
test bench RegExample_TB:

REM **
REM Command formats:
REM GRS -> Global reset
REM GEN <value> -> Set global enable to <value>
REM PRS <procID> -> Reset process <procID> (0 .. F) REM PEN <procID> <value>
 -> Set enable of process <procID> to
<value>
REM WCK <clk_ticks> -> Wait for <clk_ticks> clock cycles REM WRR <wrRegAddr> <value>
 -> Write <value> to register <wrRegAddr> REM RDR <rdRegAddr> -> Read from register <rdRegAddr>
REM **

WCK 0004 # wait for 4 clock cycles
GRS # global reset
GEN 1 # set global enable
WCK 0001 # wait for 1 clock tick
PRS 0 # reset process 0
PEN 0 1 # set enable of process 0
WCK 0002 # wait for 2 clock ticks
WRR 0004 0000000A # write 0xA to address 0x4
WCK 0002 # wait for 2 clock ticks
RDR 0004 # read from address 0x4
WCK FFFF

4.3.9.3. Emulation of ImgIn Interface

The emulation of image communication interfaces of type ImgIn is driven by a stimuli file providing
information about the sequence of data which enters the custom operator. For any present ImgIn
port the test bench has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is the name
of the corresponding image input port type followed by the port number. Each line within the given
file must follow the syntax:

 <Command> <Data> <EndOfLine> <EndOfFrame> <DataValid>

where <Command> is a three letter command, <Data> provides an hexadecimal data word, and the
three remaining parameters correspond to the image protocol flags.

The following table describes the available commands:

Command Description
DAT Data command. This command provides data which will become input at the

port ivPORTIDXData and the associated image protocol flag ports.

WCK Wait command. The parameter <Data> provides the number of clock ticks for
which the command interpreter pauses.

FID Set FID input. The parameter <Data> provides the value to which the port
ivPORTIDX_FID_D will be set.

To any command line a comment may be added, preceded by “#”.

The following code is an example stimuli file which causes the input of an 3x2-image:

FID 00000001 0 0 0 #Format: Cmd Data(hex) EndOfLine EndOfFrame DataValid
DAT 00000000 0 0 0
DAT 0000001a 0 0 1
DAT 0000001b 0 0 1

Extended Functionality 184

VisualApplets User Documentation Release 3

DAT 0000001c 0 0 1
DAT 00000000 1 0 1
WCK 00000004 0 0 0
DAT 0000002a 0 0 1
DAT 0000002b 0 0 1

DAT 0000002c 0 0 1
DAT 00000000 1 1 1
WCK 0000FFFF 0 0 0

4.3.9.4. Emulation of ImgOut Interface

The emulation of image communication interfaces of type ImgOut is driven by a stimuli file
where information is provided about the sequence of FID states. For any present ImgOut port the
VA_Design_Emulator entity has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is the
name of the corresponding image output port type followed by the port number. The syntax is exactly
the same as in the case of the stimuli for ImgIn interfaces except that no DAT command is available.
A simple stimuli file may look like:

WCK 00000010 0 0 0 #Format: Command Data(hex)
FID 00000001 0 0 0
WCK 0000FFFF 0 0 0

The parameters <EndOfLine>,<EndOfFrame> and <DataValid> are actually meaningless.

The ImgOut interface emulator present in the generated test bench writes the received data to file.
For that purpose the test bench entity has a generic <PORTIDX>_DumpFileName. During simulation
a file with the given name is created and the data is written using DAT and WCK commands in a format,
which exactly corresponds to the stimuli file format for an ImgIn interface emulator.

4.3.9.5. Emulation of Memory Communication

When the custom operator implements an interface to memory the test bench connects a memory
emulation module to the corresponding interface ports. The custom operator may not rely on a certain
timing of the memory interface (like time until read data is returned) as this is fully controlled by
VisualApplets and may vary between platforms and even between different designs.

4.3.9.6. GPIO Emulation

The emulation of dedicated input signals is done for each signal independently, driven by a stimuli file.
There information is provided about the sequence of signal states. The stimuli file may consist of a
number of commands which are described below. For any present output signal port the test bench
entity has a generic iSig_<NAME>_StimuliFileName where <NAME> is the concerning port name.

The following table describes the available commands:

Command Description
SET Set signal. This command provides the signal state to which the output at the

port iSig_NAME will be set. The next command will be executed one clock tick
later. It has the syntax: SET <value> where <value> may be 0 or 1.

WCK Wait command. It has the syntax: WCK <ticks> where the parameter <ticks>
provides the number of clock ticks for which the signal will be held constant.

RST Restart from begin. The command interpreter will start again from the first
line of the stimuli file. This command does not have any parameters. The
command will execute the first command of the file at the same clock tick
allowing assembling a loop without a gap.

STP Stop at current state. The command interpreter will stop and the current signal
state will be held constant until end of simulation. This command does not have
any parameters.

Extended Functionality 185

VisualApplets User Documentation Release 3

To any command line a comment may be added, preceded by “#”.

The following code is an example stimuli file which causes the custom operator input signal toggling
being low for 5 clock cycles and high for 7 clock cycles (synchronous to iDesignClk):

SET 0 # deassert output
WCK 0004 # wait for 4 clock cycles
SET 1 # assert output
WCK 0006 # wait for 6 clock cycles
RST # restart from begin

Dedicated output signals are monitored writing a dump file oSig_<NAME>_DumpFileName where

<NAME> is the concerning port name. The file is composed of SET and WCK commands exactly
corresponding to the commands of the stimuli file for an dedicated input signal.

4.3.10. Defining the Custom Operator’s Software Interface

The high-level simulation component must be provided for fully integrating a custom operator to
VisualApplets. The high-level simulation component needs to be compiled to a dynamic link library
with a predefined set of exported C-Functions. You add this file to the operator specification under tab
General -> Simulation Library:

For High-level simulation within VisualApplets the following function must be exported,

int SimulateOPNAME (va_custom_op_sim_handle simHandle)

where OPNAME is the name of the custom operator.

High-level simulation must be done according to following requirements:

Extended Functionality 186

VisualApplets User Documentation Release 3

• Frame based simulation - On each image input port it can be queried whether one or more frames
are available. If all ports which are required for starting simulation are able to provide a frame then
the concerning output frames need to be computed and emitted via calls of appropriate functions.
For one dimensional image data the data stream is automatically split into frames and simulated
just like 2D-data.

• Bit accurate simulation – The calculation of resulting frames must be bit accurate, i.e. the output
data must be exactly equal to the data generated by the hardware implementation.

• Keeping consistency of flow – When operator input ports are synchronous to each other input
images must be fetched accordingly. When several outputs are defined images must be output
simultaneously. For the simulation function this means that when a frame is output to one output
link it must also output a frame to all other output links before the simulation function is returning.

As the behavior of the operator typically depends on the set of operator parameters these parameters
may be queried via the following interface:

Nr. Function Description
1 vaSi_CustomOp_GetParamValue() Get value of operator parameter.

Several functions are provided by VisualApplets for getting, generating and storing image data for the
custom operator:

Nr. Function Description
1 vaSi_CustomOp_GetInputImage() Get image available at an ImgIn port.

2 vaSi_CustomOp_PutOutputImage() Output image to ImgOut port.

3 vaSi_CustomOp_InputHasImage() Query whether ImgIn port may deliver an
image.

4 vaSi_CustomOp_OutputReady() Query whether ImgOut port may take an
image.

5 vaSi_CustomOp_CreateImage() Create new image.

6 vaSi_CustomOp_DeleteImage() Delete image.

7 vaSi_CustomOp_StoreImage() Store image in local storage of operator
instance providing a name whereby the image
may later be referenced.

8 vaSi_CustomOp_GetStoredImagesCount() Query number of images stored within
operator instance.

9 vaSi_CustomOp_GetStoredImage() Get stored image by index.

10 vaSi_CustomOp_GetNameOfStoredImage() Get name of stored image by index.

11 vaSi_CustomOp_GetStoredImageByName() Get stored image by name.

12 vaSi_CustomOp_CreateImageFormat() Create new image format handle which
becomes initialized by the format associated
with the given port.

13 vaSi_CustomOp_CopyImageFormat() Create new image format which is a copy of
given format.

14 vaSi_CustomOp_DeleteImageFormat() Delete image format handle created earlier.

For manipulating images via image handles the following functions are available:

Nr. Function Description
1 vaSi_Image_GetFormat() Get image format.

2 vaSi_Image_SetProperty() Set property of frame (e.g. height).

3 vaSi_Image_GetProperty() Get property of frame.

4 vaSi_Image_SetPixelValue() Set pixel component value

5 vaSi_Image_GetPixelValue() Get pixel component value

Extended Functionality 187

VisualApplets User Documentation Release 3

Nr. Function Description
6 vaSi_Image_SetLineLength () Set individual length of a line.

7 vaSi_Image_GetLineLength () Get length of individual line.

Image formats may be manipulated via the following functions:

Nr. Function Description
1 vaSi_ImageFormat_SetProperty() Set image format property (e.g. maximum

width).

2 vaSi_ImageFormat_GetProperty() Get image format property.

The simulation function may inject an status message (i.e., error message) into the VisualApplets
simulation system using the following functions:

Nr. Function Description
1 vaSi_CreateStatusMessage() Create status message.

2 vaSi_SetStatusMessageProperty() Set property of status message (like
severity).

3 vaSi_SendStatusMessage() Submit the status message to the simulation
engine.

4.3.11. Communicating Data
For querying information and configuring parameters data must be exchanged through the software
interface. To keep the interface functions simple but providing a type save interface an abstraction
mechanism for data is implemented. Whenever data of different types needs to be communicated, a
data structure called va_data is used, containing a reference to the data and information about the
underlying data type. This data structure is created by the user but configured by dedicated functions
listed below. The following table shows the data types which are handled by this method:

Data Type Description
VA_ENUM enum entry given as 32-Bit integer

VA_INT32 32-Bit signed integer

VA_UINT32 32-Bit unsigned integer

VA_INT64 64-Bit signed integer

VA_UINT64 64-Bit unsigned integer

VA_DOUBLE Floating-point number, double precision

VA_INT32_ARRAY Array of 32-Bit signed integer numbers

VA_UINT32_ARRAY Array of 32-Bit unsigned integer numbers

VA_INT64_ARRAY Array of 64-Bit signed integer numbers

VA_UINT64_ARRAY Array of 64-Bit unsigned integer numbers

VA_DOUBLE_ARRAY Array of double numbers

VA_STRING String given as const char*

Configuring an earlier created va_data structure (vaData) for setting up data communication is done
via the following functions:

va_data* va_data_enum(va_data* vaData, int32_t *data)
va_data* va_data_int32(va_data* vaData, int32_t *data)
va_data* va_data_uint32(va_data* vaData, uint32_t *data)
va_data* va_data_int64(va_data* vaData, int64_t *data)
va_data* va_data_uint64(va_data* vaData, uint64_t *data)
va_data* va_data_double(va_data* vaData, double *data)
va_data* va_data_int32_array(va_data* vaData, int32_t *data, size_t elementCount)
va_data* va_data_uint32_array (va_data* vaData, uint32_t *data, size_t elementCount)
va_data* va_data_int64_array (va_data* vaData, int64_t *data, size_t elementCount)

Extended Functionality 188

VisualApplets User Documentation Release 3

va_data* va_data_uint64_array (va_data* vaData, uint64_t *data, size_t elementCount)
va_data* va_data_double_array (va_data* vaData, double *data, size_t elementCount)
va_data* va_data_string(va_data* vaData, char data*, size_t strSize)
va_data* va_data_const_string(va_data* vaData, const char **data)

For strings there are two options how strings are communicated:

1. Providing a char array via va_data_string(). Then queried string data will be copied to that array.

2. Providing a pointer to const char*. Then a pointer to an internal string representation is returned
when information of type VA_STRING is queried. When you use this approach check the livetime
of the returned string.

Example Code: The following example shows code for querying the image width.

uint32_t imgWidth;
va_data
va_imgWidth;
va_data_double(&va_imgWidth,&imgWidth);

vaSi_Image_GetProperty(imageHandle, "Width", &va_imgWidth);

After that the variable imgWidth will contain the requested information.

4.3.12. Detailed Description of Interface Functions

The following gives a detailed description of parameters and returned values for the specified simulation
interface functions.

Function vaSi_CustomOp_GetParamValue
Syntax int vaSi_CustomOp_GetParamValue (va_custom_op_sim_handle

simHandle, const char* paramName, va_data *value)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of parameter.

Parameter 3 Return parameter for queried value.

Description Returns the value of the parameter with the given name.

Return value 0 : Value is queried data

<0: Cannot query parameter

Function vaSi_CustomOp_GetInputImage
Syntax int vaSi_CustomOp_GetInputImage (va_custom_op_sim_handle

simHandle, const char* portName, va_image_handle *image)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Return parameter for image handle.

Description Take an image which enters the operator at the given port
and return a handle referencing that image. Before returning
from the simulation function this image must either be stored
by calling vaSi_CustomOp_StoreImage() or deleted by calling
vaSi_CustomOp_DeleteImage().

Return value 0: OK

<0 : Cannot get image

Function vaSi_CustomOp_PutOutputImage
Syntax int vaSi_CustomOp_PutOutputImage (va_custom_op_sim_handle

simHandle, const char* portName, va_image_handle imageHandle)

Extended Functionality 189

VisualApplets User Documentation Release 3

Function vaSi_CustomOp_PutOutputImage
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Image handle.

Description Outputs image to the given port.

Return value 0 : Operation has been completed successfully

<0: Cannot output image

Function vaSi_CustomOp_InputHasImage
Syntax bool vaSi_CustomOp_InputHasImage (va_custom_op_sim_handle

simHandle, const char* portName)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator input port.

Description Returns whether there is an input image available at the port with the
given name.

Return value true : Image is available

false : No image available

Function vaSi_CustomOp_OutputReady
Syntax bool vaSi_CustomOp_OutputReady (va_custom_op_sim_handle

simHandle, const char* portName)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator output port.

Description Returns whether the output port with the given name may take an image.

Return value true : Output ready for next image

false : Output not ready for taking image

Function vaSi_CustomOp_CreateImage
Syntax int vaSi_CustomOp_CreateImage (va_custom_op_sim_handle

simHandle, va_image_format_handle format, va_image_handle *
newImage)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Image format of the new image.

Parameter 3 Return parameter for image handle.

Description Creates a blank image based on the format given by parameter 2.
Before returning from the simulation function this image must either be
stored by calling vaSi_CustomOp_StoreImage() or deleted by calling
vaSi_CustomOp_DeleteImage().

Return value 0 : OK

<0 : Could not create image

Function vaSi_CustomOp_DeleteImage
Syntax int vaSi_CustomOp_DeleteImage (va_custom_op_sim_handle

simHandle, va_image_handle imageHandle)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Handle of image which shall be deleted.

Description Deletes image referenced by given image handle.

Return value 0 : Operation has been completed successfully

Extended Functionality 190

VisualApplets User Documentation Release 3

Function vaSi_CustomOp_DeleteImage
<0: Error during deleting image

Function vaSi_CustomOp_StoreImage
Syntax int vaSi_CustomOp_StoreImage (va_custom_op_sim_handle

simHandle, va_image_handle imageHandle, const char* storeName)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Image handle.

Parameter 3 Name as which the image shall be stored. The image may later be queried
by this name.

Description Stores image in local storage of the operator simulation instance.

Return value 0 : Operation has been completed successfully

VA_SIM_CANNOT_STORE_IMAGE: Cannot create storage for image

VA_SIM_STORE_NAME_ALREADY_USED: Name “storeName” is already in use
for currently stored image

Function vaSi_CustomOp_GetStoredImagesCount
Syntax int vaSi_CustomOp_GetStoredImagesCount

(va_custom_op_sim_handle simHandle, unsigned int *count)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Return parameter for image count.

Description Returns the number of images which are stored within the operator
simulation instance.

Return value 0: OK

<0: Can’t query information.

Function vaSi_CustomOp_GetStoredImage
Syntax int vaSi_CustomOp_GetStoredImage (va_custom_op_sim_handle

simHandle, unsigned int index, va_image_handle *retImage)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Index within the array of stored images.

Parameter 3 Return parameter for image handle.

Description Get image which has been stored before. The image is removed from the
image storage. Before returning from the simulation function this image
must either be stored again by calling vaSi_CustomOp_StoreImage() or
deleted by calling vaSi_CustomOp_DeleteImage().

Return value 0 : OK

<0 : Could not get image

Function vaSi_CustomOp_GetNameOfStoredImage
Syntax const char* vaSi_CustomOp_GetNameOfStoredImage

(va_custom_op_sim_handle simHandle, unsigned int index)
Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Index within the array of stored images.

Description Returns a string of the image name.

Return value Not NULL : Value is image name string

NULL : Could not query name

Extended Functionality 191

VisualApplets User Documentation Release 3

Function vaSi_CustomOp_GetStoredImageByName
Syntax int vaSi_CustomOp_GetStoredImageByName

(va_custom_op_sim_handle simHandle, const char* storeName,
va_image_handle *retImage)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name under which the image has been stored.

Parameter 3 Return parameter for image handle.

Description Get image which has been stored before with the given storage name.
The image is removed from the image storage. Before returning
from the simulation function this image must either be stored again
by calling vaSi_CustomOp_StoreImage() or deleted by calling
vaSi_CustomOp_DeleteImage().

Return value 0 : OK

<0 : Could not get image

Function vaSi_CustomOp_CreateImageFormat
Syntax int vaSi_CustomOp_CreateImageFormat (va_custom_op_sim_handle

simHandle, const char* portName, va_image_format_handle*
createdFormat)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Return pointer for format handle.

Description Creates a new image format object and returns a corresponding handle.
The format is initialized by the format of the port with the given name.
Before returning from the simulation function the format must become
deleted by calling vaSi_CustomOp_DeleteImageFormat().

Return value 0 : OK

<0 : Could not create format

Function vaSi_CustomOp_CopyImageFormat
Syntax int vaSi_CustomOp_CopyImageFormat (va_custom_op_sim_handle

simHandle, va_image_format_handle formatHandle,
va_image_format_handle *createdFormat)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Handle of format which is being copied.

Parameter 3 Return parameter for format handle.

Description Creates a new image format object and returns a corresponding handle.
The format is initialized by the provided format. Before returning from
the simulation function the format must become deleted by calling
vaSi_CustomOp_DeleteImageFormat().

Return value Not NULL : Value is format handle

NULL : Could not create format

Function vaSi_CustomOp_DeleteImageFormat
Syntax int vaSi_CustomOp_DeleteImageFormat (va_custom_op_sim_handle

simHandle, va_image_format_handle formatHandle)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Handle of format which is being deleted.

Description Deletes the image format object referenced by the given format handle.

Return value 0: OK

Extended Functionality 192

VisualApplets User Documentation Release 3

Function vaSi_CustomOp_DeleteImageFormat
<0 : Could not delete format

Function vaSi_Image_GetFormat
Syntax int vaSi_Image_GetFormat (va_image_handle imageHandle,

va_image_format_handle formatHandle)
Parameter 1 Image handle.

Parameter 2 Handle of earlier created format which will be set to format of image.

Description Queries the format of the image referenced by the image handle.

Return value 0 : Operation has been completed successfully

<0: Cannot query format

Function vaSi_Image_SetProperty
Syntax int vaSi_Image_SetProperty (va_image_handle imageHandle, const

char* propType, const va_data* propData)
Parameter 1 Image handle.

Parameter 2 String identifying the property which shall be set.

Parameter 3 Pointer to data structure which will be used for setting the new property.

Description Set property of the image referenced by the image handle. Following
properties may be set via this function:

ImgWidth: Set image width (propData has type VA_UINT32)

ImgHeight: Set image height (propData has type VA_UINT32)

Return value 0 : Property has been set successfully

VA_SIM_INVALID_PARAMETER: Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

VA_SIM_INVALID_VALUE: Property data has invalid value

Function vaSi_Image_GetProperty
Syntax int vaSi_Image_GetProperty (va_image_handle imageHandle, const

char* propType, va_data* propData)
Parameter 1 Image handle.

Parameter 2 Enum value identifying the property which shall be queried.

Parameter 3 Pointer to data structure which will be used for data communication.

Description Queries the properties of the image referenced by the image handle.
Following properties are available:

ImgWidth: Get image width (propData has type VA_UINT32)

ImgHeight: Get image height (propData has type VA_UINT32)

Return value 0 : Property has been queried successfully

VA_SIM_INVALID_PARAMETER: Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

VA_SIM_INVALID_VALUE: Property data has invalid value

Function vaSi_Image_SetLineLength
Syntax int vaSi_Image_SetLineLength (va_image_handle imageHandle,

unsigned int line, unsigned int length)

Extended Functionality 193

VisualApplets User Documentation Release 3

Function vaSi_Image_SetLineLength
Parameter 1 Image handle.

Parameter 2 Line number.

Parameter 3 Line length.

Description Sets the length of the referenced line to an individual value which may
differ to the overall image width (not exceeding the maximum image
width defined by the image format).

Return value 0 : Operation has been completed successfully

<0: Cannot set line length to the given value

Function vaSi_Image_GetLineLength
Syntax int vaSi_Image_GetLineLength (va_image_handle imageHandle,

unsigned int line, unsigned int *length)
Parameter 1 Image handle.

Parameter 2 Line number.

Parameter 3 Return parameter for line length.

Description Returns the length of the referenced line.

Return value 0: OK

<0: Cannot query line length

Function vaSi_Image_SetPixelValue
Syntax int vaSi_Image_SetPixelValue (va_image_handle imageHandle,

uint64_t imagePos, unsigned int compIndex, int64_t value)
Parameter 1 Image handle.

Parameter 2 Position within the frame.

Parameter 3 Component index.

Parameter 4 Pixel component value.

Description Sets the corresponding pixel component to the given value.

Return value 0 : Operation has been completed successfully

<0: Error setting the pixel component value

Function vaSi_Image_GetPixelValue
Syntax int vaSi_Image_GetPixelValue (va_image_handle imageHandle,

uint64_t imagePos, unsigned int compIndex, int64_t *value)
Parameter 1 Image handle.

Parameter 2 Position within the frame.

Parameter 3 Component index.

Parameter 4 Return parameter for pixel component value

Description Returns the corresponding pixel component value.

Return value 0 : Operation has been completed successfully

<0: Error getting the pixel component value

Function vaSi_ImageFormat_SetProperty
Syntax int vaSi_ImageFormat_SetProperty (va_image_format_handle

formatHandle, const char* propType, const va_data* propData)
Parameter 1 Image format handle.

Extended Functionality 194

VisualApplets User Documentation Release 3

Function vaSi_ImageFormat_SetProperty
Parameter 2 Enum value identifying the property which shall be set.

Parameter 3 Pointer to data structure which holds the new property.

Description Sets properties of the image format referenced by the handle. Following
properties may be set via this function:

Protocol: Set image protocol where *propData has the type VA_ENUM and
is set to one of the following values:

• VALT_IMAGE2D

• VALT_LINE1D

ColorFormat: Set image protocol where *propData has the type VA_ENUM
and is set to one of the following values:

• VAF_GRAY

• VAF_COLOR

ColorFlavor: Set image protocol where *propData has the type VA_ENUM
and is set to one of the following values:

• FL_NONE

• FL_HSI

• FL_YUV

• FL_LAB

• FL_RGB

• FL_XYZ

Parallelism: Set parallelism (type VA_INT32)

ComponentCount: Set number of pixel components (type VA_INT32)

ComponentWidth: Set pixel component width (type VA_INT32)

Arithmetic: Set pixel component arithmetic where *propData has the
type VA_ENUM and is set to one of the following values:

• UNSIGNED

• SIGNED

MaxImgHeight: Set max. image height (type VA_INT32)

MaxImgWidth: Set max. image width (type VA_INT32)

Return value 0 : Property has been set successfully

VA_SIM_INVALID_PARAMETER: Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

VA_SIM_INVALID_VALUE: Property data has invalid value

Function vaSi_ImageFormat_GetProperty
Syntax int vaSi_ImageFormat_GetProperty (va_image_format_handle

formatHandle, VAImageFormatProperty propType, va_data*
propData)

Extended Functionality 195

VisualApplets User Documentation Release 3

Function vaSi_ImageFormat_GetProperty
Parameter 1 Image format handle.

Parameter 2 Enum value identifying the property which shall be queried.

Parameter 3 Pointer to data structure which will be overwritten by the queried property.

Description Queries properties of the image format referenced by the handle. The
properties which may be queried are identical to the ones which can be
set through the function vaSi_ImageFormat_SetProperty().

Return value 0 : Property has been queried successfully

VA_SIM_INVALID_PARAMETER: Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

Function vaSi_CreateStatusMessage
Syntax int vaSi_CreateStatusMessage (va_custom_op_sim_handle

simHandle, va_status_handle *newMessage)
Parameter 1 Simulation handle.

Parameter 2 Return parameter for created error message.

Description Create a status message which may be submitted to the simulation
engine.

Return value 0 : OK

<0: Can’t create message

Function vaSi_SetStatusMessageProperty
Syntax int vaSi_SetStatusMessageProperty (va_custom_op_sim_handle

simHandle, va_status_handle message, const char* propName,
const va_data* propValue)

Parameter 1 Simulation handle.

Parameter 2 Status message handle.

Parameter 3 Name of property which shall be set.

Parameter 4 New property value

Description Alter status message property. Following properties may be set via this
function:

Code: Set error code (type VA_INT32)

Severity: Set severity level where the data (type VA_ENUM) must be one
of the following values:

• VA_INFO

• VA_WARNING

• VA_ERROR

Description: Set string description of status (type VA_STRING)

Function vaSi_SendStatusMessage
Syntax int vaSi_SendStatusMessage (va_custom_op_sim_handle simHandle,

va_status_handle message)
Parameter 1 Simulation handle.

Parameter 2 Handle of status message which shall be submitted.

Description Submitted status message to the simulation engine.

Extended Functionality 196

VisualApplets User Documentation Release 3

Function vaSi_SendStatusMessage
Return value 0 : OK

<0: Can’t submit message

4.3.13. Creating Custom Operator Documentation

Documentation of the operator should be provided as an HTML file. When available, all files which
make up the documentation need to be specified under tab General -> HTML Help Files:

The first file that is specified is interpreted to be the starting point of the operator’s documentation.
The naming convention for this file is: <NameOfCustomOperator>.htm.

Make sure you provide a CSS file. Make sure you also provide all related image files.

You can use the operator template provided in the VisualApplets install directory in subdirectory
Examples/CustomLibrary/OperatorTemplate.

4.3.14. Completing the Custom Operator

When you have wrapped your HDL code so that its interface matches the generated black box, you
need to proceed some last steps for completing your custom operator:

1. Create a netlist out of your implementation.

Set Add IO Buffer = NO

When creating the netlist, make sure that your synthesis tool doesn’t automatically
add IO buffers. In case you use XST for netlist synthesis you set

Extended Functionality 197

VisualApplets User Documentation Release 3

Add IO Buffer = NO

Otherwise, the resulting NGC file will cause errors during the VisualApplets build flow.

Warnings During Netlist Generation

When generating the net list, warnings may be output concerning unused IO Ports
of the custom operator interface. Unused IO Ports are all ports that were generated
according to your operator definition, but are not connected with your IP core. You
may ignore these warnings.

Examples of this behavior are all custom operator examples you find in the Examples
directory of your VisualApplets installation:

\Examples\CustomLibrary

2. If required, also define a constraints file (*.ucf format if you use Xilinx ISE, *.xdc format if you
use Xilinx Vivado).

3. Optionally, set up the operator’s software interface as described in section Section 4.3.10, 'Defining
the Custom Operator’s Software Interface'.

4. Optionally, create the operator documentation as described in section Section 4.3.13, 'Creating
Custom Operator Documentation'.

Now, you need to complete the operator definition in VisualApplets. To do so, proceed as follows.

Required steps:

1. Go to the Cores tab.

2. Specify the netlist file you generated.

Extended Functionality 198

VisualApplets User Documentation Release 3

3. Specify the constraints file if you defined constraints.

4. Specify the supported devices: The device name is the name of the FPGA type of the target
platform. Please use exactly the same spelling as provided in the project info box of VisualApplets.
If several FPGA types are supported, use a space separated list of names.

If a design uses the custom operator, but the FPGA on the target platform is not in this list, the
DRC will report an error that the operator is not supported by the target platform.

5. Specify the supported Xilinx Tool(s). You can check the boxes for both ISE and Vivado. Netlists
generated with ISE are usually also compatible with the Vivado build flow but you should check
whether this is the case for your operator implementation. You need to define the minimal version
number of the tool which supports the given netlist. Typically this would be the version which you
used for creating the net list.

If a design uses the custom operator, but the specified tools are not used for building the design,
the DRC will report an error that the operator is not supported by the target platform.

Defining Multiple Cores

You can define multiple cores for the same custom operator. This will allow to use
device and tool specific implementations of the custom operator so for different target
platforms the appropriate implementation is chosen for building an applet.

Optional steps:

6. Optionally, enter the consumption of logic resources by the operator. Simply enter the values
estimated by the Xilinx tools during generation of netlist.

7. Under the General tab, specify the path to your simulation library (the custom operator’s software
interface).

8. Under the General tab, specify the path to the icon file. This is the file that contains the icon that
will be used when your custom operator is displayed in VisualApplets.

9. Under the General tab, specify all files that make up your custom operator documentation. Make
sure you also provide a CSS file and all related image files.

10. If you want to protect your operator design: In the left bottom corner, activate the option
Protected. In the dialog that opens:

a. Make sure protection mode Password is activated.

b. Enter your password.

c. Click OK.

Extended Functionality 199

VisualApplets User Documentation Release 3

You can always protect your custom operator design also at a later point of time, using the context
menu of the custom library element.

Protecting Options

After protection has been enabled, the custom operator is made a “black box”. There
are two ways to protect a custom operator design:

• Protection via password: The custom operator design can afterwards be opened
and edited via password. Users that do not have the password will not be able to
see any details of the custom operator (black box).

• Irreversible protection: If you select protection mode One-Way, the custom
operator is made a black box forever and cannot be re-opened, not even by
yourself.

"One-Way" protection is irreversible: If you select protection mode One Way
(instead of Password), the custom library element can never be re-opened, not even
by yourself. If you plan to enhance the element at a later point of time, make sure
you select protection mode Password instead. Alternatively, you can save a copy
of the element (as a hierarchical box or a non-protected operator) before enabling
this protection mode.

11. Click Save.

Now, your new custom operator is ready for being used in designs.

4.3.15. Using New Custom Operators

4.3.15.1. Distributing the Custom Library or the Individual Custom
Operator

A custom library with all contained operators is stored as one single <LibaryName>.val or
<LibaryName>.vl file.

<LibaryName> is the name of the custom library.

This file can be distributed and directly applied in VisualApplets. It simply needs to be copied into
the Custom Library directory which is specified in the VisualApplets settings (Settings -> System
Settings -> Paths -> Custom Libraries

Extended Functionality 200

VisualApplets User Documentation Release 3

1. Copy the new <LibaryName>.val or <LibaryName>.vl file to the Custom Library directory of
your VisualApplets installation.

2. Re-scan the custom library in the VisualApplets GUI: Right-click on the library name and from the
sub menu select Rescan Custom Library Directory.

Extended Functionality 201

VisualApplets User Documentation Release 3

In the VisualApplets examples directory, you find a ready-to-use library called CustomLibrary.vl

which contains all example operators.

4.3.15.2. Update from Custom Library

When you make changes to a custom operator, these changes are not reflected in the designs where
you already use the custom operator. Therefore, you need to update the custom operator instances
in the designs.

1. Right-click on the operator.

2. From the sub-menu, select Update from Custom Library or Quick Update from Custom
Library.

The update mechanism for Custom Libraries is exactly the same as for User Libraries.

Extended Functionality 202

VisualApplets User Documentation Release 3

4.3.15.3. Importing and Exporting Individual Custom Operators

You can import and export individual custom operators by importing/exporting the XML definition of
the operator.

To import a custom operator:

1. Right-click on the custom library where you want to import the custom operator to.

2. From the sub-menu, select Import Operator -> From XML.

3. Specify the path to the custom operator’s XML definition and click Open.

Immediately, the Edit Custom Operator dialog opens:

Extended Functionality 203

VisualApplets User Documentation Release 3

4. Click Save.

After saving, the imported operator is directly available in the custom library:

4.3.16. Operator Template and Examples

4.3.16.1. Examples

In the install directory, you find three completed custom operators which you can use as reference.
You find the examples here:

\Examples\CustomLibrary

Extended Functionality 204

VisualApplets User Documentation Release 3

4.3.16.2. Custom Operator Template

In the install directory, you find a custom operator template which you can use for defining your custom
operators.

\Examples\CustomLibrary To use the custom operator template:

1. Right-click on the custom library where you want to create the new custom operator in.

2. From the sub-menu, select Import Operator -> From XML.

3. Specify the path to the operator template.

4. Click Open.

Immediately, the Edit Custom Operator dialog opens:

Extended Functionality 205

VisualApplets User Documentation Release 3

5. Give a name to your new custom operator and proceed as described in section Section 4.3.6,
'Defining an Individual Custom Operator via GUI'.

4.3.17. XML Format for Custom Operator Specification

The definition of a custom operator is stored in XML format. A concerning XML file can be exported
from the operator library or an operator can be imported using an earlier exported XML file.

In the following, we describe the required parameters where the parameter name is related to an XML
tag with the same name. A parameter like ImgInInfo will translate to an XML entry like:

<ImgInInfo> ImgInPortNames </ImgInInfo> where ImgInPortNames is the value which in this case
would be a sequence of port names. The parameters are hierarchically ordered. In the following tables,
lines with gray background will notify the hierarchy position where the parameters are expected.

Simple parameter values can be of following types:

• Choice: the allowed values are YES or NO

• String: an ASCII string without whitespace

• Integer

• Floating-point

Some parameters are composed as a structure of values where arrays or records are possible elements
for structuring. Arrays are entered by a list of values separated by white space where the values
themselves may be structured. Records are entered by a scheme like follows where RecordName is the
record identifier, attrX are the identifiers for the record entries and attrXValue are the values:

<RecordName attr1=”attr1Value” .. attrN=”attrNValue”/>

An example would be providing a record called port with entries for name and width:

Extended Functionality 206

VisualApplets User Documentation Release 3

<port name=”flag” width=”4”/>

The root tag of the XML format is Operator with an attribute name where the custom operator name
should be provided:

<Operator name=”XYZ”>
…
</Operator>

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL
naming conventions.

VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar
object consists of a letter followed by any number of letters or numbers, without space.
A valid name is also called a named identifier. VHDL is not case sensitive. However,
an underscore may be used within a name, but may not begin or end the name. Two
consecutive underscores are not permitted.”

Parameter Name Type Description
Vendor String Name of Vendor.

Version String Version number of the operator. The value can
be freely chosen and is intended for version
identification by the user.

Cores Array of String List of core netlists for the operator. The first
string must be Core0 and must always be there.
If more than one core is available the naming
convention for them is Core<N> where <N> is
a integer number incremented with every core.

LibraryFile String Quoted name of file containing software library
(dynamic link library) containing the high-level
simulation model for the operator.

IconFile String Quoted name of file containing the operator icon.

HtmlHelpFiles Array of String List of quoted file names which contain help
content (html + images). The first file is
considered as the main HTML file.

Table 4.1. Operator/Info

Parameter Name Type Description
RegInInfo Array of String List of names of later defined info structures

(Operator/RegIn) describing write register
ports.

RegOutInfo Array of String List of names of later defined info structures
(Operator/RegOut) describing read register
ports.

ImgInSyncMode String String defining whether the inputs at the ImgIn
ports are synchronous or asynchronous to
each other. This string may either be “Sync” or
“Async”.

ImgInInfo Array of String List of names of later defined info structures
(Operator/ImgIn) describing the properties of

Extended Functionality 207

VisualApplets User Documentation Release 3

Parameter Name Type Description
the image input ports. Several list entries may
refer to the same structure which then means
that several ports of the same kind of image
input interface are available.

ImgOutInfo Array of String List of names of later defined info structures
(Operator/ImgOut) describing the properties of
the image output ports. Several list entries may
refer to the same structure which then means
that several ports of the same kind of image
output interface are available.

GPIn Array of String List of pin names for general purpose signal
inputs.

GPOut Array of String List of pin names for general purpose signal
outputs.

MemInfo Array of String List of names of later defined info structures
(Operator/Mem) describing the properties of the
memory interface ports. Several list entries may
refer to the same structure which then means
that several ports of the same kind of memory
interface are available.

Table 4.2. Operator/IO

Parameter Name Type Description
NrLut Integer Number of FPGA LUT elements consumed by the

operator

NrRegs Integer Number of FPGA registers consumed by the
operator

NrBlockRam Integer Number of block ram elements consumed by the
operator

NrEmbeddedMult Integer Number of embedded multipliers consumed by
the operator

Table 4.3. Operator/Properties

Image input port specification is done by following syntax within the configuration file:

<ImgIn name=”IMG_IN_IDENTIFIER”> Parameters </ImgIn>;

Here IMG_IN_IDENTIFIER is one of the image input port names which have been provided in the above
parameter Operator/IO/ImgInInfo. The content Parameters is specifying the properties of the image
interface port:

Parameter Name Type Description
Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for input data which at
least needs to be provided by the VA core. The
value must be a power of two minus 1 between
15 and 1023.

Formats Array of Record List of image format records ImgFormat which
are supported by the port. For the naming
scheme of image formats see below.

Table 4.4. Operator/ImgIn

The image format records have the following structure:

Extended Functionality 208

VisualApplets User Documentation Release 3

<ImgFormat name=”FORMAT” maxWidth=”X1” maxHeight=”Y1” alias=”NAME1”/>

The entry FORMAT is a String value for an image format coded by the below discussed naming scheme
for image formats. The attributes maxWidth and maxHeight are optional and fix the limits of image size.
If they are not present, the image size constraints can be freely chosen by the user within VisualApplets
later on. The attribute alias is optional as well and, if present, defines the name under which the
format will be displayed in the GUI.

Image output port specification is done by following syntax within the configuration file:

<ImgOut name=”IMG_OUT_IDENTIFIER”> Parameters </ImgOut>;

Here IMG_OUT_IDENTIFIER is one of the image output port names which have been provided in the
above parameter Operator/IO/ImgOutInfo. The content Parameters is specifying the properties of
the image interface port:

Parameter Name Type Description
Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for output data which at
least needs to be provided by the VA core. The
value must be a power of two minus 1 between
15 and 1023.

Formats Array of Record List of image format records ImgFormat which
are supported by the port. For the naming
scheme of image formats see below.

Table 4.5. Operator/ImgOut

Image formats are coded by the following naming scheme:

{BaseFormat}{BitsPerPixel}x{Parallelism}

Optionally there can be suffixes for image dimension and the notification of signed component data:

{BaseFormat}{BitsPerPixel}x{Parallelism}x{Dimension}{Sign}

The meaning of the dimension is as follows:

• Dimension = 2 – a two-dimensional image means that the image is structured both by end-of-line
and end-of-frame markers.

• Dimension = 1 – a one-dimensional image means that there are no end-of-frame markers which
divide the incoming lines into frames.

When no dimension is specified a value of two is assumed. The suffix {Sign} can be s for signed pixel
components or u for unsigned values where the default value is u when no such suffix is provided.
Supported color formats are rgb, yuv, hsi, lab and xyz.

Examples are:

• gray8x4 – gray format with 8-bit pixel and parallelism 4

• rgb24x2 – rgb color format with 3x8-bit pixel and parallelism 2

• gray16x1 – gray format with 16-bit pixel, only single pixel in a data word

• gray8x4x1 – one dimensional gray image with 8-bit per pixel and parallelism 4

• gray16x1s – gray image with signed 16-bit components, only single pixel in a data word

Register input port specification is done by following syntax within the configuration file:

<RegIn name=”REG_IN_IDENTIFIER”> Parameters </RegIn>;

Extended Functionality 209

VisualApplets User Documentation Release 3

Here REG_IN_IDENTIFIER is one of the register input port names which have been provided in the
above parameter Operator/IO/RegInInfo. The content Parameters is specifying the properties of
the register interface port:

Parameter Name Type Description
Width Integer Width of the register port

Table 4.6. Operator/RegIn

Register output port specification is done by following syntax within the configuration file:

<RegOut name=”REG_OUT_IDENTIFIER”> Parameters </RegOut>;

Here REG_OUT_IDENTIFIER is one of the register output port names which have been provided in the
above parameter Operator/IO/RegOutInfo. The content Parameters is specifying the properties of
the register interface port:

Parameter Name Type Description
Width Integer Width of the register port

Table 4.7. Operator/RegOut

Memory interface specification is done by sections with following syntax within the configuration file:

<Mem name=”MEM_IDENTIFIER”> Parameters </MEM>

Here MEM_IDENTIFIER is one of the memory port names which have been provided in the above
described parameter Operator/IO/MemInfo. The content Parameters is specifying the properties of
the memory interface:

Parameter Name Type Description
DataWidth Integer Data width

AddrWidth Integer Address width

WrFlagWidth Integer Width of flag for marking write accesses. This
parameter must be >= 1.

RdFlagWidth Integer Width of flag for marking read accesses. This
parameter must be >= 8.

WrCntWidth Integer Width of port for communicating the number of
available write commands

RdCntWidth Integer Width of port for communicating the number of
available read commands

SyncMode String This parameter signals the relation of the
memory interface clock and the design clock.
Following values are possible:

SyncToDesignClk – memory interface ports are
synchronous to iDesignClk.

SyncToDesignClk2x – memory interface ports
are synchronous to iDesignClk2x.

Table 4.8. Operator/Mem

Specification of IP core netlists is done by sections with following syntax within the configuration file:

<Core name=”CORE_IDENTIFIER”> Parameters </Core>

Here Core_IDENTIFIER is one of the core names which have been provided in the above described
parameter Operator/Cores. The content Parameters is specifying the properties of the IP core:

Extended Functionality 210

VisualApplets User Documentation Release 3

Parameter Name Type Description
Devices Array of String List of FPGA device names which are supported

by the core (Example: XC3S1600E XC3S4000).

NetlistFile String Quoted UTF-8 encoded file name for the net list.

ConstraintsFile String Quoted UTF-8 encoded file name for an optional
constraints file.

MinVersionISE String Minimum version number of ISE tool flow which
can use the given netlist (Example: 14.6 for
ISE 14.6). If ISE is not supported this string is
empty.

MinVersion String Minimum version number of Vivado tool flow
which can use the given netlist (Example:
2014.4 for Vivado 2014.4). If Vivado is not
supported this string is empty.

Table 4.9. Operator/Core

Extended Functionality 211

VisualApplets User Documentation Release 3

4.4. Multiple Processes

VisualApplets projects may include multiple processes. A process is the top level of a diagram and
can include an arbitrary number of operators and hierarchical boxes. Each process can be started and
stopped individually.

A good example where two processes are used is a two camera application. Have a look at the following
figure. It shows two processes with a camera, a buffer and a DMA operator in each of the processes.

Figure 4.24. Applet with Two Processes

When the applet is used, both processes, i.e., both cameras can be started and stopped individually.
If both cameras are in the same process, they have to be started and stopped simultaneously, as all
DMAs of a process have always to be started.

To learn more about the usage of VisualApplets applets on hardware, see section Section 2.2, 'Running
Your Applet on Hardware', and/or the Framegrabber SDK documentation [https://docs.baslerweb.com/
frame-grabbers/managing-applets-micro-diagnostics].

4.4.1. Managing Processes

To add a new process, click Design -> New Process or choose the icon in the Edit toolbar.

https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics

Extended Functionality 212

VisualApplets User Documentation Release 3

Figure 4.25. Creating a New Process

To remove a process first select any digram window belonging to the process and afterwards select
Design -> Remove Process or choose the icon in the Edit toolbar.

Processes always start with index 0 and have to be in ascending order. If a process is removed,
processes with higher indices are shifted to fill the gap.

4.4.2. Processes without DMAs / Trigger Processes

As mentioned, an applet process can only be used on the hardware after all DMAs of the respective
process have been started. However, if a process does not contain any DMA channels, it will be
immediately started after initialization of the applet. This is useful for trigger and signal processing
applications as they are used before the image acquisition is started.

To learn more about initialization and usage of VisualApplets applets on hardware, see section Section
2.2, 'Running Your Applet on Hardware', and/or the Framegrabber SDK documentation [https://
docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics].

4.4.3. Process Intercommunication

Image data between processes cannot be interchanged. However, using operators TxSignalLinks and
RxSignalLinks, an interprocess communication for signals can be established.

https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics

Extended Functionality 213

VisualApplets User Documentation Release 3

4.5. Target Hardware Porting
A VisualApplets project is always based on a hardware platform, such as the microEnable IV VD4-CL,
microEnable 5 VQ8-CXP6D etc. VisualApplets offers a powerful hardware porting system. The hardware
platform can simply be changed. VisualApplets performs the porting to the new FPGA, DMA interfaces,
memory, camera ports, etc. automatically. To perform a hardware porting open the design and select
Design -> Change Platform from the main menu. VisualApplets will then ask for the new file name
and allows the selection of the new hardware platform. A design rule check and the build of the new
design file can immediately be performed.

Figure 4.26. Target Hardware Porting

Limitations

Of course, the new platform has to be capable of implementing the design. In the following cases, you
may need to adapt your design to match the new platform:

• A smaller FPGA might result in a logic overmap.

• A project cannot be ported if the device resources are not available. For example, the number of
DMA channels or digital output ports might not be available on the new platform.

• Not all operators from the Platform libraries exist for each platform. For example, a Camera Link
camera operator cannot be ported to a gigabit Ethernet camera operator. In this case, the missing
operator is replaced by a Dummy operator.

• Also operators from other libraries (e.g., EventToHost) may not be available for the new platform.
In this case, DRC1 delivers an according error message:

Figure 4.27. Error message in case an operator is not applicable for new hardware platform

Extended Functionality 214

VisualApplets User Documentation Release 3

4.6. PixelPlant Designs
The PixelPlant hardware is an add-on board family for microEnable IV. At the moment, two boards are
available: PixelPlant100 and PixelPlant200 which differ in FPGA and RAM size.

4.6.1. PixelPlant Projects

To develop an applet for using the PixelPlant Px100 / Px200 hardware, two separate design parts have
to be created:

1. A base design for the microEnable IV board

2. A design for PixelPlant

Both parts need to be handled in two separate VisualApplets design files. Both designs, PixelPlant and
microEnable IV, have to be build, so that two HAP files are generated. Finally, both parts (HAP files)
have to be merged into one hardware applet (HAP file).

For data transfer between the microEnable IV applet and the PixelPlant applet, operators TxLink and
RxLink have to be used. TxLink operators transmit the data to a PixelPlant board, RxLink operators
receive data from the PixelPlant. The PixelPlant part has to contain the corresponding RxLink and
TxLink operators to pick the data from the microEnable IV and transmit it back. Each RxLink / TxLink
operator has a channel ID parameter which selects the corresponding RxLink / TxLink operator on
microEnable IV. Theses channel ID parameters as well as the link formats have to match on both,
PixelPlant and microEnable IV.

The merging of two applets is explained in the next section.

4.6.2. HAP Merger

Merging PixelPlant and microEnable IV designs can be done by using the HAP Merger utility. Access it
by Build -> Hardware Applet Merger. The utility dialog asks for the microEnable IV HAP file and
its corresponding PixelPlant HAP file. Pressing the "Merge" button generates a HAP file containing both
design parts. This merged HAP file is used to be loaded on the frame grabber.

Please note: The channel ID of corresponding RxLink / TxLink pairs have to match on both applets as
well as the link formats. The hardware applet merger will not merge the HAPs if a mismatch is detected.

Extended Functionality 215

VisualApplets User Documentation Release 3

4.7. System Settings

Even if VisualApplets comes along with a useful basic configuration, it can be adapted individually to
fit the user’s needs in the best way. The configuration of the program can be changed and stored on
the local computer. You can change your settings in several setting dialogs which are accessible over
the user interface of VisualApplets.

You can define global settings for all users, personal settings for the current user, or local settings for
a certain installation.

All configurations are stored in one configuration file (VisualApplets.ini). During the installation
process, you have already selected the location of this file.

The following sections describe the setting options.

You can access the dialogs where you can specify your system settings as follows:

1. Select menu item Settings -> System Settings.

The System Settings window opens where you can choose between different setting categories. For
each category, a settings dialog is displayed.

4.7.1. Path Settings

This dialog allows configuring the default locations of different types of files.

Default Path Settings

If Visual Applets is installed on your system in a folder that requires administrator rights
(e.g., C:\Programs), you have to start VisualApplets with administrator rights in order
to use the default paths.

Alternatively, you can adapt the path settings under System Settings / Path Settings. Also
adapt the path under Section 4.7, 'System Settings' / Global Build Settings / Generation
of Hardware Applets / Path for storage of hardware applets (*.hap) in this case.

Temporary files

Path for temporary files: While running, VisualApplets needs to generate temporary files. Usually, these
files will be deleted when VisualApplets is closed. Select the directory where these files should be
created.

Use the system’s temporary directory: If you check this option, VisualApplets retrieves this location
from the operating system. This is the recommended setting. If you want to use another directory for
this purpose, un-check this box, specify an alternative directory in the field above and make sure it
is not write-protected.

User libraries

Path for storage of user libraries: User libraries are containers for modules created by the user himself.
(See the according chapter for further details.) In this field you can specify the directory where the
user-defined modules are to be saved to and loaded from. Change this directory to another directory
(e.g., to one on a network drive) when you are sharing these libraries with other team members or on
different PCs. Make sure this directory is not write-protected.

Custom libraries

Path for storage of custom libraries: Custom libraries are containers for custom operators created by
the user himself. For creating custom operators, a VisualApplets Expert license or the VisualApplets
4 license is required. In this field, you can specify the directory where the custom operators are to
be saved to and loaded from. Change this directory to another directory (e.g., to one on a network

Extended Functionality 216

VisualApplets User Documentation Release 3

drive) when you are sharing the custom operators with other team members or on different PCs. Make
sure this directory is not write-protected.

Script collection

Path for storage of your Tcl script collection: VisualApplets allows you to create Tcl scripts and to make
use of the individual Tcl procedures as library elements. In this field, you can specify the directory
where your Tcl scripts are to be saved to and loaded from. Change this directory to another directory
(e.g., to one on a network drive) when you are sharing the your Tcl script collection with other team
members or on different PCs. Make sure this directory is not write-protected.

VisualApplets designs

Path for VisualApplets designs: Here, you can define the default location where VisualApplets saves
design files (*.VA) and loads them from. Make sure this directory is not write-protected, and clear the
Use previously selected directory option.

Use previously selected directory: If the box is checked, VisualApplets suggests to save the *.va file into
the directory you used last time for this purpose. If unchecked, VisualApplets suggests the directory
specified in the field Path for VisualApplets designs for saving/loading design files.

SDK projects

Path for storing SDK projects: Select here the default location of the automatically generated source
code („SDK project“) that demonstrates the usage and parametrization of the generated applet with
the Framegrabber API. The SDK project is generated after the build of the hardware applet or on
demand when you choose from the menu Build -> Generate SDK Example.

Help

Path to help: Points to the base directory where the files for operator and context help are installed. You
can change this path to a central location in order to share the help files among different installations.
Make sure the help files are available in the directory you specify.

Where to store the hardware applets (*.hap files created during the build
process)

The directory for storing your final hardware applets (*.hap files) you define under
'System Settings' in the category Global Build Settings and here under Generation of
Hardware Applets / Path for storage of hardware applets (*.hap).

Extended Functionality 217

VisualApplets User Documentation Release 3

Figure 4.28. Dialog window for Path Settings

4.7.2. Simulation Settings

These settings affect the default behaviour of the simulation functionality of VisualApplets.

Simulation Sources

Location of images for simulation: Specify here the directory where VisualApplets should get the images
for simulation. VisualApplets comes along with some sample images for demonstration. But in a real
world, you will have your own images, similar to those which have to be processed. Specify the directory
where your test images are.

Use previously selected directory: If the box is checked, VisualApplets first suggests the directory where
you selected an image for simulation from last time. If unchecked, VisualApplets always suggests the
directory specified above for loading images.

Simulation Probes

Path for destination images: Storage location of image files which are created at simulation probes
while the simulation is running. This setting comes up as suggested path when the user is saving the
collected simulation results of a certain simulation probe.

Extended Functionality 218

VisualApplets User Documentation Release 3

Temporary Image Files

Path for temporary image files: Storage location of temporary files which are created while the
simulation is running by modules processing simulation data. The specification of this location allows
VisualApplets to pick up these files automatically, e.g. at a certain module, and to put them as a source
to another part of the design or to another module within the same design.

Use VisualApplets’ temporary directory: If you clear this option, make sure the directory you specify
is not write-protected. If write-protected, VisualApplets cannot simulate data at all.

The results of the simulation are saved in a binary file format. Two different formats are available:

• Save Raw Data as *.rsd : Files are saved in the „RSD“ file format (image data and descriptive data).

• Save Raw Data as *.raw: Files are saved in the „Raw“ file format (image data only).

Normally, the user doesn’t need to edit any of these settings.

Simulation Options

VisualApplets (version 3.2 and higher) is equipped with a new simulation Engine. The new engine gives
a very realistic depiction of the data flow and allows simulating blocked image data streams. The new
engine is enabled per default. You can disable the new engine here in cases where you prefer the old
simulation engine.

I/O Image Library

Here, you have the choice between two libraries: You can define to use either the Image Magick libary
for loading and saving images, or the native implementation of VisualApplets. The Image Magick library
is selected per default.

Below, you can set the compression parameters for saving probe images.

Extended Functionality 219

VisualApplets User Documentation Release 3

Figure 4.29. Dialog window for Simulation Settings

4.7.3. Settings for New Designs

These settings allow the user to define the default target platform the applets created in VisualApplets
(target hardware applets) will run on. To set this settings is helpful when a developer’s work is
focused on certain frame grabbers („Hardware platform“) or certain operating systems of the runtime
(„Operating system platform“).

Default platform for target hardware applets

Hardware platform: The hardware platform selection shows all available hardware platforms (frame
grabber types) which are currently available at the installation of VisualApplets. The platform you
specify here will by suggested by the program as the default platform when you create a new design
by using the menu item File -> New.

Example: If you create a project based on a microEnable IV – VD4-CL frame grabber, you can set
this hardware platform here as the default platform. It will be suggested by the program when you
create a new applet design.

Extended Functionality 220

VisualApplets User Documentation Release 3

Figure 4.30. Example: If you always create applets for a Win64 system, you can set this operating
system platform here as the default platform

Figure 4.31. Example: Win64 will be suggested by the program when you create a new applet design

Operating system platform: The operating system platform selection shows all available operating
systems for which applets can be created. The platform you specify here will by suggested by the
program as the default platform when you create a new design by using the menu item File -> New.

Tip

Please note that the settings you enter here will come up as suggestions only. You can
change both platforms any time, while creating a new applet, during the design process,

Extended Functionality 221

VisualApplets User Documentation Release 3

or even when you are already done with the applet design. The information about target
hardware and target operating system is stored in the according *.VA design file.

4.7.4. Diagram Settings

This set of settings is related to the design window of VisualApplet.

Extended Link Capture

Defines the size of the capture area around the input or output ports of selected modules. Increasing
the capture area allows an easier and faster creation of links for individual module ports since the user
doesn’t need to hit the small ports exactly.

Layout presettings for new designs

Defines the default layout dimensions for new VisualApplets designs. This setting comes into effect
when a new VisualApplets design is created via File/New. Please note that the layout dimensions of
an existing design can be changed anytime via menu item Design/Diagram Layout Settings/ and are
stored for each VisualApplets design individually.

Grid

Defines the default distances of grid lines in the design panel. This setting comes into effect when a
new VisualApplets design is created via File/New. Please note that the grid line distance of an existing
design can be changed anytime via menu item Design/Diagram Layout Settings/ and is stored for each
VisualApplets design individually.

Link Appearance

These settings define the visualization of the connection links which are combining different modules
at a design. Changes of these settings take effect immediately if you have a design file opened.

Link Tool Tip

Defines the information which is displayed at the tool tip when the user moves the mouse cursor over
a link. Changes of these settings take effect immediately if you have a design file opened.

Extended Functionality 222

VisualApplets User Documentation Release 3

Figure 4.32. Dialog window for Diagram Settings

4.7.5. Global Build Settings

The settings of this category allow customizing the process of creating applets.

Specific Synthesis Directory

Here, you can specify the directory where temporary files created during the build process will be
generated. These files will be deleted after the applet is generated. (See also Build trace files below)

Generation of Hardware Applets

Here, you can specify the location where generated hardware applets (*hap files) will be stored.

Create subdirectories for hardware platforms: Generates an additional subdirectory according to the
platform name.

Copy applets to runtime directories: Copies the resulting files to the Framegrabber SDK installation
folder (if installed) in order to load the files immediately to a present frame grabber.

Build Trace Files

Keep build trace files: Here, you can specify a directory where the intermediate files (which will
be generated during the build process) can be copied into for detailed analysis of these files or for
traceability reasons.

Special Settings

Style of synthesized design netlists: Select here the style for netlist generation:

• Use Optimized when building timing-critical designs to try to achieve a better timing closure in the
build flow. VisualApplets will generate the FPGA netlist with an alternative naming scheme which

Extended Functionality 223

VisualApplets User Documentation Release 3

in some cases helps the Xilinx tool flow to generate a better distribution of logic on the FPGA. The
setting of environment variable VA_NETLIST_STYLE has no influence.

• If set to Default, the environment variable VA_NETLIST_STYLE is consulted:

• If the environment variable set to value 2, the alternative naming scheme is used for FPGA netlist
generation. The alternative naming scheme in some cases helps the Xilinx tool flow to generate
a better distribution of logic on the FPGA.

• If the environment variable set to value 1, the legacy naming scheme (VisualApplets 3.1 and lower)
will be used.

• If set to Legacy, the legacy naming scheme (VisualApplets 3.1 and lower) will be used. The setting
of environment variable VA_NETLIST_STYLE has no influence.

Figure 4.33. Dialog window for Global Build Settings

4.7.6. Common Settings

Here, you can select your preferred language for displaying the user interface of VisualApplets, define
the toolbar icon style, define how many items are displayed in the recent design list and define the
upsate bahvior of VisualApplets. .

Extended Functionality 224

VisualApplets User Documentation Release 3

Figure 4.34. Dialog window for common settings

Extended Functionality 225

VisualApplets User Documentation Release 3

4.8. Design Settings

Besides the program settings it is possible to define default settings for each VisualApplets project.
These setting will be stored in the *.va file and comprise the target runtime, project details as well
as diagram layout settings.

4.8.1. Target Runtime

A VisualApplets hardware applet (HAP) can only be run on a single target runtime e.g. Windows 32Bit,
Windows64Bit, Linux 32Bit, Linux 64Bit or QNX 32 Bit. When a VisualApplets project is build i.e.
transformed into a HAP (See Section 3.12, 'Build') the HAP can only be used on the previously selected
target runtime. The build step allows the selection of the target runtime. However, a default target
runtime can be defined for each project individually.

To set the default target runtime of a project select Design -> Change Target Runtime. From the
list, one of the supported target runtimes can be selected as shown in the next figure. This target
runtime is now used for your project. Keep in mind to save your project file.

Figure 4.35. Target Runtime Project Setting

The default setting for new projects can be changed in the system settings. See Section 4.7, 'System
Settings' for more information.

4.8.2. Project Properties

For each project, a project name, a version number (string) and a description can be added. To edit
these attributes of your project, click Design -> Properties Enter any string values as shown in the
next figure. Do not forget to save your design after modification. The entered values are shown in
the project info dock window. After Build, this information is included in the applet and displayed in
microDisplay as parameter values under "Applet Properties".

Extended Functionality 226

VisualApplets User Documentation Release 3

Figure 4.36. Editing the Design Properties

4.8.3. Diagram Layout Settings

To change the diagram layout settings of a project click on Design -> Diagram Layout Settings
(see next figure). You can change the design area size of a project. By default, the size is 2048 by
2048 pixel. Moreover it is possible to enable or disable the grid and change its step size. The grid
can also be enabled and disabled from the icon in the View toolbar. Do not forget to save your design
after modification.

Figure 4.37. Diagram Layout Settings

Extended Functionality 227

VisualApplets User Documentation Release 3

4.9. Build Settings
To actually generate (build) the hardware applets (see Section 3.12, 'Build'), VisualApplets uses a
whole tool chain that works in the background.

For each hardware platform, VisualApplets provides a default build setup that is optimized for the
specific hardware platform.

Based on the hardware platform you selected for your design in the design settings, the according
default setup for build is proposed by VisualApplets. This setup cannot be changed by the user, but
can be replaced by a user-defined setup.

You have to replace the default build setup by own settings if ...

• You create designs for a microEnable 5 (ironman and marathon) or LightBridge
platform.

• You work with Xilinx Vivado.

• You work with a Xilinx ISE version higher than 9.2.

Recommended Xilinx Tools

See Which Xilinx Toolchain and Version for Which Frame Grabber
Platform [https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-
xilinx-toolchain-and-version-for-which-frame-grabber-platform] for detailed information
about which Xilinx tool is required to build applets for which hardware platform.

mE5 marathon and LightBridge: Although applet build for mE5 marathon and
LightBridge is possible with ISE 14.7, Basler recommends to use Xilinx Vivado since applet
build (synthesis) with Vivado is much faster for these platforms.

4.9.1. Defining Build Settings

4.9.1.1. Using one Parameter Set as Active Configuration

Each time the program performs the build steps, a certain set of build parameters will be used.

There are several sets of build parameters that come with VisualApplets. You can add additional sets.

For building an applet, one of these sets has to be specified as the “Active configuration”. This
configuration will be used and the tool chain will be controlled accordingly.

All setting information is stored in the file “SynthesizeSettings.xml” at your local installation.

Activated and Current Parameter Set

To open the Build Settings dialog, click Settings -> Build Settings.

The Dialog opens. The activated parameter set displayed:

• The activated parameter set is indicated by a green tick in the left-hand panel of the
Build Settings dialog.

• The activated parameter set is used for build.

• The activated parameter set stays activated even if you select another parameter set
to be displayed. (To display a parameter set, click on its name in the left-hand panel

https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform
https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform
https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform
https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform

Extended Functionality 228

VisualApplets User Documentation Release 3

of the Build Settings dialog. The selected parameter set will be displayed in the right-
hand panel of the Build Settings dialog.)

• The parameter set displayed you can edit, copy, save, or delete (see below).

In the following, we will refer to the parameter set displayed as the "current parameter
set".

4.9.1.2. Defining New Parameter Sets

The set of parameters itself consists of parameters for starting the external applications (Xilinx tools)
that perform certain steps of the workflow, and of parameters for controlling these tools. You can define
a certain set to be the default configuration (for starting a build of the current design) by checking
“Active configuration”, and you can add a comment to describe the purpose of this specific set.

1. To open the Build Settings dialog, click menu Settings -> Build Settings.

The Dialog opens. The activated parameter set is displayed.

Before Adding the First Alternative Parameter Set

As long as no additional parameter set for the target hardware of your design has
been created, the default build settings are displayed.

You cannot make any changes to these default settings, therefore, all input fields
are deactivated.

You also cannot uncheck “Active configuration” as there is no alternative to the default
yet.

2. Click Add to create a new set of parameters.

You will be asked for hardware platform information. You can specify here which parameter set
you want to load as a basis for creating your own parameter set. In most cases, it is quite sensible
to select here the target hardware of your design.

Figure 4.38. Selection of Hardware Platform

3. Click OK.

Now, you can edit the first fields.

Extended Functionality 229

VisualApplets User Documentation Release 3

Figure 4.39. Build Settings Window

4. Name: Give a name to your new set of properties for identification. This name will show up in the
configuration dialog and in the build protocols.

5. Active configuration: If you want to use this set of parameters when building your applet, check
the box Active Configuration.

Active Configuration

The set of parameters you define as Active configuration will be used as often as
you execute a build.

When you change the hardware platform you selected as target hardware platform
of the design: Define new build settings for this new platform.

6. Precondition Check: In default mode, the Precondition Check is activated. The Precondition Check
verifies that the FPGA type on the target hardware of your design is supported by your Xilinx tool
chain. In addition, in all designs for mE5 or LightBridge platforms: When this check box is activated,
the information in operator AppletProperties is updated at each build, namely the fields BuildTime
and AppletUid. Therefore, after a build has been completed, the design is in "unsaved" mode, since
the parameter values in the operator AppletProperties have been changed during build.

Avoiding the Update of AppletProperties

Under specific circumstances you might not want to update the AppletProperties
operator by a build. In this case, simply de-activate the check box Preconditions
Check.

Extended Functionality 230

VisualApplets User Documentation Release 3

7. Xilinx ISE/Xilinx Vivado: Select the Xilinx tool chain you are going to use. Vivado is supported
by all marathon and LightBridge platforms. If Vivado is not supported by the target hardware of
the open design, this is stated directly in the GUI:

Figure 4.40. Vivado Supported by Target Hardware Design

Figure 4.41. Vivado not Supported by Target Hardware Design

8. Build Environment:

• When using a newer Xilinx tool (i.e., when developing with Xilinx Vivado or with Xilinx ISE in
a version higher than 9.2):

• De-activate the “Use system environment” checkbox, and

• from your file system, select the Xilinx settings batch file that sets the environment to launch
the external tools.

Please follow the Xilinx documentation to make the best choice.

You find the batch file in the Xilinx installation folder:

• ISE: \Xilinx\14.7\ISE_DS\settings64.bat.

• Vivado: \Xilinx\Vivado\2020.2\settings64.bat.

Basler recommends to use the 64-bit Windows operating system when developing applets for
microEnable 5 platforms. Make sure you select the batch file that matches the operating system
you are using, e.g., "settings64.bat" which is the file for the 64-bit Windows OP.

• If you use an older Xilinx ISE version (version 9.2 or older) and all environment variables are
set at the operating system, activate the “Use system environment” checkbox.

9. Build Flow: Activate all options under Build Flow. Normally, all steps should be activated.

Basler recommends to set the system under Multi place and route to 20 iterations.

Keep the Command Mode at Use platform default value.

10. Applet Generation: Activate Applet Generation.

11. Comment: Enter a comment that describes the set of parameters you just created. The entries
you make here have no effect on the actual build process.

12. Click the OK button.

Example: When developing for microEnable 5 or LightBridge, the following parameter values need to
be set:

Extended Functionality 231

VisualApplets User Documentation Release 3

Figure 4.42. Parameter Set Example: Developing for microEnable 5 or LightBridge

Disabling Build Flow Steps

Per default, all build flow steps (translation, mapping, ...) are activated:

Figure 4.43. Defaut: All Build Flow Steps Activated

With the Expert license or the VisualApplets 4 license you can de-select individual
steps. However, the build steps depend on each other. They are listed in the order of
their dependence:

• Translation is the first step that can always be executed.

• Mapping can only be executed if the step Translation has been executed before.

• Place and route can only be executed if the step Mapping has been executed before,
and so on.

Extended Functionality 232

VisualApplets User Documentation Release 3

Figure 4.44. Subsequent Build Steps Deactivated

However, a previous step doesn't need to be executed within the same build run. It
might as well have been executed in an earlier build run. As long as the files (trace files)
that have been generated during an earlier build run are still available, it is possible to
deactivate steps that come earlier in the "Build Flow" list and to activate steps that come
later in the list.

To keep trace files of earlier build runs: Go to menu Settings -> System Settings ->
Global Build. Under Build Trace Files, activate Keep build trace files. Deactivate Compress
build trace files.

Figure 4.45. Keeping Build Files of the Individual Build Steps

Extended Functionality 233

VisualApplets User Documentation Release 3

If you keep the build trace files, and you have carried out all previous build flow steps
once before, you can also activate only subsequent steps, e.g.:

Figure 4.46. Keeping Build Files of the Individual Build Steps

Command Mode Options

With the Expert license or the VisualApplets 4 license you can change the Command
Mode.

To change the Command Mode, go to Command Mode at the right upper corner of
the Build Flow area.

Figure 4.47. Command Mode Options

In the list, you have three different options:

• Use platform default value (Default)

• Append to platform default value

• Overwrite platform default value

Use platform default value (Default):

If you keep or select this option, VisualApplets displays the default values recommended
for the hardware platform you specified as target platform for the open design.

VisualApplets also uses these default values when running the Xilinx tools (i.e., when the
actual applet is build (synthesized) out of the open design).

Since default sets cannot be modified, it is not possible to edit the Arguments fields in
the Use platform default value mode.

Figure 4.48. Command Mode "Use platform default value"

Extended Functionality 234

VisualApplets User Documentation Release 3

Append to platform default value:

If you select this option, you can add information for the Mapping and Place and route
tools to the basic arguments provided by VisualApplets.

During build, VisualApplets adds the parameters you defined in the Arguments fields
to the platform default values when calling the tool. This setting is for experienced
users only.

Figure 4.49. Command Mode "Append to platform default value"

Overwrite platform default value:

If you select this option, VisualApplets displays the default arguments for Mapping and
Place and route for the target hardware platform you selected directly after creating the
new applet set. You can define (overwrite) the Mapping and Place and route arguments
stated here. VisualApplets now uses only the parameters you specify in these Arguments
fields when calling the tools. This setting is for experienced users only.

Figure 4.50. Command Mode "Overwrite platform default value"

4.9.1.3. Re-Using Parameter Sets

In the Build Settings window, you have some options for handling parameter sets:

Figure 4.51. Handling Options

Clicking on

• Add creates a new parameter set which you can modify as you want (based on the hardware platform
you select).

Extended Functionality 235

VisualApplets User Documentation Release 3

• Copy copies the parameters of the current set, creates a new set and pastes the parameters of the
copied set into the new set.

• Import allows to import a certain set of parameters into the current installation of VisualApplets.

• Export selected saves the current parameter set to a file. The file can be used for transporting
the data to a different PC or installation or for backup reasons. A dialog is displayed where you can
specify a file name and location.

• Delete deletes the current set of parameters.

4.9.1.4. Experienced users only: Creating *.hap Files for Different
Operating Systems Using the Same Build (mE 5 ironman, mE5 marathon
and LightBridge)

For mE 5 ironman, mE5 marathon and LightBridge, the checkbox Precondition Check offers a specific
function:

• If Precondition Check is activated, at each start of synthesis (build) the entries for BuildTime and
AppletUid are updated. If you want to start a complete build (from netlist generation through to applet
generation) you need to activate Precondition Check. Otherwise, later on (when using the applet
on the frame grabber) the loaded applet cannot be reliably validated by the runtime environment.

• Specific option: If you have already completely built an applet, but decide you need another *.hap
file for another target operating system: You can build a new OS-specific hap file out of the complete
build to make your design usable on other target operating systems (i.e., for another target runtime).
Proceed as follows:

1. In menu Settings, select System Settings.

2. In the window that opens, select category Global Build.

3. Here, under Build Trace Files, activate the option Keep build trace files and specify a path.

4. Go to menu Settings, menu item Build Settings.

5. Deactivate option Precondition Check.

6. Deactivate all other options under Xilinx Build Flow.

7. Activate Applet Generation.

8. Under Defaults, activate Active Configuration.

9. Start the build of the OS specific *.hap file.

Especially with complex designs, this option allows you to save time.

Extended Functionality 236

VisualApplets User Documentation Release 3

4.10. Tcl Scripting
Tcl provides the power of a programming language while being easy-to-learn. Using it can be as simple
as calling commands in a shell. At the same time advanced programming techniques can be used to
set up sophisticated processing schemes.

To combine VisualApplets with the power of a scripting language allows for an enormous increase of
productivity.

You can

• Automatize the creation of designs:

Use scripts to assemble components of your design controlled by parameters. Set up libraries of
processing pipelines and create bunches of different designs automatically.

• Automatize the simulation of designs:

Tcl allows you to define very extensive simulation runs: You can, for example, specify series of
simulation runs over thousands of images stored somewhere in your file system. Or, you can define
various simulation runs where different sets of design parameters are used for simulation.

Documentation

You find information on how to use the VisualApplets Tcl console and an extensive
command reference at TCL Documentation [https://docs.baslerweb.com/visualapplets/
overview-of-tcl-scripting].

Availability

The VisualApplets TCL scripting feature is part of VisualApplets Expert.

To use TCL scripting, you need to hold either an Expert license or the VisualApplets
4 license.

https://docs.baslerweb.com/visualapplets/overview-of-tcl-scripting
https://docs.baslerweb.com/visualapplets/overview-of-tcl-scripting
https://docs.baslerweb.com/visualapplets/overview-of-tcl-scripting

Extended Functionality 237

VisualApplets User Documentation Release 3

4.11. Script Collection (Tcl)
You can make the individual procedures in your Tcl scripts available directly in the VisualApplets GUI.

VisualApplets allows you to define a script collection (library) containing sorted commands that each
call a specific procedure in a specified Tcl script. The commands are graphically available directly
on the VisualApplets GUI. As soon as you start a command via mouse click or per Drag and Drop,
the underlying procedure is carried out. You can monitor what happens in the Tcl console of the
VisualApplets program window.

You can define a script collection either in a graphical way, using the VisualApplets GUI, or creating/
editing an XML file that defines the script collection.

As all information regarding your script collection is stored in XML files, you can use version control
systems not only for the individual Tcl scripts, but also for the structure and content definition of your
script collection.

The commands are available in pane Script Collection:

Figure 4.52. Script Collection in the VisualApplets program window

Documentation

You find information on how to use the VisualApplets Tcl console and an
extensive command reference at Creating Script Collections (Script Libraries)
[https://docs.baslerweb.com/visualapplets/creating-script-collections] and at Command
Reference [https://docs.baslerweb.com/visualapplets/tcl-command-reference].

Availability

The VisualApplets TCL scripting feature is part of VisualApplets Expert.

To use TCL scripting, you need to hold either an Expert license or the VisualApplets
4 license.

https://docs.baslerweb.com/visualapplets/creating-script-collections
https://docs.baslerweb.com/visualapplets/creating-script-collections
https://docs.baslerweb.com/visualapplets/tcl-command-reference
https://docs.baslerweb.com/visualapplets/tcl-command-reference
https://docs.baslerweb.com/visualapplets/tcl-command-reference

Extended Functionality 238

VisualApplets User Documentation Release 3

4.12. Tcl Export
VisualApplets allows you to export VisualApplets designs as Tcl script (*.tcl).

You can use the script format for the following purposes:

• revision control

• comparing versions automatically (by creating "diffs")

However, some information is lost during export to Tcl script. Therefore, you should always save your
design in *.va format. The Tcl file is not qualified to be used as the primary data format.

Save Design in *.va Format

Use the *.va file format as primary data format for your VisualApplets designs.

The Tcl script does not contain the full design information.

4.12.1. Exporting to Tcl

The following information is lost during export to Tcl script:

• The local modifications you made in a user library element instance (to adapt the instance to the
surrounding design) are lost. If you re-import a Tcl script into VisualApplets, the instance is inserted
as a fresh copy of the user library element. The content of the instance in your design has not been
saved in Tcl.

• The content of info boxes is kept in Tcl format. However, the formatting of info boxes is lost.

You should always save your design in *.va format, too. The Tcl file is not qualified to be used as
the primary data format.

To export your design to a Tcl file (*.tcl):

1. From the menu, select File -> Export -> Design to Script....

Figure 4.53. Exporting a Design

2. Select a location for the *.tcl file containing your design, and click on Save.

Now you can check in the Tcl file into your version control system, or find differences between different
versions of the design using a "diff" tool.

Extended Functionality 239

VisualApplets User Documentation Release 3

4.12.2. Importing from Tcl

To import your *.tcl design file into VisualApplets:

1. From the menu, select File -> Import -> Design from Script....

Figure 4.54. Importing a Design

2. Browse to the location of the *.tcl file containing your design, and select the *.tcl file.

3. Click on Open.

Now your design is opened in VisualApplets, and you can

• continue editing your design within VisualApplets,

• save your design file as *.va file.

Always use *.va File Format as Primary Data Format

Always use the *.va file format as primary data format for your VisualApplets designs.

Never use the Tcl script format as primary data format, as the Tcl script does not contain
the full design information.

4.12.3. Tcl Import/Export Command Reference

In the generated Tcl source file the following VisualApplets-specific commands are used.

Syntax

Optional parameters: The notation of optional parameters follows the Wirth Syntax
Notation (brackets).

Parameter FullModuleName: Hierarchical path starting at process level. The
hierarchies are separated by a slash.

Command Parameters Description
Creating, Loading, and Saving Designs

CreateDesign Name

Platform

Command for creating a new design with
the name "Name" for a hardware platform

Extended Functionality 240

VisualApplets User Documentation Release 3

Command Parameters Description
"Platform". For specifying the target platform of
the design, you can either use

• the VisualApplets library name for the platform
(e.g., "mE4VQ4-GE"), or

• the full name of the platform (e.g.,
"microEnable IV VQ4-GE").

Using capitals in the names has no effect.

SetDesignProperty Key Value Use this command to enter design properties.
There are tree values you can use as key:

• ProjectName (the name you want the project
to give)

• Version (version of the design)

• >Description (description of the project).

SetDesignClock NewFrequency Command for setting the basic clock frequency of
the FPGA (in MHz).

Setting up a Design
CreateProcess - Creates a new process

CreateModule OperatorType

FullModuleName

[InPortMultiplicity

[OutPortMultiplicity

{NamedPortMultiplicity}

]]

xPos

yPos

Creates an instance (Module) of an operator
(OperatorType).

The position of the module in the design window
you define via parameters xPos and yPos.

With FullModuleName you define the module's
hierarchical position within the design and it's
name after instantiation (e.g., Process0/branch).

Optionally, you can use the value pair
InPortMultiplicity and OutPortMultiplicity to
specify the multiplicity of the vector inputs and
vector outputs of the module.

If you use this value pair, you define the
number of ports (in operators with variable port
numbers, like BRANCH) for the module (which is
a specific instance of an operator).

In addition, you can specify the multiplicity of
individual vector ports (NamedPortMultiplicity).
You can use NamedPortMultiplicity multiple times
in one command line.

The format is PortGroup:Number.

Example: CreateModule BRANCH Process0/
branch 0 0 O:3 100 100

ConnectModules FromModule

FromModulePort

ToModule

ToModulePort

[x1 [y2 x3]]

Command for connecting modules. For
FromModule and ToModule, use hierarchical
names (names containing the hierarchical
position of a module within a design plus actual
module name, e.g., (e.g., Process0/branch).

Nodes within hierarchical boxes are identified
via the prefix "INBOUND#" or "OUTBOUND#".
Example: "OUTBOUND#O001".

Extended Functionality 241

VisualApplets User Documentation Release 3

Command Parameters Description
The optional parameters x1, y2 and x3 you use
to define the geometry of the connecting polygon
(horizontal line from FromModuleOutputPort
to x1, vertical line to y2, horizontal line to x3,
vertical line up to the height of ToModulePort,
horizontal line to ToModulePort).

CreateComment FullModuleName

Text

xPos

yPos

The content of Text can contain Unicode
characters. If you use characters that are not
part of ASCII, use the according Tcl syntax to
represent Unicode, for example:

[encoding convert from utf-8 "A-Umlaut:
\xc3\x84"]

SetParamInt FullModuleName

ParameterName

Value

Command for setting an integer parameter.

SetParamFloat FullModuleName

ParameterName

Value

Command for setting a floating point parameter.

SetParamEnum FullModuleName

ParameterName

Value

Command for setting an addressed enum
parameter. Value is the string of the enum value.

Example: Process0/module1 (SetSignalStatus),
"SetParamEnum Process0/module1 Mode High"
sets parameter Mode to High.

SetParamString FullModuleName

ParameterName

Value

Command for setting a string parameter.

SetParamIntField FullModuleName

ParameterName

Index

Value1

{OtherValues}

Command for setting integer field entries starting
with index "Index" for the following values.

SetParamFloatField FullModuleName

ParameterName

Index

Value

{OtherValues}

Command for setting float field entries starting
with index "Index" for the following values.

SetParamStatic FullModuleName

ParameterName

If a parameter can be static as well as dynamic,
in the vast majority of cases the parameter is set
to dynamic per default. Use this command to set
such a parameter to static.

SetParamDynamic FullModuleName

ParameterName

You can use this function to set a parameter
to dynamic (if the parameter can be can be
dynamic at all).

Extended Functionality 242

VisualApplets User Documentation Release 3

Command Parameters Description
SetLinkParam FullModuleName

PortName

ParameterName

Value

{ OtherParameterName

OtherParameterValue }

Command for configuring links. The connection is
identified via the connection node of a module.

SetResourceMapping FullModuleName

ResourceName

[Index]

NewMapping

Command for changing the mapping of resources
to a module. The resource ResourceName will be
mapped to the new index NewMapping. In case
the module allocates multiple resources of the
same type, use the optional parameter Index for
selecting the resource.

Further Editing Commands
Move FullModuleName

[HierNodeName]

PosX

PosY

Command for re-positioning a module, a H-Box
node, a comment box, or a simulation module to
a new position within the design window.

Use parameter [HierNodeName] only for
selecting an H-Box node. Nodes within
hierarchical boxes are identified via the prefix
"INBOUND#" or "OUTBOUND#"(like you do when
using command ConnectModules), for example,
"INBOUND#I000".

CreateSimSource FullSimModuleName

xPos

yPos

Command for creating a simulation source on the
indicated position.

CreateSimProbe FullSimModuleName

xPos

yPos

Command for creating a simulation probe on the
indicated position.

ConnectSimModule FullSimModuleName

TargetModuleName

TargetModulePortName

[xPos yPos]

Command for connecting a simulation module
with a link. The connection is identified via the
specified module (TargetModuleName) and port
(TargetModulePortName). TargetModuleName
must be located in the same hierarchy as
FullSimModuleName. Optionally, you can define
the position of the connection on the link via the
parameters xPos and yPos.

SetSimModuleProperty FullSimModuleName

Key

Value

{OtherValue}

Command for configuring a simulation module.
The following parameters can be set (in the
list below, the key word Key is followed by the
parameter values Value):

PixelAligmentOffset BITS

ImageFileSubPixels NUMBER

ImageFilePixelBits BITS

ImageFileNormalize CHOICE

Extended Functionality 243

VisualApplets User Documentation Release 3

Command Parameters Description
where CHOICE = "1" | "0" | "yes" | "no" | "on" |
"off" | "true" | "false"

CropRect [imageNr] X Y WIDTH HEIGHT

CurrentImage INDEX

AddImage FullSimSourceName

ImageFileName1

{OtherImageFileName}

[ImageLibrary]

Command for adding an image to a simulation
source. If the number of kernel elements on
the link is > 1, you need to specify as many
images as there are kernel elements on the link.
Optionally, you can specify the image library
you want to be used (ImageLibrary = "Native" |
"ImageMagick").

User Libraries
InstUserLibOperator LibName

OperatorName

FullModuleName

XPos

YPos

Command for instantiating a user library
element.

Custom Library Handling
InstCustomLibOperator LibName

OperatorName

FullModuleName

XPos

YPos

Command for instantiating a custom library
element.

Table 4.10. Commands for Creating and Editing a VA Design in Tcl

Extended Functionality 244

VisualApplets User Documentation Release 3

4.13. Print / Screenshot
VisualApplets offers the possibility to print a diagram window or copy its content as an image into the
system clipboard. The printing / screenshot is applied to the currently selected diagram window. The
full window including all operators and links will be selected for output even if parts of the content
cannot be fit into the current screen due to the limited resolution.

To start printing select the required diagram window and select File -> Print (Ctrl+P). The design
will automatically be resized.

To generate a screenshot and copy the content into clipboard select the required diagram window and
click on Edit -> Screenshot to clipboard. If you prefer to directly save the screenshot in an image
file select Edit -> Screenshot to file.

Extended Functionality 245

VisualApplets User Documentation Release 3

4.14. Migration from Older Versions
In VisualApplets version 3, files from version 1.2 and higher can be loaded.

Loading of files from previous versions might result in incomplete designs. Some names, functionality
and parameters of some links and operators might have changed. VisualApplets will adapt, add,
and transform most of the module settings to the new parameter sets. However, in some cases, an
automatic transformation cannot be performed. In any case, you should verify your implementation
if migrated from a previous version.

Migration from older versions can result in one of the following:

• “Update to Current Version” Window

When a design using operators from an older VisualApplets version is opened, VisualApplets might
ask for an update of the design to the current version.

• Open Input Links at Signal Operators

If you do not use the auto update function “Update to Current Version”, the inputs of some signal
operators might not be connected. VisualApplets offers a function to automatically connect Reset
inputs to operator Gnd and Tick inputs to operator Vcc. Simply right click on the respective operator
and select Connect to ground or Connect to Vcc.

• Missing Operators

If an operator which was previously used does not exist in the current version anymore, it is
replaced by operator Dummy. The missing operator has to be replaced. For most missing operators a
replacement is available. Read the documentation of the operator in detail in Section 20.11, 'Dummy'.

Release Notes

Check the VisualApplets release notes to get more information about changes.

Embedded VisualApplets (eVA) 246

VisualApplets User Documentation Release 3

5. Embedded VisualApplets (eVA)

5.1. Introduction
Embedded VisualApplets allows you to use the graphical FPGA development environment
VisualApplets for programming machine vision applications that will run on the FPGAs on your hardware
platforms.

You do not program the whole FPGA with VisualApplets, but only an IP Core (Intellectual Property
Core). This IP Core is embedded in your surrounding FPGA design:

Figure 5.1. Graphical Programming of Image Processing Applications on FPGAs

To fill the IP core with logic for an image processing pipeline, no HDL knowledge is required, as
VisualApplets is a graphical environment. VisualApplets also cares for the entire implementation flow.
With VisualApplets, you enable software engineers and image processing experts to program the IP
core on your hardware.

Before you can use VisualApplets to program applications for the FPGA on your hardware, you need to
integrate the IP Core into your FPGA design and to generate an eVA (embedded VisualApplets) Plugin
that provides VisualApplets with all hardware-specific details of your hardware platform.

5.1.1. Integration Workflow

You need to integrate the VisualApplets (VA) IP Core once. VA IP core: IP core in your FPGA that
you can program with image processing functionality via VisualApplets. After integration, you can re-
program the VA IP core as often as you want with as many machine vision applications as you want.

The key steps for hardware and software integration are carried out automatically by the tool eVA
Designer (which comes as part of the VisualApplets Embedder package). This speeds up the work
flow and leads to an implementation which is correct by construction.

You integrate VisualApplets into your hardware design in just a few steps:

• You install VisualApplets.

• You let eVA Designer generate an IP core black box in VHDL. The intuitive GUI supports you in
specifying the details of the future VA IP core:

• You enter some data regarding your hardware (hardware name, FPGA type, your vendor name
etc.).

Embedded VisualApplets (eVA) 247

VisualApplets User Documentation Release 3

• You specify the ports you want the VA IP core to have (image input ports, image output ports,
register interfaces, memory interfaces, GPIs and GPOs).

• You let eVA Designer generate the empty VA IP Core (VHDL black box) automatically, based on
your inputs.

• You integrate the generated IP core black box into your FPGA design (VHDL).

• You generate a netlist of your FPGA design with integrated black box.

• You create a constraints file.

• You provide the netlist and the constraints file to eVA Designer and let it generate the hardware-
platform-specific eVA Plugin Installer for VisualApplets.

• You execute the eVA Plugin Installer. After installation, the hardware-platform-specific eVA Plugin
is available in VisualApplets and allows to develop designs for the VA IP core on your FPGA.

After proceeding these steps, you can use the graphical development environment VisualApplets for
programming the VA IP Core on your FPGA. A detailed step-by-step guide for these steps you find in
Section 5.3, 'Defining the IP Core Properties'.

Once-only implementation process for a new hardware platform:

Figure 5.2. Once-Only Integration Process for new Hardware Platform

Embedded VisualApplets (eVA) 248

VisualApplets User Documentation Release 3

Figure 5.3. FPGA Design and IP Core Content as Building Blocks for Bitstream Generation

Embedded VisualApplets (eVA) 249

VisualApplets User Documentation Release 3

5.1.2. Have a Glance at VisualApplets

By implementing the VA IP Core into your FPGA design, you enable software engineers and image
processing experts to program the VA IP Core on your hardware.

VisualApplets is used to design image processing programs (applets) for FPGA-based image processing.
Designing applets with VisualApplets is easy. It is done in a graphical development environment. No
knowledge of any hardware description language is necessary. In VisualApplets, an image processing
solution is developed in form of a flow chart – without any HDL.

This is how a design looks like in VisualApplets:

Figure 5.4. VisualApplets Program Window with Image Processing Design

Designs like in the figure above will later on (after synthesis into a bitstream) populate the VA IP Core
on your hardware.

VisualApplets provides more than 200 operators. Each operator offers a specific function that may be
used in the image processing chain.

Some of the operators need to connect directly to the surrounding FPGA environment. These are:

1. Operators that receive images from the camera/sensor

2. Operators that deliver processed images at the end of the processing pipeline (e.g., operators
delivering processed images to DMA)

Embedded VisualApplets (eVA) 250

VisualApplets User Documentation Release 3

3. Buffering operators using RAM resources

4. Operators allowing signal input and output (GPIOs)

Figure 5.5. Example for a Simple Image Acquisition Applet with Interface-Requiring Operators

For data communication between these operators and the surrounding FPGA design, the VA IP Core
needs to provide according interfaces.

5.1.3. Concept of IP Core Interfaces

You can configure the interface ports of the VA IP core with a high grade of flexibility. The I/O of a VA
IP core is composed of a number of flexible and easy-to-use interfaces between the IP core and your
(surrounding) FPGA design. External hardware resources (like sensor interface, memory controller,
etc.) are linked by glue logic in your FPGA design as shown in the figure below:

Embedded VisualApplets (eVA) 251

VisualApplets User Documentation Release 3

Figure 5.6. Concept of VA IP Core Interfaces

Interfaces that use a first-in-first-out buffer (FIFO) are marked green:

There are the following types of interfaces:

• Clock: The IP core runs with two phase-synchronous design clocks where the second clock has twice
the frequency of the first clock.

• ImgIn: Interfaces for input streaming of image data Image data enters the IP core via a simple
FIFO interface where additional flags for end-of-line and end-of-frame mark the frame boundaries.
The number of ImgIn ports as well as the layout of data communicated via these ports can be
configured.

• ImgOut: Interfaces for output streaming of image data Image data leaves the IP core via
a simple FIFO interface where additional flags for end-of-line and end-of-frame mark the frame
boundaries. The number of ImgOut ports as well as the layout of data communicated via these ports
can be configured.

• MemWr/Rd: Interfaces for connecting external memory The IP core may be connected to
external memory via an abstracted memory interface where any kind of memory can be connected
via a single interface mechanism. External glue logic needs to adapt the IP core’s memory interface
protocol to the used memory controller. The number of available memory interface ports can be
configured. For each port, the interface properties may be defined individually (i.e., address and
data width).

Embedded VisualApplets (eVA) 252

VisualApplets User Documentation Release 3

• GPI, GPO : General purpose signal I/O Via GPI/GPO, signals may enter or leave the IP core. Such
signals can be used for triggering and process control. The number of GPIO signals can be configured.

• Slave IF: Register slave interface for runtime access to design parameters The slave
interface is a simple register interface controlled by address, data, and control signals synchronous
to the design clock. Controlling Reset and Enable of the implemented image processing pipeline(s)
in the IP core is also done via the slave interface.

5.1.4. Performance Classes

VisualApplets Embedder supports 12 performance classes. The individual performance classes are
defined by the maximal sensor bandwidth, the FPGA resources that can be maximally used by the
image processing application, and by the option to define memory interfaces:

You select the performance class. For pricing issues and licensing procedure, see section Section 5.6,
'Licensing Model'. You need for a specific target hardware.

For entering data to the XML file (=hardware description file), you should use the GUI tool eVA Designer
as described in section Defining the IP Core Properties. For each performance class, one XML template
is available. You use the XML template to enter

• the hardware specifics of your hardware platform,

• a description of the interfaces you need at the VA IP Core,

• the hardware-specific VisualApplets operators that connect to the interfaces from within the VA IP
core.

Available Templates

Your VisualApplets installation comes with two example platform descriptions (XML), as
well as with one template that allows you to enter the details of your own hardware
from scratch. These XML files are for testing purposes. They allow the generation of
restricted eVA Plugins. Applets created with these plugins are runtime-limited. The XML
example platform descriptions and template you find in your runtime installation, folders:

Embedded VisualApplets (eVA) 253

VisualApplets User Documentation Release 3

• VisualApplets_<version_number>\Examples\EmbeddedVisualApplets
\DemoTemplate

• VisualApplets_<version_number>\Examples\EmbeddedVisualApplets\SVDK

• VisualApplets_<version_number>\Examples\EmbeddedVisualApplets\ZC702

With your own, vendor-specific XML templates for each performance class you will be
provided directly by Basler.

5.1.5. Requirements

To integrate the VA IP Core into your FPGA design and to generate an eVA plugin that provides
VisualApplets with all hardware-specific details of your hardware platform, you need the following
components:

Hardware & Operating System:

• PC running operating systems Microsoft Windows 7, Windows 8, or Windows 10 (64bit)

• PC Memory: Minimum 4 GByte, recommended: 8 GByte or better

• Minimum available hard disk space: 500 MByte

• Target hardware platform with implemented FPGA. At the point of release of VisualApplets 3.2, FPGAs
of Xilinx Inc. starting from series 6 are supported (including Zynq7000, Series 7 FPGAs, Ultrascale,
Ultrascale+, and Zynq Ultrascale+).

Software:

• VisualApplets 3.0 (or higher)

• VisualApplets 3 license

• VisualApplets 3 Embedder license

• XML template for creating a hardware description (delivered by Basler)

Third-Party-Software for synthesizing image processing applications:

• For compiling the SDK examples, a C++ Compiler is necessary.

• For generating the actual bitstream out of your design, you need a tool suite provided by the FPGA
manufacturer. The tool flow is completely controlled by VisualApplets. You simply need to install it.
Depending on the FPGA type you have implemented, you need (at point of release of VisualApplets
3.0) either

1. Xilinx Vivado (feeless WebPACK edition or Design Suite), or

2. Xilinx ISE (feeless WebPACK edition or Design Suite).

For details, please refer to the documentation of the FPGA type you have implemented on your
hardware.

5.2. Common Interfaces for all Platforms
You define number and type of the interfaces of the VA IP core (as described Section 5.3, 'Defining
the IP Core Properties'.

However, two Interfaces are the same for all platforms: The clock interface and the register slave
interface. These will be described here before you actually start to fill in your hardware description file.

Embedded VisualApplets (eVA) 254

VisualApplets User Documentation Release 3

5.2.1. Clock Interface

In hardware, you need to provide two clock inputs to the IP core: iDesignClk and iDesignClk2x. Such
clock signals you can usually generate quite easily using a digital clock manager of the FPGA (under
your control).

These clocks must hold following requirements:

• Being phase synchronous

• Having a frequency ratio of 2 where iDesignClk2x is the faster one.

Influence of clock input on design speed: All operators of a VisualApplets design work synchronous
to the rising edge of iDesignClk.

During IP core definition in eVA Designer, you will set up an allowed frequency range constraint for
the IP core (i.e., for iDesignClk) (as described in section Section 5.3.4, 'Entering FPGA Details', step
3). This information is provided to VisualApplets. During design with VisualApplets, the VisualApplets

Embedded VisualApplets (eVA) 255

VisualApplets User Documentation Release 3

user selects a target frequency (for iDesignClk) within the allowed range. This information will be used
for synthesis and implementation: After synthesis of the VisualApplets design, the target frequency
is stored in the *.hap file (that also contains the synthesized FPGA bitstream). The runtime system
contains a function for acquiring the target design frequency from the *.hap file.

5.2.2. Register Slave Interface

The Register Slave Interface of the VA IP Core is a simple register interface controlled by address,
data, and control signals synchronous to the design clock.

Dynamic design parameters (i.e., dynamic parameters of operator instances in an image application)
are communicated via the register slave interface. The interface provides read and write operations.

The register interface has the following properties:

• I/O is synchronous to clock iDesignClk.

Embedded VisualApplets (eVA) 256

VisualApplets User Documentation Release 3

• Reset and Enable signals have no effect on register values.

• The data width is 32 bit.

• The address width of the interface is 16 bit.

• Write and read may occur simultaneously.

• Registers which are accessed through the register interface may have any width between 1 and 64.
Mapping between the slave interface data width and the actual register width of a VisualApplets
parameter is done automatically. When the width of a parameter register is bigger than the width of
the register interface the runtime software will divide the access automatically. A single parameter
then consumes more than one register address.

Figure 5.7. Ports of the Register Interface

The figure above shows the ports related to the register interface.

Writing: The communication protocol for writing is based on the write address ivRegWrAddr, the write
data ivRegWrData and the write strobe iRegWrValid. Any assertion of the high active signal iRegWrValid
initiates a single write access to a VisualApplets register with the address ivRegWrAddr. Write accesses
can be done in subsequent clock ticks so implicit bursts are allowed.

Reading: The communication protocol for reading is based on the read address ivRegRdAddr, the read
strobe iRegRdValid, and the valid signal for read data oRegRdDataValid where the data is then output
at the port ovRegRdData. Any assertion of the high active signal iRegRdValid initiates a single read
access from a VisualApplets register with the address ivRegRdAddr. The latency of the returned output
value may depend on the configuration of the eVA IP Core and the VisualApplets design.

When running a VisualApplets design in the VA IP Core on your hardware platform, the parameters
are accessible via the VisualApplets runtime software interface.

VisualApplets supports different models for accessing design parameters at runtime:

• Using an eVA runtime environment based on HAP files This approach is very similar to the
runtime interface of frame grabbers from Basler. The HAP file contains all necessary information for
accessing design specific parameters easily. A runtime software API is provided which can load HAP
files, extract the FPGA configuration data, and provide access to the design parameters.

• Using GenICam API based on generated GenICam XML code When the target platform
is connected via a GenICam compatible interface to the software this option allows a seamless
integration of image processing parameters into the GenICam API. There is no need for any additional
software component.

• Using generic, design- specific C API code generated by VisualApplets The generated code
is platform independent ANSI-C code. Callback functions for write and read access to registers via

Embedded VisualApplets (eVA) 257

VisualApplets User Documentation Release 3

the VA IP Core register slave are registered at startup. Then the code provides access to parameters
addressed by name where translation functions trigger the communication via the call back functions.
This approach is well suited for software integration in embedded systems (e.g., Zynq7000).

Automatic Generation of Runtime Interface Files

The files for a design-specific runtime interface are automatically generated by
VisualApplets (for all three access models).

The options for the runtime software interface are described in detail in Section 5.5,
'Runtime Software Interface'.

5.2.3. Reset and Enable

The VA IP Core uses the register slave interface also for controlling the Reset and Enable signals –
instead of using dedicated ports for that purpose. This way, Reset and Enable are under user control
via the runtime software, and a not a priori known number of processes can be controlled separately.

The Reset and Enable signals interact with the VA IP Core design as follows:

• Each process has its own Reset and Enable signals (high active) which are set by 1-bit registers.

• Assertion of Reset puts the complete process in its init state.

• Assertion of Enable starts processing.

• Deactivating Enable stops processing. When Enable=0, input FIFOs are not read. Regarding output
FIFOs, depending on the state of the image processing pipeline some data still may be written to them
after deasserting Enable but the flow control safely prevents that any FIFO content gets corrupted.

• Reset may only be asserted when Enable=0.

• Reset will empty all FIFOs.

• Enable has effect on any hardware specific operator with FIFO interface.

• Reset and Enable have no effect on the parameters of the operators.

• Reset and Enable have no effect on the GPIO ports.

• For any ImgIn and ImgOut interface of the IP core, there are the output ports ResetO and EnableO.
Those outputs are connected to the according Reset and Enable signals of the process where the
interface is used. Any logic attached to the concerning interface is therefore able to perform an
appropriate action during the reset and disable state.

• After deasserting Enable, the design needs to be reset before it is enabled again. Setting Enable
= 0 and subsequently Enable = 1 without asserting Reset may lead to unpredictable behavior for
some VisualApplets designs.

Recommended START procedure for a process:

1. Send Reset.

2. Assert Enable.

Recommended STOP procedure of a process:

1. Deactivate Enable.

2. Send Reset.

Any read or write access to the FIFO of any platform specific operator is enabled by the Enable signal
of the concerning process (with some design dependent latency caused by the flow control). Also the
Reset signal of a process is connected to the reset port of any I/O FIFO associated with that process.

Embedded VisualApplets (eVA) 258

VisualApplets User Documentation Release 3

5.3. Defining the IP Core Properties

For defining the interfaces of the individual VA IP Core you want to use on your FPGA, you use the
GUI tool eVA Designer. eVA Designer is part of the VisualApplets Embedder package. eVA Designer
is installed together with VisualApplets. You can use eVA Designer after acquiring a VisualApplets
Embedder license. The data you enter here will be written to the hardware description file (XML). Out
of this data, eVA Designer will later on build the IP Core black box in VHDL.

5.3.1. Graphical User Interface of eVA Designer

The graphical user interface of eVA Designer is easy and intuitive:

The GUI of eVA Designer supports you as it reacts to any of your inputs.

5.3.1.1. Graphical Representation

The graphical representation of the defined IP Core (in the left hand panel of the program window)
displays all interfaces you have defined at a given moment. The graphical representation reacts to any
input (adding or deleting interfaces) immediately.

• All interfaces using FIFOs are displayed in green.

• Multiple interfaces of the same kind are displayed accordingly:

• Up to three interfaces of the same kind are displayed as a pile of the exact number of interfaces.
Example: 2 memory interfaces:

• More than three interfaces of the same kind are displayed as a pile of three with a figure informing
about the actual number of interfaces. Example: 4 GPI and 4 GPO interfaces:

Embedded VisualApplets (eVA) 259

VisualApplets User Documentation Release 3

5.3.1.2. Output field

The output field immediately informs you if your IP core definition is not congruent with other entries
you make into eVA Designer. e.g., if the interfaces you defined don’t match the VisualApplets
operators you defined for connecting to these interfaces within the IP core.

The output field reacts to any input (like adding or deleting interfaces or operators) immediately.

5.3.2. Opening eVA Designer and Hardware Description File

To create a new IP core definition, i.e., to define the interfaces of the programmable IP core you want
to integrate into your FPGA design:

1. Start VisualApplets.

2. From the Tools menu, select eVA Designer.

The start window of eVA Designer opens:

Embedded VisualApplets (eVA) 260

VisualApplets User Documentation Release 3

3. From the File menu, select Open.

4. Select an XML template (or an HW description file you have been working on earlier) from your
file system to be loaded into eVA Designer.

The XML template is now loaded into eVA Designer:

Embedded VisualApplets (eVA) 261

VisualApplets User Documentation Release 3

Continuing Work on a Hardware Description File

You can of course also re-open individual hardware description files you have already
been working on, or one of the fully filled-in example files. In this case, the graphical
representation of the IP core shows the interfaces that have already been specified:

Figure 5.8. Example IP Core as specified for Zynq Platform

5.3.3. Entering Platform Details

1. Go to the Device tab.

2. Enter first information regarding the hardware that contains the FPGA you want to equip with
image processing applications:

• Name:Enter the name of your target hardware product.

• Display Name: Define an alias name for your hardware that you want to display in the
VisualApplets GUI. Space characters are allowed.

• Vendor (display field): Name of your company (i.e., the product’s vendor). The value of
that string is preset by Basler and cannot be changed. The vendor name will be visible in the
VisualApplets graphical user interface. (The example HW description files show DEMO in this
place.)

• ID: Enter a four-digit hexadecimal identification number of your hardware platform which can
be read out via the runtime system. You are free to enter any value here. The value is intended
for hardware identification by the VisualApplets user. Example: 0xabcd

• Version: Enter the version of your hardware product. You are free to enter any value here. The
value is intended for HW version identification by the VisualApplets user.

Embedded VisualApplets (eVA) 262

VisualApplets User Documentation Release 3

• Performance Class: Here, the performance class of the XML template you selected is displayed.
For details regarding the available performance classes, see section Performance Classes.

• Icon File (optionally): You can enter here the path to a small graphics file that will display
later in VisualApplets together with the name of your hardware platform.

5.3.4. Entering FPGA Details

1. Go to the FPGA tab.

2. Enter information regarding the FPGA you want to integrate an IP core in under Type Information
for FPGA Device:

Vendor: FPGA Vendor name (e.g., XILINX).

Architecture: FPGA series and FPGA model of your FPGA, e.g., ZYNQ7000.

Device: Device name (FPGA type) of your FPGA (without speed grade and package details), e.g.,
xc7z020.

Speedgrade: Speed grade of your FPGA, e.g., -1

Package: Package identification of your FPGA, e.g., clg484

3. Under VisualApplets Design Clock Settings, specify the properties of iDesignClk:

Min. design clock freq.: Minimum frequency of the Visual Applets Core design.

Max. design clock freq.: Maximum frequency of the Visual Applets Core design.

Default design clock freq.: Default frequency of the Visual Applets Core design.

Design clock freq. step: Step size by which the frequency of the Visual Applets Core may be
adapted.

If you specify a frequency range here (instead of entering the same value in all three upper fields),
you allow the VisualApplets user to set the design clock for a specific design to a value within your
value range. See Section 5.2.1, 'Clock Interface' for general information on the clock system.

Embedded VisualApplets (eVA) 263

VisualApplets User Documentation Release 3

Surrounding FPGA Design Needs to Support the Defined Frequency

Make sure your surrounding FPGA design provides the frequency you define here for
the IP Core design. If you allow the VisualApplets user to adapt the design clock (by
specifying a frequency range here instead of entering the same value in all three
fields), you need to make sure that

• your surrounding FPGA design has the flexibility to adapt its input to iDesignClk, and

• your FPGA design is able to provide all frequencies within the specified value range.

4. Under FPGA Resources Available for VisualApplets, enter which FPGA resources you maximally
allow an image processing application (in the VA IP Core) to use:

Max. number of LUTs: Maximum number of FPGA LUTs which may be used by the Visual Applets
design.

Max. number of Registers: Maximum number of FPGA registers which may be used by the Visual
Applets design.

Max. number of Block RAMs: Maximum number of block rams of the FPGA which may be used
by the Visual Applets design.

Max. number of embedded ALUs: Maximum number of embedded ALUs of the FPGA which may
be used by the Visual Applets design.

5.3.5. Entering Descriptions of Required ImgIn Interfaces

5.3.5.1. The ImgIn Interface of the eVA IP Core

The image streaming ports ImgIn are general purpose image communication interfaces for writing
image data from surrounding FPGA logic into the VA IP Core. The ImgIn ports consist of a simple
FIFO interface plus additional parameter ports. The interface ports are thoroughly parameterized. In
addition to the existing parameters, you can define additional registers for forwarding parameters to
the connected FPGA logic.

Image data enters the VA IP Core by interface ports of type ImgIn. Multiple classes of ImgIn ports
may be defined and for each of them multiple instances are possible.

Embedded VisualApplets (eVA) 264

VisualApplets User Documentation Release 3

Figure 5.9. Port Layout for Image Input Interface

The following table describes the interface signals where PORTID is the name of the corresponding
image input port class and X is a port number for differentiating several ports of the same class:

Port Direction Width Description
iPORTIDXClk In 1 Clock for writing to

FIFO. This input is
ignored when the
port is configured
for synchronous
communication. ImgIn
Interface configuration
is described Section
5.3.5.3, 'Defining ImgIn
Interface Classes'.

ivPORTIDXData In PORTIDWidth Write data (interpreted
as pixel data, or as
and-of-line or and-of-
frame flag)

iPORTIDXValid In 1 Perform write access

iPORTIDXEndOfLine In 1 Signal current write
access as end-of-line
notification. Write data
is then not interpreted
as pixel data.

iPORTIDXEndOfFrame In 1 Signals end of frame.
If this flag is activated
data doesn’t contain
pixel values. The end-
of-frame signal must
coincide with the end-
of-line signal.

Embedded VisualApplets (eVA) 265

VisualApplets User Documentation Release 3

Port Direction Width Description
oPORTIDXFIFOFull Out 1 Input FIFO is full,

no further data is
accepted.

ovPORTIDXFIFOCnt Out Ceil
Log2(PORTIDFIFODepth).
Ceil Log2 is the number
of bits required for
representing the value.

Number of words in
input FIFO. This signal
can be used to generate
FIFO flags like Almost
Full.

oPORTIDXReset Out 1 Reset signal of the
process

oPORTIDXEnable Out 1 Enable signal of the
process

ovPORTIDX_PARNAME_DOut S Data of the parameter
PARNAME. S depends
on the selected bit
width. This signal is
generated for each
parameter defined.

oPORTIDX_PARNAME_UpdOut 1 This signal is set to
‘1’ for one clock cycle
when the parameter
PARNAME is updated
from the runtime
software. This signal
is generated for each
parameter defined.

ovPORTIDX_FID_D Out Ceil Log2(N). Ceil Log2
(N) is the number
of bits required for
representing the value
(N-1).

Predefined parameter
which notifies about
the current image data
format. N is the number
of image formats
specified for this port.

The following figure shows the timing of image communication through an ImgIn interface for a simple
example where a frame with two lines of three 32-bit gray pixel values is transferred. In the waveform
the name part PORTIDX has been substituted by imgin.

Figure 5.10. Waveform Illustrating the Protocol on an Image Input Port

5.3.5.2. Supported ImageIn Formats

Various different protocols can be driven through a single ImgIn port. VisualApplets supports the
following image formats:

• grayXxP: gray image with X bits per pixel and parallelism P

• rgbYxP: color image with Y/3 bits per color component (red, green, blue) and parallelism P

Embedded VisualApplets (eVA) 266

VisualApplets User Documentation Release 3

• hsiYxP: color image with Y/3 bits per color component (HSI color model) and parallelism P

• hslYxP: color image with Y/3 bits per color component (HSL color model) and parallelism P

• hsvYxP: color image with Y/3 bits per color component (HSV color model) and parallelism P

• yuvYxP: color image with Y/3 bits per color component (YUV color model) and parallelism P

• ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and parallelism P

• labYxP: color image with Y/3 bits per color component (LAB color model) and parallelism P

• xyzYxP: color image with Y/3 bits per color component (XYZ color model) and parallelism P

You can define an ImgIn interface class to support any combination of these formats, provided the
platform design which is surrounding the VA IP Core supports the appropriate configuration of image
communication channels.

You can specify if pixel components are being interpreted as signed or unsigned.

5.3.5.3. Defining ImgIn Interface Classes

You can define various classes of ImgIn interfaces. Those interface classes may differ in number and
kind of supported image protocols, supported data width, used clock signals, and in many other aspects.
Each ImgIn interface class can be available more than one time on the VA IP Core.

Figure 5.11. Example of eVA IP Core

The example IP Core in the figure above shows two ImgIn classes and two ImgOut classes. Multiple
instances of both classes are available: This VA IP Core provides 7 ImgIn ports of ImgIn class ImgIn_A,
5 ImgIn ports of ImgIn class ImgIn_B, 2 ImgOut ports of ImgOut class ImgOut_a, and 5 ImgOut ports
of ImgOut class ImgOut_b.

Related Operators in VisualApplets

For each defined ImgIn class, one or more platform-specific VisualApplets ImgIn
operators may be generated later (see Section 5.3.9, 'Defining Hardware-Specific
Operators' for details). Those operators can (after IP core integration) be instantiated
within VisualApplets and then implement the interface.

If more than one interface port of the same configuration (class) exists, the instances
of the corresponding operator can connect to any of them controlled by the resource
management of VisualApplets.

Resource management of VisualApplets: In VisualApplets, for each ImgIn class a resource
with the same name is set up. In this resources dialog of VisualApplets, the allocation
can be defined.

5.3.5.3.1. Setting up ImgIn Ports

To define the ports that allow image streaming into the eVA IP Core:

Embedded VisualApplets (eVA) 267

VisualApplets User Documentation Release 3

1. Go to the ImgIn tab.

2.
Click the plus icon.

3. Into field Base Name, enter the name of the ImgIn interface class you want to define. Double-
click into the field to write.

4. In field Multiplicity, define how many ImgIn interfaces of this class you want to have on your VA
IP Core. Double-click into the field to write.

The defined ImgIn ports (in our example, 3 interfaces of class ImgInGray) are immediately visible
in the graphical representation of the IP Core:

5. Define further properties of the ImgIn interface class:

Embedded VisualApplets (eVA) 268

VisualApplets User Documentation Release 3

Flow control: This parameter decides if the VisualApplets application is allowed to temporarily
stop the incoming image data flow or not. If set to YES, the internal flow control mechanism for
pausing input data will be implemented. If set to NO, the flow control mechanism will not be
implemented. Implementation of the flow control mechanism is sensible if you have a stoppable
image source connected to the ImgIn port. If you use a non-stoppable source, select NO.

• Yes: flow control mechanism for pausing input data is implemented.

• NO: no flow control mechanism for pausing input data is implemented.

Sync. mode: This parameter signals the relation of the image interface clock (iPORTIDXClk on the
ImgIn port) and the design clock (iDesignClk on the IP Core). Following values are possible:

• SyncToDesignClk – interface ports are synchronous to iDesignClk. The external clock input of
the image interface port is ignored.

• SyncToDesignClk2x – interface ports are synchronous to iDesignClk2x. The external clock input
of the ImgIn port is ignored.

Double Pixel Depth Available

If you use iDesignClk2x for the ImgIn port, you may define an image protocol with
twice the bit depth you define for port iv..Data (i.e., the product of bit width and
parallelism can be double-size). In this case, an automatic parallel-up with factor 2
is carried out by the system.

• Async – asynchronous interface: The interface ports are synchronized to the external clock input
of the ImgIn interface.

If you select Async, you need to

• provide a clock signal at the iImgInClk port of the ImgIn interface, and to

Embedded VisualApplets (eVA) 269

VisualApplets User Documentation Release 3

• define clock domain transition constraints in the synthesis constraints (constraints file).

Double Pixel Depth Available

If you provide a clock signal frequency at the iImgInClk port that is much higher than
iDesignClk, you may define an image protocol with twice the bit depth you define for
port iv..Data (i.e., the product of bit width and parallelism can be double-size). In
this case, an automatic parallel-up with factor 2 is carried out by the system.

Use iDesignClk or iDesignClk2x

Basler recommends to use iDesignClk or iDesignClk2x for synchronization whenever
possible.

Fifo depth: Define here the depth of the buffer FIFO for input data which at least needs to be
implemented by an attached VisualApplets interface operator. The value must be a power of two
minus 1 between 15 and 1023.

Port width: Define here the width of the image data port.

5.3.5.3.2. Defining Image Protocols for an ImgIn Interface Class

You need to define the image protocols you want this ImgIn interface class to support. Define one
protocol after the other until all protocols you want to specify are there.

Related Operators in VisualApplets

After integration of the VA IP Core into your FPGA design, the developer of the image
processing application instantiates an ImgIn operator in VisualApplets and defines which
of the protocols supported by the ImgIn interface (and the operator itself) is implemented
by this operator instance in a given application.

1. Click on the arrow in column Format and select the format of your choice from the format list:

Embedded VisualApplets (eVA) 270

VisualApplets User Documentation Release 3

Find more detailed description on the supported image formats in Section 5.3.5.2, 'Supported
ImageIn Formats'.

2. Double-click on the field in column Pix.Width.

Enter the required pixel data bit width (value range: [1..64]).

The pixel data width is limited to 64 bit. The pixel data width for all non-gray color formats must
be a multiple of 3 and is limited to 63 bit.

3. Double-click on the field in column Parall. Enter the required parallelism.

The parallelism P defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from the following set of allowed values: P = {1, 2, 4, 8, 16,
32, 64}. Packing of image data into words of a given interface width N (Port width, see above)
must follow certain rules:

• The data of all P pixels must fit in a single word of length N. The data is stored LSB aligned
which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is distributed as follows:
Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

• For RGB images the three color components are packed LSB aligned into a sub word [0..Y-1]
in the following order: red uses the bits [0..Y/3-1], green the bits [Y/3..2*Y/3-1] and blue the
bits [2*Y/3..3*Y/3-1].

• For HSI color images the same rules than for RGB applies where H takes the role of red, S that
of green and I the role of blue.

• For HSL color images the same rules than for RGB applies where H takes the role of red, S that
of green and L the role of blue.

• For HSV color images the same rules than for RGB applies where H takes the role of red, S that
of green and V the role of blue.

• For YUV color images the same rules than for RGB applies where Y takes the role of red, U that
of green and V the role of blue.

Embedded VisualApplets (eVA) 271

VisualApplets User Documentation Release 3

• For YCrCb color images the same rules than for RGB applies where Y takes the role of red, Cr
that of green and Cb the role of blue.

• For LAB color images the same rules than for RGB applies where L takes the role of red, A that
of green and B the role of blue.

• For XYZ color images the same rules than for RGB applies where X takes the role of red, Y that
of green and Z the role of blue.

4. Click on the arrow in column Dimension to select the image dimension of the protocol you are
defining.

The meaning of the dimension is as follows:

• Area (default): The image is structured by end-of-line and end-of-frame markers. In
VisualApplets, image dimension Area is named 2D. An area camera could be an 2D image source.

• Line: The image is structured by end-of-line markers. There are no end-of-frame markers which
divide the incoming lines into frames. In VisualApplets, image dimension Line is named 1D. A
line camera could be an 1D image source.

• Raw: There are no end-of-line and no end-of-frame markers which divide the incoming image
data into lines and frames. The image-in stream consists of an endless pixel stream with a width
of 1 pixel. In VisualApplets, image dimension Raw is named 0D.

5. Click on the arrow in column Signedness and select the image dimension of the protocol you
are defining.

• Unsigned (default): Pixel data are interpreted as unsigned pixel components.

• Signed: Pixel data are interpreted as signed pixel components

6. Repeat steps 1 - 5 until you have defined all image protocols you want the image class to support.

Internal ID for Image Protocol Definitions

Implicitly it is assumed that the kernel size is 1x1. Each listed protocol is numbered, the
list starts from zero. These numbers form the protocol IDs for a given ImgIn class. The
ID is not displayed on the GUI. Thus, each ImgIn class you define has an internal ID list
of the image protocols you define.

In one of the next steps, you can define one or more VisualApplets ImgIn operators
the instances of which can connect to the defined ImgIn class (details how to define
operators you find in Section 5.3.9, 'Defining Hardware-Specific Operators'). To each of

Embedded VisualApplets (eVA) 272

VisualApplets User Documentation Release 3

these operators you can assign all or a subset of the image protocols you specified for
the concerning image port.

In VisualApplets, the ImgIn operator will provide a parameter where the VisualApplets
user can select an image format from a list of options. According to the selection, the
corresponding ID will be assigned to the related IP core ImgIn port (ov..FID_D). This
enables the attached glue logic to adapt its behavior according to the selected format.

5.3.5.3.3. Defining Additional Parameters for an ImgIn Interface Class

You can define additional parameters you want your ImgIn interface class to have. These (dynamic)
parameters can be set during runtime. They can be accessed via the runtime interface (see Section
5.5, 'Runtime Software Interface').

These parameters are communicated via the register slave interface (see Section 5.2.2, 'Register Slave
Interface') of the VA IP Core.

ovPORTIDX_PARNAME_D: Data of the parameter PARNAME. Direction: Out. You can define the bit
width. This signal is generated for each parameter defined.

oPORTIDX_PARNAME_Upd: Direction: Out. Bit width: 1. This signal is set to ‘1’ for one clock cycle
when the parameter PARNAME is updated from the runtime software. This signal is generated for
each parameter defined.

To define additional parameters for the ImgIn interface class:

1. Go to the Parameter ports area of the program window.

2.
Click the plus icon.

3. Into field Name, enter the name of the parameter you want to define. Double-click into the field
to write.

4. In field Width, define the width of the parameter port {1,64}. Double-click into the field to write.

Embedded VisualApplets (eVA) 273

VisualApplets User Documentation Release 3

Mapping between Slave Interface Data Width and Actual Register
Width

Registers which are accessed through the register interface may have any width
between 1 and 64. Mapping between the slave interface data width and the actual
register width of a VisualApplets parameter is done automatically. When the width
of a register is bigger than the width of the register interface the runtime software
will divide the access automatically. A single parameter then consumes more than
one register address.

5. Repeat steps 2 – 4 until you have defined all parameters you want the image class to support.

After carrying out all steps described in Section 5.3.5.3.1, 'Setting up ImgIn Ports', Section
5.3.5.3.2, 'Defining Image Protocols for an ImgIn Interface Class', and Section 5.3.5.3.3,
'Defining Additional Parameters for an ImgIn Interface Class', you have set up your first
ImgIn interface class.

6. If you need more ImgIn interface classes, define the next ImgIn Interface class by re-starting with
Section 5.3.6.3.1, 'Setting up ImgOut Ports' again.

Define as Many ImgIn Interface Classes as You Need

You can define as many interface classes as you need. For setting up the next ImgIn
interface class, start with the steps described in section Section 5.3.5.3.1, 'Setting up
ImgIn Ports' again.

5.3.6. Entering Descriptions of Required ImgOut Interfaces

5.3.6.1. The ImgOut Interface of the VA IP Core

The image streaming ports ImgOut are general purpose image communication interfaces for writing
image data from the VA IP Core into the surrounding FPGA logic. The ImgOut ports consist of a simple
FIFO interface plus additional parameter ports. The interface ports are thoroughly parameterized. In
addition to the existing parameters, you can define additional registers for forwarding parameters to
the connected FPGA logic.

Image data leaves the VA IP Core by interface ports of type ImgOut. Multiple classes of ImgOut ports
may be defined and for each of them multiple instances are possible.

Embedded VisualApplets (eVA) 274

VisualApplets User Documentation Release 3

Figure 5.12. Port Layout for Image Output Interface

The following table describes the interface signals where PORTID is the name of the corresponding
image input port class and X is a port number for differentiating several ports of the same class:

Port Direction Width Description
iPORTIDXClk In 1 Clock for reading from

FIFO. This input is
ignored when the
port is configured
for synchronous
communication.
(ImgOut interface
configuration is
described in Section
5.3.6.3, 'Defining
ImgOut Interface
Classes'.)

ivPORTIDXData Out PORTIDWidth Data for custom read

iPORTIDXRead In 1 Perform read access

iPORTIDXEndOfLine Out 1 Signals end of line. If
this flag is activated
data doesn’t contain
pixel values.

iPORTIDXEndOfFrame Out 1 Signals end of frame.
If this flag is activated
data doesn’t contain
pixel values. The end-
of-frame signal must
coincide with the end-
of-line signal.

oPORTIDXFIFOEmpty Out 1 Output FIFO is empty

ovPORTIDXFIFOCnt Out Ceil Log2(

PORTIDFIFODepth

Number of words in
output FIFO. This signal

Embedded VisualApplets (eVA) 275

VisualApplets User Documentation Release 3

Port Direction Width Description
) can be used to generate

FIFO flags like “Almost
Empty”.

oPORTIDXReset Out 1 Reset signal of the
process

oPORTIDXEnable Out 1 Enable signal of the
process

ovPORTIDX_PARNAME_DOut S Data of the parameter
PARNAME. S depends
on the selected bit
width. This signal is
generated for each
parameter defined.

oPORTIDX_PARNAME_UpdOut 1 This signal is set to
‘1’ for one clock cycle
when the parameter
PARNAME is updated
from the runtime
software. This signal
is generated for each
parameter defined.

ovPORTIDX_FID_D Out Ceil Log2(N). Ceil Log2
(N) is the number
of bits required for
representing the value
(N-1).

Predefined parameter
which notifies about
the current image data
format. N is the number
of image protocols
specified for this port.

The following figure shows the timing of image communication through an ImgOut interface for a
simple example: A frame with two lines of three 32-bit gray pixel values is transferred. In the waveform
the name part PORTIDX has been substituted by imgout.

Figure 5.13. Waveform Illustrating the Protocol on an Image Output Port

5.3.6.2. Supported ImageOut Formats

Various different protocols can be driven through a single ImgOut port. VisualApplets supports the
following image formats:

• grayXxP: gray image with X bits per pixel and parallelism P

• rgbYxP: color image with Y/3 bits per color component (red, green, blue) and parallelism P

• hsiYxP: color image with Y/3 bits per color component (HSI color model) and parallelism P

• hslYxP: color image with Y/3 bits per color component (HSL color model) and parallelism P

• hsvYxP: color image with Y/3 bits per color component (HSV color model) and parallelism P

Embedded VisualApplets (eVA) 276

VisualApplets User Documentation Release 3

• yuvYxP: color image with Y/3 bits per color component (YUV color model) and parallelism P

• ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and parallelism P

• labYxP: color image with Y/3 bits per color component (LAB color model) and parallelism P

• xyzYxP: color image with Y/3 bits per color component (XYZ color model) and parallelism P

You can define an ImgOut interface class to support any combination of these formats, provided the
platform design which is surrounding the VA IP Core supports the appropriate configuration of image
communication channels.

5.3.6.3. Defining ImgOut Interface Classes

You can define various classes of ImgOut interfaces. Those interface classes may differ in number
and kind of supported image protocols, supported data width, used clock signals, and in many other
aspects. Each ImgOut interface class can be available more than one time on the VA IP Core.

Figure 5.14. Example of eVA IP Core

The example in the figure above shows two ImgIn classes and two ImgOut classes. Multiple instances
of both classes are available: This VA IP Core provides 7 ImgIn ports of ImgIn class ImgIn_A, 5 ImgIn
ports of ImgIn class ImgIn_B, 2 ImgOut ports of ImgOut class ImgOut_a, and 5 ImgOut ports of
ImgOut class ImgOut_b.

Related Operators in VisualApplets

For each defined ImgOut class, you can later define one or more platform-
specific VisualApplets ImgOut operators (see Section 5.3.9, 'Defining Hardware-Specific
Operators' for details). Those operators can (after IP core integration) be instantiated
within VisualApplets and then implement the interface. If more than one interface port
of the same configuration (class) exists, the instances of the corresponding operator can
connect to any of them controlled by the resource management of VisualApplets.

5.3.6.3.1. Setting up ImgOut Ports

To define the ports that allow image streaming from the VA IP Core to the surrounding FPGA design:

1. Go to the ImgOut tab.

Embedded VisualApplets (eVA) 277

VisualApplets User Documentation Release 3

2.
Click the plus icon.

3. Into field Base Name, enter the name of the ImgOut interface class you want to define. Double-
click into the field to write.

4. In field Multiplicity, define how many ImgOut interfaces of this class you want to have on your
VA IP Core. Double-click into the field to write.

The defined ImgOut ports (in our example, 3 interfaces of class ImgOutGray) are immediately
visible in the graphical representation of the IP Core:

5. Define further properties of the ImgOut interface class:

Embedded VisualApplets (eVA) 278

VisualApplets User Documentation Release 3

Flow control {Yes,No}:

• Yes: If you select Yes, a flow control mechanism for pausing output data is implemented. Value
Yes allows VisualApplets designs to block reading from the output FIFO for any duration. A FIFO-
full signal signals that no further data may be written.

• NO: If you select No, no flow control mechanism for blocking output data is implemented.

Sync. mode: This parameter signals the relation of the image interface clock (iPORTIDXClk on the
ImgOut port) and the design clock (iDesignClk on the IP Core). Following values are possible:

• SyncToDesignClk – interface ports are synchronous to iDesignClk. The external clock input on
the ImgOut port is ignored.

• SyncToDesignClk2x – interface ports are synchronous to iDesignClk2x. The external clock input
on the ImgOut port is ignored.

Double Pixel Depth Available

If you use iDesignClk2x for the ImgOut port, you may define an image protocol with
twice the bit depth you define for port ov..Data (i.e., the product of bit width and
parallelism can be double-size). In this case, an automatic parallel-up with factor 2
is carried out by the system.

• Async – asynchronous interface: The interface ports are synchronized to the external clock input
of the ImgOut interface.

If you select Async, you need to

• provide a clock signal at the iPortIDXClk port of the ImgOut interface, and to

• define clock domain transition constraints in the synthesis constraints (constraints file).

Embedded VisualApplets (eVA) 279

VisualApplets User Documentation Release 3

Double Pixel Depth Available

If you use iDesignClk2x for the ImgOut port, you may define an image protocol with
twice the bit depth you define for port ov..Data (i.e., the product of bit width and
parallelism can be double-size). In this case, an automatic parallel-up with factor 2
is carried out by the system.

Use iDesignClk or iDesignClk2x

Basler recommends to use iDesignClk or iDesignClk2x for synchronization whenever
possible.

Fifo depth: Define here depth of the buffer FIFO for output data which at least needs to be
implemented by an attached Visual Applets interface operator. The value must be a power of two
minus 1 between 15 and 1023.

Port width: Define here the width of the image data port.

5.3.6.3.2. Defining Image Protocols for an ImgOut Interface Class

You need to define the image protocols you want this ImgOut interface class to support. You define
one protocol after the other until all protocols you want to specify are there.

Related Operators in VisualApplets

After integration of the VA IP Core into your FPGA design, the developer of the image
processing application instantiates an ImgOut operator in VisualApplets and defines
which of the protocols supported by the ImgOut interface (and the operator itself) is
implemented by this operator instance in a given application.

1. Click on the arrow in column Format and select the format of your choice from the format list:

Embedded VisualApplets (eVA) 280

VisualApplets User Documentation Release 3

A more detailed description of the supported image formats you find in Section 5.3.6.2, 'Supported
ImageOut Formats'.

2. Double-click on the field in column Pix.Width.

Enter the required pixel data bit width (value range: [1..64]).

The pixel data width is limited to 64 bit. The pixel data width for all non-gray color formats must
be a multiple of 3 and is limited to 63 bit.

3. Double-click on the field in column Parall. Enter the required parallelism.

The parallelism P defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from the following set of allowed values: P = {1, 2, 4, 8, 16,
32, 64}. Packing of image data into words of a given interface width N (Port width, see above)
must follow certain rules:

• The data of all P pixels must fit in a single word of length N. The data is stored LSB aligned
which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is distributed as follows:
Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

• For RGB images the three color components are packed LSB aligned into a sub word [0..Y-1]
in the following order: red uses the bits [0..Y/3-1], green the bits [Y/3..2*Y/3-1] and blue the
bits [2*Y/3..3*Y/3-1].

• For HSI color images the same rules than for RGB applies where H takes the role of red, S that
of green and I the role of blue.

• For HSL color images the same rules than for RGB applies where H takes the role of red, S that
of green and L the role of blue.

• For HSV color images the same rules than for RGB applies where H takes the role of red, S that
of green and V the role of blue.

• For YUV color images the same rules than for RGB applies where Y takes the role of red, U that
of green and V the role of blue.

• For YCrCb color images the same rules than for RGB applies where Y takes the role of red, Cr
that of green and Cb the role of blue.

• For LAB color images the same rules than for RGB applies where L takes the role of red, A that
of green and B the role of blue.

• For XYZ color images the same rules than for RGB applies where X takes the role of red, Y that
of green and Z the role of blue.

4. Click on the arrow in column Dimension to select the image dimension of the protocol you are
defining.

Embedded VisualApplets (eVA) 281

VisualApplets User Documentation Release 3

The meaning of the dimension is as follows:

• Area (default): The image is structured by end-of-line and end-of-frame markers. In
VisualApplets, image dimension Area is named “2D”.

• Line: The image is structured by end-of-line markers. There are no end-of-frame markers which
divide the incoming lines into frames. In VisualApplets, image dimension Line is named “1D”.

• Raw: There are no end-of-line and no end-of-frame markers which divide the incoming image
data into lines and frames. The image-in stream consists of an endless pixel stream with a width
of 1 pixel. In VisualApplets, image dimension Raw is named “0D”. A line camera could be an
0-D image source.

5. Click on the arrow in column Signedness and select the image dimension of the protocol you
are defining.

• Unsigned (default): Pixel data are packed as unsigned pixel components.

• Signed: Pixel data are packed as signed pixel components

6. Repeat steps 1 - 5 until you have defined all image protocols you want the image class to support.

Internal ID for Image Protocol Definitions

Implicitly it is assumed that the kernel size is 1x1. Each listed protocol is numbered, the
list starts from zero. These numbers form the protocol IDs for a given ImgOut class. The
ID is not displayed on the GUI. Thus, each ImgOut class you define has an internal ID
list of the image protocols you define.

In one of the next steps, you can define VisualApplets ImgOut operators. The instances
of these operators can connect to the defined ImgOut class (details how to define
operators you find in Section 5.3.9, 'Defining Hardware-Specific Operators'). To each
ImgOut operator you can assign all or a subset of the image protocols you specified for
the concerning image port.

In VisualApplets, the ImgOut operator will provide a parameter where the VisualApplets
user can select an image format from of a list of options. According to the selection,
the corresponding ID will be assigned to the related IP core ImgOut interface port
(ov..FID_D). This enables the attached glue logic to adapt its behavior according to the
selected format.

Embedded VisualApplets (eVA) 282

VisualApplets User Documentation Release 3

5.3.6.3.3. Defining Additional Parameters for an ImgOut Interface Class

You can define additional parameters you want your ImgOut interface class to have. These (dynamic)
parameters can be set and re-set during runtime. They can be accessed via the runtime interface (see
Section 5.5, 'Runtime Software Interface').

During runtime they are communicated via the register slave interface (see Section 5.2.2, 'Register
Slave Interface') of the VA IP Core.

ovPORTIDX_PARNAME_D: Data of the parameter PARNAME. Direction: Out. You can define the bit
width as described below. This signal is generated for each parameter defined.

oPORTIDX_PARNAME_Upd: Direction: Out. Bit width: 1. This signal is set to ‘1’ for one clock cycle
when the parameter PARNAME is updated from the runtime software. This signal is generated for
each parameter defined.

To define additional parameters for the ImgOut interface class:

1. Go to the Parameter ports area of the program window.

2.
Click the plus icon.

3. Into field Name, enter the name of the parameter you want to define. Double-click into the field
to write.

4. In field Width, define the width of the parameter port {1,64}. Double-click into the field to write.

Embedded VisualApplets (eVA) 283

VisualApplets User Documentation Release 3

Mapping between Slave Interface Data Width and Actual Register
Width

Registers which are accessed through the register interface may have any width
between 1 and 64. Mapping between the slave interface data width and the actual
register width of a VisualApplets parameter is done automatically. When the width
of a register is bigger than the width of the register interface the runtime software
will divide the access automatically. A single parameter then consumes more than
one register address.

5. Repeat steps 2 – 4 until you have defined all parameters you want the image class to support.

After carrying out all steps described in Section 5.3.6.3.1, 'Setting up ImgOut Ports', Section
5.3.6.3.2, 'Defining Image Protocols for an ImgOut Interface Class', and Section 5.3.6.3.3,
'Defining Additional Parameters for an ImgOut Interface Class', you have set up your first
ImgOut interface class.

6. If you need more ImgOut interface classes, define the next ImgOut interface class by re-starting
with Section 5.3.6.3.1, 'Setting up ImgOut Ports' again.

Define as Many ImgOut Interface Classes as You Need

You can define as many interface classes as you need. For setting up the next ImgOut
interface class, start with the steps described in Section 5.3.6.3.1, 'Setting up ImgOut
Ports' again.

5.3.7. Entering GPIO Definitions

General purpose signals IN (GPIs) and General purpose signals OUT (GPOs) may enter or leave the
VA IP Core. These signals can be used for triggering and process control.

The number of GPI and GPO signals you can configure as described below.

Any GPI or GPO signal which has been defined in the eVA platform description has a corresponding
input or output port in the VA IP Core. The signal ports will get the following names when NAME is
the name of the GPI or GPO signal as it will show up in VisualApplets:

• iSig_NAME for an input signal of width 1

• oSig_NAME for an output signal of width 1

All dedicated I/O signals are synchronous to the clock iDesignClk.

Port Direction Width Description
iSig_NAME In 1 Input signal on GPI port

Embedded VisualApplets (eVA) 284

VisualApplets User Documentation Release 3

Port Direction Width Description
oSig_NAME Out 1 Output signal on GPO

port

To define the GPI ports of the VA IP Core:

1. Go to the GPIO tab.

2.
In the General Purpose Input Signals area, click the plus icon.

3. Into the field that is available now, enter the name of the GPI port you want to define. Double-
click into the field to write.

4. Repeat steps 3 and 4 until you have defined all GPI ports you want to have available on your VA
IP Core.

5. Go to the General Purpose Output Signals area.

6.
Click the plus icon.

7. Into the field that is available now, enter the name of the GPO port you want to define. Double-
click into the field to write.

Embedded VisualApplets (eVA) 285

VisualApplets User Documentation Release 3

8. Repeat steps 7 and 8 until you have defined all GPO ports you want to have available on your
VA IP Core.

The defined GPI and GPO ports are immediately visible in the graphical representation of the IP
Core:

Related Operators in VisualApplets

For the GPI and GPO signals, you can later define one or more platform-specific
VisualApplets GPIO operators (see Section 5.3.9, 'Defining Hardware-Specific Operators'
for details). These operators are made up by connectors to one or several of the GPIO
resources.

These operators can (after IP core integration) be instantiated within VisualApplets
and then implement access to one or more GPI and/or GPO ports of the IP Core.

Embedded VisualApplets (eVA) 286

VisualApplets User Documentation Release 3

The VisualApplets environment checks for resource conflicts (the same input/output pin
cannot be used by two operator instances).

5.3.8. Defining Required Memory Interfaces

You can connect the VA IP Core to external memory via an abstracted memory interface. You can
connect any kind of memory via a single interface mechanism. You simply need to adapt the eVA
memory interface protocol via glue logic to the memory controller you use.

You can configure how many memory interface ports will be available on the VA IP Core. For each port,
you can define the interface properties individually (i.e., address and data width).

Embedded VisualApplets (eVA) 287

VisualApplets User Documentation Release 3

5.3.8.1. The Memory Interface of the eVA IP Core

When image buffer operators shall be used VisualApplets need access to external memory. In most
cases this will be a number of RAM banks. The memory interface ports are not visible within the
VisualApplets design entry. But operators which use external memory (like ImageBuffer) consume an
abstract resource called RAM handled by the resource management of VisualApplets.

The eVA memory interface has been designed in a way that allows to connect a variety of different
memory architectures via a single interface mechanism. The abstracted interface is basically a slave
interface where the external memory controller masters the access. The slave is demanding write or
read accesses via independent FIFO interfaces for writing and reading commands. The attached master
needs to acknowledge fetching a command and can perform the access at any time. A flag interface
enables the slave to notice when a demanded access has been performed. There are optional signals

Embedded VisualApplets (eVA) 288

VisualApplets User Documentation Release 3

for additional information, like the number of commands which are waiting to be fetched. Those signals
may help the memory controller master to optimize memory access.

The eVA framework is able to operate with multiple memory ports. The I/O ports of the resulting VA
IP Core get a suffix X where X is the number of the memory interface channel.

Figure 5.15. Port Layout for Memory Interface Where X Is the Index of the Interface Port

• All I/O is synchronous to the externally supplied clock iMemClkX when an asynchronous interface
is specified. Alternatively, the synchronization mode can be SyncToDesignClk where all I/O is
synchronous to iDesignClk, or SyncToDesignClk2x with I/O synchronous to iDesignClk2x.

iDesignClk2x Recommended

Basler recommends to use the iDesignClk2x clock signal on memory ports.

• Write and read requests can occur concurrently; write and read data paths to memory are completely
separated.

• Write accesses are demanded using the ports ovMemWrDataX, ovMemWrAddrX, ovMemWrFlagX,
and oMemWrReqX which in the following shall be called a write command.

• Read accesses are demanded using the ports ovMemRdAddrX, ovMemRdFlagX, oMemRdReqX which
in the following shall be called a read command.

• The controller acknowledges when an access command has been fetched. After an acknowledge
(iMemWrAckX for write, iMemRdAckX for read), in the next clock tick the next command may
be provided. The command is signalled by the according request ports (oMemWrReqX for write,
oMemRdReqX for read).

• Some VA operators require that accesses are tagged by a flag (ovMemWrFlagX, ovMemRdFlagX).
After the access has been performed, the controller must return this flag to the memory interface
(ivMemWrFlagX, ivMemRdFlagX). There is a minimal width of the tags which must be provided:

• MemWrFlagWidth >= 4

• MemRdFlagWidth >= 8

Embedded VisualApplets (eVA) 289

VisualApplets User Documentation Release 3

The following table provides a detailed description of the memory interface ports where X is a port
number for differentiating several memory ports:

Port Direction Width Description
iMemClkX In 1 Memory interface

clock. This input is
ignored when the
port is configured
for synchronous
communication.

ovMemWrDataX Out MemDataWidthX Write data output to
memory controller

ovMemWrAddrX Out MemAddrWidthX Write address

ovMemWrFlagX Out MemWrFlagWidthX Write flag output

oMemWrReqX Out 1 Write Request

iMemWrAckX In 1 Acknowledge that write
data is taken by the
memory controller

oMemWrAlmostEmptyX Out 1 Only single write
command available

ovMemWrCntX Out MemWrCntWidthX Number of available
write commands

ivMemWrFlagX In MemWrFlagWidthX Write flag output from
the controller

iMemWrFlagValidX In 1 Write flag input
valid – signals that
iMemWrFlagX is valid,
which means that
write access which
had been marked
with corresponding
oMemWrFlagX has been
executed.

Embedded VisualApplets (eVA) 290

VisualApplets User Documentation Release 3

Port Direction Width Description
ovMemRdAddrX Out MemAddrWidthX Read address output

ovMemRdFlagX Out MemRdFlagWidthX Read flag output

oMemRdReqX Out 1 Read Request

iMemRdAckX In 1 Acknowledge that
read address has been
taken by the memory
controller

oMemRdAlmostEmptyX Out 1 Only single read
address available

ovMemRdCntX Out MemRdCntWidthX Number of available
read addresses

ivMemRdFlagX In MemRdFlagWidthX Read flag input –
only valid when
iMemRdDataValidX is
asserted

ivMemRdDataX In MemDataWidthX Read data input

iMemRdDataValidX In 1 Read data valid

The following figure illustrates the interface protocol for a write and read access where both accesses
overlap. For simplicity, a memory controller with a fixed read latency of two clock cycles has been
assumed:

Figure 5.16. Waveform Illustrating the Memory Interface Protocol

5.3.8.2. Defining Memory Interfaces

You can define various classes of memory interfaces. Those interface classes may differ in supported
data width, address, used clock signals, and in many other aspects. Each memory interface class can
be available more than one time on the VA IP Core.

Embedded VisualApplets (eVA) 291

VisualApplets User Documentation Release 3

Figure 5.17. Example of VA IP Core

The example VA IP Core (in the figure above) shows two memory interface classes. Multiple instances
of both classes are available: This VA IP Core provides 1 memory interface of interface class MemIF_A
and 3 memory interfaces of interface class MemIF_B.

To define the memory interfaces of your VA IP Core:

1. Go to the Memory tab.

2.
Click the plus icon.

3. Into field Memory Type, enter the name of the memory interface class you want to define. Double-
click into the field to write.

4. In field Multiplicity, define how many memory interfaces of this class you want to have on your
VA IP Core. Double-click into the field to write.

Embedded VisualApplets (eVA) 292

VisualApplets User Documentation Release 3

The defined memory interfaces (in our example, 6 interfaces of class MemIF_A) are immediately
visible in the graphical representation of the IP Core:

5. Define further properties of the memory interface class:

Data width: Enter the data width for the memory interface class.

Address width: Enter here the address width.

Write flags count: Enter here the width of ovMemWrFlagX (minimum width: 4)

Read flags count: Enter here the width of ovMemRdFlagX (minimum width: 8)

Some VisualApplets operators require that accesses are tagged by a flag (ovMemWrFlagX,
ovMemRdFlagX). After the access has been performed, the controller must return this flag to the
memory interface (ivMemWrFlagX, ivMemRdFlagX). There is a minimal width of the tags which
must be provided: MemWrFlagWidth >= 4, MemRdFlagWidth >= 8

Sync. mode: This parameter signals the relation of the memory interface clock (iMemClkX on the
memory interface) and the design clock (iDesignClk on the IP Core). Following values are possible:

Embedded VisualApplets (eVA) 293

VisualApplets User Documentation Release 3

• SyncToDesignClk – interface ports work synchronous to iDesignClk. The external clock input to
the interface clock port is ignored.

• SyncToDesignClk2x – interface ports are synchronous to iDesignClk2x. The external clock input
to the interface clock port is ignored.

iDesignClk2x Recommended

Basler recommends to use the iDesignClk2x clock signal on memory ports.

• Async – asynchronous interface: The interface ports are synchronized to the external clock input
to clock port iMemClkX.

If you select Async, you need to

• provide a clock signal at the iMemClkX port of the memory interface, and to

• define the clock domain switch in the synthesis constraints (constraints file).

Max. pending read transfers: Enter here the maximum number of data words in the read pipeline
outside the core. This value is relevant for calculating the minimum buffer depth for incoming
read data.

6. Repeat steps 2 – 5 to define all memory interface classes you need.

5.3.9. Defining Hardware-Specific Operators

VisualApplets offers an amount of operator libraries for defining image processing applications. All
libraries – except one – are hardware independent, i.e., the contained operators can be used in any
design for any target hardware.

The only exception are operators which connect directly to the hardware that surrounds the VA IP
Core: The ImgIn interfaces, the ImgOut interfaces, and the memory interfaces. These are hardware-
specific operators, and they have to be designed together with the IP Core itself.

5.3.9.1. Defining ImgIn Operators

To define the ImgIn operators for your target hardware:

1. Go to the VisualApplets Operators tab.

Embedded VisualApplets (eVA) 294

VisualApplets User Documentation Release 3

2. Go to the ImgIn Operators tab.

Under tab ImgIn Operators, you find a list of the ImgIn interface classes you have defined earlier.

(In our example, these are ImgIn_A and ImgIn_B.)

3. Click on the ImgIn interface class for which you want to define connecting ImgIn operators.

4.
Click the plus icon.

Now, the options for defining operators for this ImgIn interface class are displayed:

5. Into field Operator, enter the name of the operator you want to define. Double-click into the field
to write.

6. In field Icon file, define path to an icon file that will be displayed in VisualApplets on the
graphical representation of the operator. How the complete graphical representation will look like
in VisualAplets you can see in the right upper panel of the program window:

Embedded VisualApplets (eVA) 295

VisualApplets User Documentation Release 3

7. In field Help file, define path to an HTML help file that describes the operator and its parameters.
Click the plus icon to select a file from your file system. The name of the start *.html file must
be named <nameofOperator>.html and be placed in the first place. Other files may be images,
CSS files, etc.

8. Repeat step 7 if you want to add more than one file containing information on this operator. You
can load a batch of files (i.e., a HTML file system with graphics files) in one step. The first HTML
file you list here will be regarded as the main help file (starting point for help file system).

The main help file will be visible in the VisualApplets help panel as soon as a user instantiates an
operator, clicks on the operator instance in the design window and presses F1:

Embedded VisualApplets (eVA) 296

VisualApplets User Documentation Release 3

Panel Image protocol selection displays the image protocols attached to the selected interface
class:

9. Select here the image protocol(s) you want this operator to support.

10. If you want to, define maximal image width and maximal image height for a selected image protocol
in the two last columns.

11. Repeat steps 4 – 10 to define additional operators being connectible to the selected interface class.

12. Repeat steps 3 – 10 to define operators for the other interface classes.

5.3.9.2. Defining ImgOut Operators

To define the ImgOut operators for your target hardware:

1. Go to the VisualApplets Operators tab.

2. Go to the ImgOut Operators tab.

Embedded VisualApplets (eVA) 297

VisualApplets User Documentation Release 3

Under tab ImgOut Operators, you find a list of the ImgOut interface classes you have defined
earlier. (In our example, these are ImgOut_a and ImgOut_b.)

3. Click on the ImgOut interface class for which you want to define connecting ImgOut operators.

4.
Click the plus icon.

Now, the options for defining operators for this ImgOut interface class are displayed:

5. Into field Operator, enter the name of the operator you want to define. Double-click into the field
to write.

6. In field Icon file, define the path to an icon file that will be displayed in VisualApplets on the
graphical representation of the operator. How the complete graphical representation will look like
in VisualAplets you can see in the right upper panel of the programm window:

Embedded VisualApplets (eVA) 298

VisualApplets User Documentation Release 3

7. In field Help file, define path to an HTML help file that describes the operator and its parameters.
Click the plus icon to select a file from your file system.

8. Repeat step 7 if you want to add more than one file containing information on this operator. You
can load a batch of files (i.e., a HTML file system with graphics files) in one step. The first HTML
file you list here will be regarded as the main help file (starting point for help file system).

The main help file will be visible in the VisualApplets help panel as soon as a user instantiates an
operator, clicks on the operator instance in the design window, and presses F1.

Panel Image protocol selection displays the image protocols attached to the selected interface
class:

9. Select here the image protocol(s) you want this operator to support.

10. If you want to, define maximal image width and maximal image height for a selected image protocol
in the two last columns.

11. Repeat steps 4 – 10 to define additional operators being connectible to the selected interface class.

12. Repeat steps 3 – 10 to define operators for the other interface classes.

5.3.9.3. Defining GPIO Operators

You can define GPIO operators that provide an configurable number of GPI and GPO ports. When
designing image processing applications, the user can connect these ports to the actual GPI and GPO
ports of the eVA IP Core.

To define GPIO operators for your target hardware:

Embedded VisualApplets (eVA) 299

VisualApplets User Documentation Release 3

1. Go to the VisualApplets Operators tab.

2. Go to the GPIO Operators tab.

3.
Click the plus icon.

4. Into the field that opens, enter the name of the operator you want to define. Double-click into
the field to write.

5. In field Icon file, define path to an icon file that will be displayed in VisualApplets on the
graphical representation of the operator. How the complete graphical representation will look like
in VisualAplets you can see in the right upper panel of the programm window.

6. In field Help file, define path to an HTML help file that describes the operator and its parameters.
Click the plus icon to select a file from your file system.

Embedded VisualApplets (eVA) 300

VisualApplets User Documentation Release 3

7. Repeat step 6 if you want to add more than one file containing information on this operator. You
can load a batch of files (i.e., a HTML file system with graphics files) in one step. The first HTML
file you list here will be regarded as the main help file (starting point for help file system).

The main help file will be visible in the VisualApplets help panel as soon as a user instantiates an
operator, clicks on the operator instance in the design window, and presses F1.

Panel GPIO port selection displays the GPI and GPO interfaces you defined for the eVA IP Core:

8. Select here the GPI and GPO ports of the IP core you want this operator to be able to connect to.

9. Repeat steps 3 – 8 to define additional operators being connectible to GPI and GPO ports of the
IP core.

Embedded VisualApplets (eVA) 301

VisualApplets User Documentation Release 3

5.3.10. Generating VHDL Code for the IP Core

After you defined the IP Core black box as described in sections Section 5.2, 'Common Interfaces for
all Platforms' to Section 5.3.9, 'Defining Hardware-Specific Operators', you can build the IP Core black
box (VHDL). In Section 5.4, 'Embedding and Simulating the IP core', you will integrate this black box
into you your FPGA design.

Together with the IP Core black box, eVA Designer automatically generates a simulation environment
for the individual interfaces you defined, and an according test bench. Section Section 5.4, 'Embedding
and Simulating the IP core' describes in detail how you can use them.

For generating the IP core black box, you do not need to specify any build flow details. Also the
hardware-specific operators you may define at a later stage.

To generate the IP Core black box:

1. Enter all information regarding your target hardware and the required IP Core interfaces as
described in sections Section 5.2, 'Common Interfaces for all Platforms' to Section 5.3.9, 'Defining
Hardware-Specific Operators'.

2. Open the XML or *.eva file containing your hardware and core interface description.

3. From menu Tools, select Generate VHDL …

4. Create a dedicated directory where you will to store the generated files.

Embedded VisualApplets (eVA) 302

VisualApplets User Documentation Release 3

5. Click on Select Directory. Now, all related files are generated automatically. You find them in
the selected directory:

6. Follow the instructions in section Section 5.4, 'Embedding and Simulating the IP core'. You will
learn about

a. integrating the IP core black box (that you’ve just created) into your FPGA design (VHDL),

b. using the stimuli and simulation files that support you during VHDL integration.

5.4. Embedding and Simulating the IP core
You are ready now to integrate the IP core into your surrounding FPGA design. This basically means
implementing and connecting converters between the data communication protocols of the target
hardware and the protocols at the IP core interfaces. In particular, you need to care for connecting
external interfaces like memory controller, sensor interface and data output.

Embedded VisualApplets (eVA) 303

VisualApplets User Documentation Release 3

When you generated the IP core black box (as described in section Section 5.3.10, 'Generating VHDL
Code for the IP Core'), not only the IP core black box itself was generated. In the same step, a whole
test bench was generated that is already tailored to test the individual interfaces of the IP core while
you integrate them into your HDL design.

The test bench enables simulation of data communication through the IP core interfaces during HDL
integration. The tools generated for HDL simulation focus on testing the interface protocols and
generating stimuli for the circuits attached to the core in the top-level architecture (your HDL design).

In the test bench, each individual interface port which may later be connected via a corresponding
VisualApplets operator is simulated independently, driven by file I/O. The simulation entity consists
of the following elements:

• Emulation of slave interface for register access: Configured by file, the simulation module
provides a set of registers which can be written and read. There are dedicated registers which connect
to the enable and reset signals. You can configure different processes. The actual number of processes
of an image processing application is later (after integration) defined in the VisualApplets design. For
simulation, you define the number of processes as described in section Emulation of Slave Interface. .
Enable and Reset are the only signals which connect to the other simulation modules whose affiliation

Embedded VisualApplets (eVA) 304

VisualApplets User Documentation Release 3

to a process you can specify through simulation entity parameters (see below). The register interface
emulator provides the option to change register values over time according to a stimuli file. In the
stimuli file, you can set a value and define when a value should be changed (i.e., set 1, after 10.000
clock cycles set 0).

• Emulator of image source connected to ImgOut ports. Stimulated by file, this kind of module outputs
image data to the ImgOut interface of the IP core. The image protocol ID you can configure according
to the image protocols you specified for an image output port.

• Emulator of frame sink connected to ImgIn ports. This kind of module emulates an operator which is
connected to the ImgIn interface of the IP core. The image protocol ID you can configure according to
the image protocols you specified for an image input port. The module writes the received data to file.

• Memory port emulator which acts as if a module is connected which uses RAM. The sequence of write
and read accesses is stimulated by a file and read data is output to file.

• GPIO emulator. Each GPIO signal for output is driven by a signal generator which is configured by a
file. Each GPIO signal input is monitored and changes of the signal are written to a report file.

Embedded VisualApplets (eVA) 305

VisualApplets User Documentation Release 3

Figure 5.18. Example Test Bench for IP Core with 1 ImgIn Interface, 1 ImgOut Interface, 1 Memory
Interface, 1 GPI, 1 GPO, and Slave Interface

5.4.1. Simulation Framework

For RTL level simulation, a VHDL file eVA_Design.vhdl has been created. This file contains a package
with name eVA_<PLATFORMNAME> (<PlatformName> is the platform name you defined as
described in Section 5.3.3, 'Entering Platform Details'). This package contains two components:

• eVA_Design: black box for the Visual Applets IP Core

• eVA_Design_Emulator: emulator of Visual Applets IP Core: The emulator implements the file-
based stimuli generation for a simulation test bench.

Embedded VisualApplets (eVA) 306

VisualApplets User Documentation Release 3

The following shows the code in file eVA_Design.vhdl which would be generated for a most simple
VA IP Core consisting only of the slave interface for register access:

 component eVA_Design
 generic(

 RegIFDataWidth : integer := 32;
 RegIFAddrWidth : integer := 16);

 port(

 iDesignClk: in std_logic := '0';
 iDesignClk2x: in std_logic := '0';

 ivRegWrData: in std_logic_vector(RegIFDataWidth-1 downto 0) := (others=>'0');
 ivRegWrAddr: in std_logic_vector(RegIFAddrWidth-1 downto 0) := (others=>'0');
 iRegWrValid: in std_logic := '0';

 ivRegRdAddr: in std_logic_vector(RegIFAddrWidth-1 downto 0) := (others=>'0');
 iRegRdValid: in std_logic := '0';
 ovRegRdData: out std_logic_vector(RegIFDataWidth-1 downto 0) := (others=>'0');
 oRegRdDataValid: out std_logic := '0'

);
 end component;

 component eVA_Design_Emulator
 generic(

 RegIFDataWidth : integer := 32;
 RegIFAddrWidth : integer := 16;
 NrOfProcesses: integer := 2;
 RegisterDefinitionFile: string := ""

);
 port(

 iDesignClk: in std_logic := '0';
 iDesignClk2x: in std_logic := '0';

 ivRegWrData: in std_logic_vector(RegIFDataWidth-1 downto 0) := (others=>'0');
 ivRegWrAddr: in std_logic_vector(RegIFAddrWidth-1 downto 0) := (others=>'0');
 iRegWrValid: in std_logic := '0';

 ivRegRdAddr: in std_logic_vector(RegIFAddrWidth-1 downto 0) := (others=>'0');
 iRegRdValid: in std_logic := '0';
 ovRegRdData: out std_logic_vector(RegIFDataWidth-1 downto 0) := (others=>'0');
 oRegRdDataValid: out std_logic := '0'

);
 end component;

More detailed information about emulating the individual kinds of IP core interfaces you find in the
following subsections.

5.4.1.1. Emulation of Slave Interface

The eVA design emulator has a parameter NrOfProcesses. This parameter is an integer within the
range 1 to 16. The parameter has the effect that a set of predefined registers for resetting and enabling
the design are created. Following addresses will be configured:

• 0x00: Global Reset

• 0x01: Global Enable

• 0x02 * (i+1): Process Reset for process i (i < NrOfProcesses).

• 0x02 * (i+1) + 0x01: Process Enable for process i (i < NrOfProcesses).

Embedded VisualApplets (eVA) 307

VisualApplets User Documentation Release 3

So when NrOfProcesses = 2 the first 6 addresses of the slave interface address space will be used for
controlling reset and enable of the emulated design. Each image port will be affiliated to one pair of
reset and enable signals controlled by the above registers. After integration, the VisualApplets user
will affiliate an interface to a process, as he instantiates an operator as component of a process and
connects this operator instance to an interface.

The emulator for the slave interface for register access is further configured by a text file which is
set by the entity parameter RegisterDefinitionFile as provided in the above VHDL code. The parameter
is set automatically during black box and test bench generation as described in section Generating
VHDL Code for the IP Core.

The following commands may be present in the register definition file:

Command Description
REM Rest of line is comment

DEF Define register. This command has the following
syntax:
DEF <addr> <width> <write_read>
<init_value>

with the parameters:

<init_value>: hexadecimal initial value

<addr>: hexadecimal value of register address

<width>: bit width of register

<write_read>: 1 for write register, 0 for read
register

CON Connect write register to read register. This
command has the following syntax:
CON <wrRegAddr> <rdRegAddr>

with the parameters:

<wrRegAddr>: address of write register (hex)

<rdRegAddr>: address of read register (hex)

WCK Wait for a number of clock cycles. The syntax is
as follows:
WCK <clock_ticks>

with <clock_ticks> giving the number of clock
ticks in hexadecimal format.

SET Set value of read register
SET <rdRegAddr> <value>

with the parameters:

<rdRegAddr>: address of read register (hex)

<value>: hexadecimal register value

After the last parameter of any command, you can add a comment preceded by ‘#’.

The following code is an example register definition file which configures two write and two read
registers, where one read register is preset after 16 clock cycles (address 0x7) and the other read
register (address 0x6) is driven by the write register with address 0x6:

 REM **
 REM Command formats: DEF <addr> <width> <write_read> <init_value>

Embedded VisualApplets (eVA) 308

VisualApplets User Documentation Release 3

 REM CON <wrRegAddr> <rdRegAddr>
 REM WCK <clock_ticks>
 REM SET <rdRegAddr> <value>
 REM **
 DEF 0006 10 1 00000000 #define write reg with width 0x10 at address 0x6
 CON 0006 0006 #create read reg with addr 0x6 connected to
 REM write register with address 0x6
 DEF 0007 20 1 00000000 #define write reg with width 0x20 at address 0x7
 DEF 0007 10 0 00000000 #define read register at address 0x7
 WCK 0010 #wait for 16 clock cycles
 SET 0007 0000000C #set read register value

5.4.1.2. Emulation of ImgOut Interface

The emulation of image communication interfaces of type ImgOut is driven by a stimuli file providing
information about the sequence of data output.

For any present ImgOut port, the eVA_Design_Emulator entity has a generic
<PORTIDX>_StimuliFileName where <PORTIDX> is the name of the corresponding image output
port class followed by the port number. Each line within the given file must follow the syntax

<Command> <Data> <EndOfLine> <EndOfFrame> <DataValid>

where <Command> is a three letter command, <Data> provides an hexadecimal data word, and
the three remaining parameters correspond to the image protocol flags.

The following table describes the available commands:

Command Description
DAT Data command. This command provides

data which will become output at the port
ovPORTIDXData and the associated image
protocol flag ports.

WCK Wait command. The parameter <Data> provides
the number of clock ticks for which the command
interpreter pauses.

FID Set FID output. The parameter <Data> provides
the value to which the port ovPORTIDX_FID_D
will be set.

PDX Set the X’th port parameter output to the
value provided with <Data>, where X may be
a number between 0 and 9. If for example the
first parameter output of the ImgOut port is
ovPORTIDX_D

To any command line you can add a comment, preceded by ‘#’.

The following code is an example stimuli file which causes the output of an 3x2-image followed by a
parameter change (including FID) and output of a second image with dimension 3x1:

 DAT 00000000 0 0 0 #Format: Cmd Data(hex) EndOfLine EndOfFrame DataValid
 DAT 0000001a 0 0 1
 DAT 0000001b 0 0 1
 DAT 0000001c 0 0 1
 DAT 00000000 1 0 1
 DAT 0000002a 0 0 1
 DAT 0000002b 0 0 1
 DAT 0000002c 0 0 1
 DAT 00000000 1 1 1
 WCK 00000004 0 0 0
 FID 00000001 0 0 0
 PD0 00000011 0 0 0

Embedded VisualApplets (eVA) 309

VisualApplets User Documentation Release 3

 PD1 00000022 0 0 0
 PD2 00000033 0 0 0
 WCK 00000001 0 0 0
 DAT 0000003a 0 0 1
 DAT 0000003b 0 0 1
 DAT 0000003c 1 1 1
 DAT 00000000 0 0 0
 DAT 00000000 0 0 0
 DAT 00000000 0 0 0

The reset and enable ports of the concerning image communication interface are connected to
dedicated registers of the slave interface where the affiliation to a process is done according to a
parameter <PORTIDX>_ProcessID.

5.4.1.3. Emulation of ImgIn Interface

The emulation of image communication interfaces of type ImgIn is driven by a stimuli file where
information is provided about the sequence of parameter states.

For any present ImgIn port, the eVA_Design_Emulator entity has a generic
<PORTIDX>_StimuliFileName where <PORTIDX> is the name of the corresponding image input
port class followed by the port number. The syntax is exactly the same as in the case of the stimuli for
ImgOut interfaces except that no DAT command is available. A simple stimuli file may look like,

 WCK 00000010 0 0 0 #Format: Command Data(hex) EndOfLine EndOfFrame DataValid
 FID 00000001 0 0 0
 PD0 00000111 0 0 0
 PD1 00000222 0 0 0
 PD2 00000333 0 0 0
 WCK 00000001 0 0 0

where the parameters <EndOfLine>,<EndOfFrame> and <DataValid> are actually meaningless.

The ImgIn interface emulator writes the received data to file. For that purpose the
eVA_Design_Emulator entity has a generic <PORTIDX>_DumpFileName. During simulation, a file
with the given name is created and the data is written using DAT and WCK commands in a format
which exactly corresponds to the stimuli file format for an ImgOut interface emulator.

The reset and enable ports of the concerning image communication interface are connected to
dedicated registers of the slave interface where the affiliation to a process is done according to a
parameter <PORTIDX>_ProcessID.

5.4.1.4. Emulation of Memory Communication

The emulation of memory communication is driven by a stimuli file where information is provided about
the sequence of accesses.

For any present memory port, the eVA_Design_Emulator entity has a generic
Mem<X>_StimuliFileName where <X> is the port number. The stimuli file consists of lines with
following syntax,

<WrData> <WrAddr> <WrFlag> <WrReq> <RdAddr> <RdFlag> <RdReq>

where the elements have the following meaning:

<WrData>: hexadecimal data word intended for port ovMemWrDataX

<WrAddr>: hexadecimal write address (for ovMemWrAddrX)

<WrFlag>: hexadecimal write flag (for ovMemWrFlagX)

Embedded VisualApplets (eVA) 310

VisualApplets User Documentation Release 3

<WrReq>: write request (oMemWrReqX)

<RdAddr>: hexadecimal read address (for ovMemRdAddrX)

<RdFlag>: hexadecimal read flag (for ovMemRdFlagX)

<RdReq>: read request (oMemRdReqX)

To any command line, you can add a comment preceded by ‘#’.

The following code is an example stimuli file which causes the output of two images each consisting
of four data words:

 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 000000000000000a 000000 0 1 000000 00 0 #Write 0xa to address 0x0
 000000000000000b 000001 0 1 000000 00 0 #Write 0xb to address 0x1
 000000000000000c 000002 0 1 000000 00 0 #Write 0xc to address 0x2
 000000000000000d 000003 1 1 000000 00 0 #Write 0xd to address 0x3
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 000000000000000e 000104 1 1 000000 00 0 #Write 0xe to address 0x10a
 00000000000000bb 000001 0 1 000000 00 0 #Write 0xbb to address 0x1
 0000000000000000 000000 0 0 000000 00 1 #Read from address 0x0
 0000000000000000 000000 0 0 000001 00 1 #Read from address 0x1
 0000000000000000 000000 0 0 000002 00 1 #Read from address 0x2
 0000000000000000 000000 0 0 000003 01 1 #Read from address 0x3
 000000000000000e 000000 0 0 000104 00 1 #Read from address 0x104
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0
 0000000000000000 000000 0 0 000000 00 0

Read data returned from the memory to the emulator is written to a file. For providing the file name
the eVA_Design_Emulator entity has a generic Mem<X>_DumpFileName. The dump lines have the
following format,

<RdData> <RdFlag>

where the elements have the following meaning:

<RdData>: hexadecimal data word according to port ivMemRdDataX

<RdFlag>: hexadecimal value of read flag according to port ivMemRdFlagX

5.4.1.5. GPIO Emulation

The emulation of dedicated output signals is done for each signal independently, driven by a stimuli
file. There information is provided about the sequence of signal states.

The stimuli file may consist of a number of commands which are described below. For any present
output signal port the eVA_Design_Emulator entity has a generic oSig_<NAME>_StimuliFileName
where <NAME> is the concerning port name.

The following table describes the available commands:

Command Description
SET Set signal. This command provides the signal

state to which the output at the port oSig_NAME

Embedded VisualApplets (eVA) 311

VisualApplets User Documentation Release 3

Command Description
will be set. The next command will be executed
one clock tick later. It has the syntax
SET <value>

where <value> may be 0 or 1.

WCK Wait command. It has the syntax
WCK <ticks

where the parameter <ticks> provides the
number of clock ticks for which the signal will be
held constant.

RST Restart from begin. The command interpreter will
start again from the first line of the stimuli file.
This command does not have any parameters.
The command will execute the first command
of the file at the same clock tick allowing
assembling a loop without a gap.

STP Stop at current state. The command interpreter
will stop and the current signal state will be held
constant until end of simulation. This command
does not have any parameters.

To any command line you can add a comment, preceded by ‘#’.

The following code is an example stimuli file which causes the output signal toggling being low for 5
clock cycles and high for 7 clock cycles (synchronous to iDesignClk):

 SET 0 # deassert output
 WCK 0004 # wait for 4 clock cycles
 SET 1 # assert output
 WCK 0006 # wait for 6 clock cycles
 RST # restart from begin

Dedicated input signals are monitored writing a dump file iSig_<NAME>_DumpFileName where
<NAME> is the concerning port name. The file is composed of SET and WCK commands exactly
corresponding to the commands of the stimuli file for a dedicated output signal.

5.4.2. Embedding the IP Core

To embed the IP core:

1. Integrate all interfaces of the IP core black box into your top-level HDL design. For testing the
interfaces as you implement them step by step, use the test bench which has been generated
together with the black box (as described in section Section 5.4.1, 'Simulation Framework').

2. After you have fully integrated all black box interfaces into your HDL design, generate a netlist
of your design.

3. Create a constraints file.

5.4.3. Entering Build Flow Details

Before you can actually generate the eVA Plugin that will introduce your HW specific IP core with all
its interface specifications to VisualApplets, you need to add some further details to your hardware
description file (*.xml or *.eva) via the GUI of eVA Designer:

1. Start VisualApplets and open eVA Designer.

Embedded VisualApplets (eVA) 312

VisualApplets User Documentation Release 3

2. Go to the Build Flow tab.

3. Under Top Level FPGA Design Files, enter the paths to the files you created:

Top level netlist: Specify the path to your top level netlist (netlist of your overall FPGA design
including wrapped VisualApplets core black box).

Top level constraints: Specify the path to your user constraints file for your top level netlist
(netlist of your overall FPGA design including wrapped VisualApplets core black box). If you use the
Xilinx ISE tool chain, this is a *.ucf file, if you use the Xilinx Vivado tool chain, this is an *.xdc file.

4. Under Additional FPGA Design Files, specify the path to these files if required. Such files may
be further netlists for additional IP cores with constraint files, etc.

Under Xilinx Build Settings, you now need to specify the tool chain you will be using. Bitstream
synthesis requires a 3rd party software: Depending on the used FPGA, this is either Xilinx Vivado
WebPACK (free), Xilinx Vivado Design Suite, Xilinx ISE WebPACK (free), or Xilinx ISE Design Suite
(registered trade marks of Xilinx Corp.).

5. Select the Vivado or ISE tab, according to the Xilinx tool chain you use for synthesizing the FPGA
bit stream.

6. Enter the details for your tool chain.

Vivado:

Embedded VisualApplets (eVA) 313

VisualApplets User Documentation Release 3

If you use Xilinx Vivado, provide the following details:

Translate Cmd: Command line for the link_design step of the Vivado implementation flow.

Optimize Cmd: Command line for the opt_design step of the Vivado implementation flow.

Place Cmd: Command line for the place_design step of the Vivado implementation flow.

Route Cmd: Command line for the route_design step of the Vivado implementation flow.

Bitgen Cmd: Command line for the write_bitstream step of the Vivado implementation flow.

ISE:

If you use Xilinx ISE, provide the following details:

Translate command: Command line for the translate step of the ISE implementation flow.

Map command: Command line for the map step of the ISE implementation flow.

Par command: Command line for the place and route step of the ISE implementation flow.

Bitgen command: Command line for the configuration bit stream generation step of the ISE
implementation flow.

7. Under Supplementary Files, enter additional files you want to have available in the hardware
specific directory of VisualApplets if required. Such files might be user documentation, build flow
plug-ins, scripts, documents, help tools, etc.

Embedded VisualApplets (eVA) 314

VisualApplets User Documentation Release 3

After you have entered all details regarding the build flow, you are ready to generate the eVA plugin
installer for your target hardware.

5.4.4. Creating the eVA Plugin

The hardware-specific eVA plugin for VisualApplets is created out of the following files:

• Mandatory:

• Hardware description file (*.xml), including operator definitions (see Section 5.3.9, 'Defining
Hardware-Specific Operators')

• Top-level netlist, including wrapped IP core black box (*.ngc / *.edn) (see box below)

• Constraints file (*.ucf format if you use Xilinx ISE, *.xdc format if you use Xilinx Vivado) (see
box below)

• Optional:

• Icon file for the hardware device (*.png) for graphical representation of hardware in VisualApplets
GUI

• Icon files for the individual hardware-specific operators (*.png) for graphical representation of
operators in VisualApplets GUI

• Help files for the platform specific operators (*.html)

All these files you have already entered to eVA Designer while working through the steps described in
sections Section 5.3, 'Defining the IP Core Properties' and Section 5.4.3, 'Entering Build Flow Details'.

VisualApplets IP Core Netlist Generation

You can also create a plugin installer without top-level netlist and constraints file. After
installation, you will be able to see how the integration looks like in VisualApplets
(available hardware-specific operators etc.).

However, with a plugin that doesn’t contain the top-level netlist and constraints file, you
cannot build applets that can run on your hardware platform.

To build the actual eVA Plugin for VisualApplets, you have two options. You can either

• Build and immediately install the eVA Plugin into the VisualApplets installation on your machine.

• Build an executable eVA plugin installer which you can provide to colleagues and/or customers.

5.4.4.1. Direct Installation of Plugin

If you want to test or use the plug-in directly on the machine you have been developing it:

1. In eVA Designer, open the Build menu.

Embedded VisualApplets (eVA) 315

VisualApplets User Documentation Release 3

2. Select menu item Install Plug-in ...

3. Enter the path to your VisualApplets installation directory, or confirm the suggested installation
directory.

You are informed about the successful installation:

The files of the plug-in you find in the VisualApplets installation directory, subdirectory eVA/
platforms/<devicename>:

5.4.4.2. Building the eVA Plugin Installer

To create an executable that you can forward to VisualApplets developers that will design image
processing applications for your hardware:

1. In eVA Designer, open the Build menu.

2. Select menu item Generate Plug-in ...

Embedded VisualApplets (eVA) 316

VisualApplets User Documentation Release 3

3. Select the target folder where you want to save the plugin.

As soon as you select the target folder, the eVA Plugin is created immediately. You are informed via
message that your build was successful:

The plugin is available in the specified folder:

You can now distribute the plugin.

5.4.4.3. Executing the eVA Plugin Installer

To install the eVA Plugin into an existing VisualApplets installation:

1. Close your VisualApplets installation.

2. Double-click the plugin *.exe file in your file system.

3. Follow the instructions of the installer. The installer automatically suggests the installation directory
of VisualApplets:

Embedded VisualApplets (eVA) 317

VisualApplets User Documentation Release 3

4. Click Finish to complete the installation process.

5.4.5. Using the Installed eVA Plugin

After installation, you can design new image processing applications for your platform in VisualApplets:

1. Open VisualApplets.

2. From menu File, select New.

Now, you can select your hardware platform and start designing in VisualApplets:

For information how to design image acquisition and processing applications with VisualApplets, consult
the comprehensive VisualApplets online Documentation at 2. Getting Started.

5.5. Runtime Software Interface
VisualApplets supports different models for accessing design parameters at runtime:

• Using eVA runtime environment based on HAP files

• Using GenICam API based on generated GenICam XML code

• Using generic, design-specific C API code generated by VisualApplets

Embedded VisualApplets (eVA) 318

VisualApplets User Documentation Release 3

5.5.1. HAP-Based eVA Runtime Interface

VisualApplets controls synthesis and implementation of the FPGA design. The resulting design is saved
in a proprietary Basler file format (*.hap). This format contains the configuration bitstream for the
FPGA and means for realizing a design-specific software interface.

In general, VisualApplets operators contain dynamic parameters which can be modified during runtime.
The HAP file contains all necessary information for accessing design specific parameters easily.

For proper function of the runtime software on the user platform, the following requirements must
be fulfilled:

• The user needs access to the FPGA bitstream as he needs to do the configuration. For that purpose,
the runtime interface provides the function vaRt_GetConfig().

• For accessing the slave interface for the design registers, the user must implement the functions
WriteReg32(), ReadReg32(), or optionally WriteReg64() and ReadReg64(). The runtime software
is notified about these functions when the function vaRt_InitParams() is called.

Then the VisualApplets bitstream can be configured and the runtime software can write and read design
parameters.

The register access functions must comply with following function types:

 typedef int ReadReg32(void* device, const uintptr_t address, uint32_t *value)
 typedef int WriteReg32(void* device, const uintptr_t address, uint32_t value)
 typedef int ReadReg64(void* device, const uintptr_t address, uint64_t *value)
 typedef int WriteReg64(void* device, const uintptr_t address, uint64_t value)

The software interface library provides additional functions for controlling the VisualApplets design. In
the following table, the full set of access functions is listed:

Nr. Function Description
1 vaRt_OpenHap() Opens the hardware applet

*.hap and returns a pointer to
the HAP structure which serves
as a handle for further accesses.

2 vaRt_CloseHap() Closes the hardware applet
which has been opened by
vaRt_OpenHap.

3 vaRt_GetConfig() Returns a pointer to the
configuration bit stream for the
FPGA.

4 vaRt_GetAppletProperty() Query function for applet
properties like the maximum
frequency of the clock net
iDesignClk of the applet,
information about the
target platform, and version
information.

5 vaRt_GetProcessCount() Returns the number of
processes of which the design is
composed.

6 vaRt_GetIoPortCount() Returns the number of used
external interface ports. All
kinds of interface ports are
joined in a list where the

Embedded VisualApplets (eVA) 319

VisualApplets User Documentation Release 3

Nr. Function Description
position in the list is the logical
number of the port. Port names
and properties can be obtained
by below specified functions
vaRt_GetIoPort….

7 vaRt_GetIoPortName() Get the name of the interface
port with the given logical port
number.

8 vaRt_GetIoPortProperty() Query I/O port properties
like the name of a connected
operator, the process which
controls this port, and the
current image format setting for
this port.

9 vaRt_GetParamCount() Returns the number of
parameters of a design.

10 vaRt_GetParamName() For a given parameter number
the corresponding name is
returned.

11 vaRt_GetParamId() For a given parameter number
the parameter ID is returned.

12 vaRt_GetParamIdByName() For a given parameter name the
parameter ID is returned.

13 vaRt_GetParamProperty() Query parameter properties.

14 vaRt_InitParams() Configure parameter interface
and initialize parameters to
default values.

15 vaRt_GetParam() Query parameter value.

16 vaRt_GetParamArray() Query array of parameters.

17 vaRt_SetParam() Set parameter value.

18 vaRt_SetParamArray() Set array of parameters.

19 vaRt_SetGlobalEnable() Set the Master Enable signal.

20 vaRt_SetProcessEnable() Activate a process of the
VisualApplets design.

21 vaRt_ResetProcess() Perform a reset of a
VisualApplets design process.

22 vaRt_GetErrorDescription() Query description for given error
code.

5.5.1.1. Communicating Data

For querying information and configuring parameters, data must be exchanged through the runtime
interface. In order to keep the interface functions simple but providing a type-save interface, an
abstraction mechanism for data is implemented. Whenever data of different types needs to be
communicated, a data structure called va_data is used, containing a reference to the data and
information about the underlying data type. This data structure is created by the user but configured
by dedicated functions listed below. The following table shows the data types which are handled by
this method:

Data Type Description
VA_ENUM Enum entry given as 32-bit integer.

VA_INT32 32-bit signed integer.

Embedded VisualApplets (eVA) 320

VisualApplets User Documentation Release 3

Data Type Description
VA_UINT32 32-bit unsigned integer.

VA_INT64 64-bit signed integer.

VA_UINT64 64-bit unsigned integer.

VA_DOUBLE Floating-point value, double precision.

VA_INT32_ARRAY Array of 32-bit signed integer numbers.

VA_UINT32_ARRAY Array of 32-bit unsigned integer numbers.

VA_INT64_ARRAY Array of 64-bit signed integer numbers.

VA_UINT64_ARRAY Array of 64-bit unsigned integer numbers.

VA_DOUBLE_ARRAY Array of double numbers.

VA_STRING String given as const char*.

Configuring an earlier created va_data structure (vaData) for setting up data communication is done
via the following functions:

 va_data* va_data_enum(va_data* vaData, int32_t *data)
 va_data* va_data_int32(va_data* vaData, int32_t *data)
 va_data* va_data_uint32(va_data* vaData, uint32_t *data)
 va_data* va_data_int64(va_data* vaData, int64_t *data)
 va_data* va_data_uint64(va_data* vaData, uint64_t *data)
 va_data* va_data_double(va_data* vaData, double *data)
 va_data* va_data_int32_array(va_data* vaData, int32_t *data, size_t elementCount)
 va_data* va_data_uint32_array (va_data* vaData, uint32_t *data, size_t elementCount)
 va_data* va_data_int64_array (va_data* vaData, int64_t *data, size_t elementCount)
 va_data* va_data_uint64_array (va_data* vaData, uint64_t *data, size_t elementCount)
 va_data* va_data_double_array (va_data* vaData, double *data, size_t elementCount)
 va_data* va_data_string(va_data* vaData, char *data, size_t strSize)
 va_data* va_data_const_string(va_data* vaData, const char **data)

For strings there are two options how strings are communicated:

• Providing a char array via va_data_string(). Then queried string data will be copied to that array.

• Providing a pointer to const char*. Then a pointer to an internal string representation is returned
when information of type VA_STRING is queried. When you use this approach check the live time
of the returned string.

Example Code:

The following example shows code for querying the design frequency for a configured design.

 double desFreq;
 va_data va_desFreq;
 va_data_double(&va_desFreq,&desFreq);

 vaRt_GetAppletProperty(hapHandle, "DesignFreq",&va_desFreq);

After that, the variable desFreq will contain the requested information.

5.5.1.2. Detailed Description of Interface Functions

The following table gives a detailed description of parameters and returned values for the specified
runtime access functions.

Embedded VisualApplets (eVA) 321

VisualApplets User Documentation Release 3

Function int vaRt_OpenHap (const char*
hapFileName, va_hap_handle*hap)

Parameter 1 Name of hap file which shall be opened.

Parameter 2 Return pointer for hap handle.

Description Opens the hardware applet with the provided
name and returns a pointer to the hap structure.

The returned pointer is used as a handle in all
other interface functions.

Return value 0 : OK

<0: Error opening applet

Function int vaRt_CloseHap (va_hap_handle handle)
Parameter 1 Hap handle from vaRt_OpenHap().

Description Closes the VA hardware applet.

Return value 0 = OK

<0 = Error closing HAP

Function int vaRt_GetConfig (va_hap_handle
handle, int fpgaID, char**data, size_t
*sizeInBytes)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 ID of the FPGA within the target platform. For
single-configuration HAP files (currently the
only option) this parameter may be fixed to -1.
Otherwise this parameter must correspond to
the (optional) FPGA ID specified in the hardware
definition file used for creating the VisualApplets
platform.

Parameter 3 Pointer to buffer for the configuration bitstream.

Parameter 4 Communicate the size of the configuration
bitstream in bytes.

Description Get the configuration bitstream for the FPGA
design. The function has two modes of operation:

Return value 0: OK

<0: Error acquiring the bitstream

Function int vaRt_GetAppletProperty (va_hap_handle
handle, const char* propName,va_data *
data)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Name of property which shall be queried.

Parameter 3 Pointer to data structure which will used for
communication.

Description Get property of the applet. Following properties
may be queried:

• VisualAppletsVersion: Get version of
VisualApplets framework used for creating this
applet (type VA_STRING)

Embedded VisualApplets (eVA) 322

VisualApplets User Documentation Release 3

Function int vaRt_GetAppletProperty (va_hap_handle
handle, const char* propName,va_data *
data)
• IPCoreVersion: Get version of VA IP Core (type

VA_STRING)

• AppletVersion: Get applet version (type
VA_STRING)

• DesignFreq: Get frequency of design clock in
MHz (type VA_DOUBLE)

• PlatformVendor: Vendor of platform (type
VA_STRING)

• PlatformType: Name of hardware platform
(type VA_STRING)

• PlatformID: Identification number of platform
device (type VA_STRING)

• PlatformVersion: Platform device version as
defined in the hardware description used for
creating the applet (type VA_STRING)

The properties are identified by one of the
above strings (provided through parameter
2) and communicated via the data structure
given through parameter 3. For properties of
type VA_STRING the returned string may be
overwritten by the next call of this function.

Return value 0 : OK

<0 : Can’t retrieve applet property

Function int vaRt_GetProcessCount (va_hap_handle
handle, unsigned int* count)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Return value for process count.

Description Get the number of processes of which the design
is composed.

Return value 0: OK

<0 : Can’t retrieve information

Function int vaRt_GetIoPortCount (va_hap_handle
handle, unsigned int*count)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Return value for port count.

Description Get the number of used I/O ports of the VA
IP Core. The returned number represents the
size of an internally managed port list where all
interface ports are registered and the position in
the list is the logical number of the I/O port.

Return value 0: OK

<0 : Can’t retrieve information

Embedded VisualApplets (eVA) 323

VisualApplets User Documentation Release 3

Function int vaRt_GetIoPortName (va_hap_handle
handle, unsigned int index, const char**
name)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Logical interface port number, which is an integer
between Zero and the returned value from
vaRt_GetIoPortCount() minus 1.

Description Get the name of the interface port with the given
logical number. When there are several ports
of the same kind these ports are differentiated
by a suffix _X where X is the port index (e.g.
DmaRd_0).

Return value 0: OK; *name returns a pointer to a static buffer
which holds the requested name (0-terminated).
Note that the buffer may be overwritten by the
next call of this function

<0 : No port with given index found

Function int vaRt_GetIoPortProperty (va_hap_handle
handle, const char* portName, const char*
propName, va_data* data)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Name of I/O port.

Parameter 3 Name of property which shall be queried.

Parameter 4 Pointer to data structure which will be used for
communication.

Description Get property of the I/O port with the given
name. Following properties may be queried:

• OperatorName: User defined name of
connected operator (type VA_STRING).

• OperatorType: Operator type name of
connected operator (type VA_STRING).

• Process: Logical number of process in
which the connected operator works (type
VA_UINT32).

• FormatID: Format ID of I/O operator (type
VA_UINT32, only available for ports of type
ImgIn or ImgOut).

The properties are identified by one of the
above strings (provided through parameter
3) and communicated via the data structure
given through parameter 4. For properties of
type VA_STRING the returned string may be
overwritten by the next call of this function.

Return value 0: OK

<0 : Can’t retrieve the requested property

Embedded VisualApplets (eVA) 324

VisualApplets User Documentation Release 3

Function int vaRt_InitParams (va_hap_handle
handle, struct va_device *device,
ReadReg32 *read32, WriteReg32 *write32,
ReadReg64 *read64, WriteReg64 *write64)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Pointer to device handle which is provided to
the low level access functions WriteReg32(),
ReadReg32(), WriteReg64, and ReadReg64() for
any register access.

Parameter 3 Function pointer for 32-bit register read function.

Parameter 4 Function pointer for 32-bit register write
function.

Parameter 5 Function pointer for 64-bit register read function.

Parameter 6 Function pointer for 64-bit register write
function.

Description Initialize parameter interface by providing low
level register access functions and associating a
board interface pointer to them. The initialization
procedure includes configuring initial values.
Note that any other function vaRt_*Param* and
the functions for controlling reset and enable
may only be called after this function has been
executed successfully.

Regarding the register access functions following
options are available:

Return value 0: Parameter interface has been initialized
successfully

<0 : Error during initialization

Function int vaRt_GetParamCount (va_hap_handle
handle, unsigned int*count)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Return value for number of parameters.

Description Get the number of parameters of the applet
which can be accessed via the parameter
interface. The returned number represents the
size of an internally managed parameter list
where all available parameters are registered and
the position in the list defines the logical number
of the parameter.

Return value 0: OK

<0 : Can’t retrieve information

Function int vaRt_GetParamName (va_hap_handle
handle, unsigned int index, const char**
name)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Logical parameter number, which is an integer
between Zero and the returned value from
vaRt_GetParamCount() minus 1.

Embedded VisualApplets (eVA) 325

VisualApplets User Documentation Release 3

Function int vaRt_GetParamName (va_hap_handle
handle, unsigned int index, const char**
name)

Parameter 3 Return pointer to name string.

Description Get the name of the applet parameter by the
given logical parameter number.

Return value 0: OK; *name returns a pointer to a static buffer
which holds the parameter name (0-terminated).
Note that the buffer may be overwritten by the
next call of this function.

<0 : Can’t retrieve information

Function int vaRt_GetParamId (const struct
va_hap_handle* handle, unsigned int
index, int* paramId)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Logical parameter number, which is an integer
between zero and the returned value from
vaRt_GetParamCount() minus 1.

Parameter 3 Return pointer for parameter ID.

Description Get the ID of a parameter of the applet. This ID
is used for accessing that parameter.

Return value 0: OK

<0 : No parameter with given index found

Function int vaRt_GetParamIdByName (const struct
va_hap_handle* handle, const char* name,
int* paramId)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Name of parameter which can be one of the
values provided by vaRt_GetParamName().

Parameter 3 Return pointer for parameter ID.

Description Get the ID of a parameter with the given name.
This ID is used for accessing that parameter.

Return value 0: OK

<0 : No parameter with given name found

Function int vaRt_GetParamProperty (va_hap_handle
handle, int paramID, const char*
propName, va_data* data)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Parameter name.

Parameter 3 Name of property which shall be queried.

Parameter 4 Pointer to data structure which will be used for
communication.

Embedded VisualApplets (eVA) 326

VisualApplets User Documentation Release 3

Function int vaRt_GetParamProperty (va_hap_handle
handle, int paramID, const char*
propName, va_data* data)

Description Query property of applet parameter. Different
parameter types do have different properties.
See the VA Engine specification for a list of
available parameter properties. The properties
are identified by a string given by parameter
3 and communicated via the data structure
provided by parameter 4. For properties of type
VA_STRING the returned string is stable at least
until the parameter gets modified.

Return value 0 : OK

<0 : Can’t retrieve parameter property

Function int vaRt_GetParam (va_hap_handle handle,
int paramID, va_data * value)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Parameter ID.

Parameter 3 Pointer to data structure which will be used for
communication. The associated data element will
be overwritten by the acquired value.

Description Query the applet parameter by parameter
ID. The data is communicated using a data
structure given by parameter 3. For querying
field parameters use vaRt_GetParamArray().
For properties of type VA_STRING the returned
string is stable at least until the parameter gets
modified.

Return value 0: OK.

<0 : Error querying the parameter.

Function int vaRt_GetParamArray (va_hap_handle
handle, int paramID, va_data* values,
size_t startIndex, size_t elementCount)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Parameter ID.

Parameter 3 Pointer to the data structure which will be
used for communication. The associated data
elements will be overwritten by the acquired
values.

Parameter 4 Start index within the parameter field

Parameter 5 Number of elements which shall be queried

Description Query field parameter of applet by parameter
ID filling an array of data elements. The data is
communicated via the data structure given by
parameter 4.

Return value 0: OK.

<0 : Error querying the array.

Embedded VisualApplets (eVA) 327

VisualApplets User Documentation Release 3

Function int vaRt_SetParam (va_hap_handle handle,
int paramID, const va_data * value)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Parameter ID.

Parameter 3 Pointer to the data structure which will be used
for submitting data to the Applet.

Description Set applet parameter with the given
name. Data is provided by a data structure
(Parameter 4). For setting field parameters use
vaRt_SetParamArray().

Return value 0: OK.

<0 : Error setting the parameter.

Function int vaRt_SetParamArray (va_hap_handle
handle, int paramID, const va_data
* values, size_t startIndex, size_t
elementCount)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Parameter ID.

Parameter 3 Pointer to the data structure which will be used
for submitting values to the applet.

Parameter 4 Start index within parameter field.

Parameter 5 Number of elements which shall be set.

Description Set field parameter of applet with the given
name submitting an array of data elements. The
data is provided via a data structure (Parameter
3).

Return value 0: OK.

<0 : Error setting the parameter field.

Function int vaRt_SetGlobalEnable (va_hap_handle
handle, int active)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 State to which the global enable shall be set (1
or 0).

Description Set the global enable to 1 (active=1) or 0
(active=0).

Return value 0: OK

<0 : Error setting the global enable state.

Function int vaRt_SetProcessEnable (va_hap_handle
handle, unsigned int procNr, int active)

Parameter 1 Hap handle from vaRt_OpenHap().

Embedded VisualApplets (eVA) 328

VisualApplets User Documentation Release 3

Function int vaRt_SetProcessEnable (va_hap_handle
handle, unsigned int procNr, int active)

Parameter 2 Process number or ((unsigned int)-1) for
identifying all processes at once.

Parameter 3 State to which the enable shall be set (1 or 0).

Description Set the enable of a process (or all processes) to
1 (active=1) or 0 (active=0).

Return value 0: OK.

<0 : Error setting the process enable state.

Function int vaRt_ResetProcess (va_hap_handle
handle, unsigned int procNr)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter 2 Process number or ((unsigned int)-1) for
identifying all processes at once.

Description Reset the process with the given logical process
number (or all processes). The according
process reset signal(s) will be asserted and
released again. The enable signal(s) of the
corresponding process(es) is not touched. Use
vaRt_SetProcessEnable() and this function for
controlling the applet.

Return value 0: OK.

<0 : Cannot reset the process.

Function const char* vaRt_GetErrorDescription
(va_hap_handle handle, int errorCode)

Parameter 1 Hap handle from vaRt_OpenHap().

Parameter2 Code from vaRt_GetLastError().

Description Query error message string for given error code.

Return value Not NULL: Error description (0-terminated c-
string)

NULL: No description available

5.5.2. Runtime Interface Based on GenICam API Version 2.0

For a given design, VisualApplets may generate GenICam XML code. When the target platform is
connected via a GenICam compatible interface to the software, this option allows a seamless integration
of image processing parameters into the GenICam API. There is no need for any additional software
component.

If the parameter access needs to be integrated into an existing master GenICam XML file, you need to
do some post processing. This is usually the case when the platform is already controlled via GenICam
before embedding the VA IP core.

To integrate the parameter access into an existing master GenICam XML file:

1. Cut the header of the XML file generated by VisualApplets.

2. Copy the remaining code for the categories, variables, and registers into the master XML file.

Embedded VisualApplets (eVA) 329

VisualApplets User Documentation Release 3

VisualApplets may automatize this step as it is capable calling custom post processing tasks.

5.5.3. Runtime Interface Based on Generated API Code

For a given design, VisualApplets may generate generic C API code. The code is platform independent
ANSI-C code. This approach is well suited for software integration in embedded systems (e.g.,
Zynq7000).

The generated code provides the following interface:

 #include <stdint.h>

 typedef int (*write_func_t)(void* boardHandle,int address, uint64_t value, size_t sizeInBytes);
 int (*read_func_t)(void* boardHandle,int address, uint64_t *value, size_t sizeInBytes);

 enum VariableTypes_enum{

 TYPE_UNKNOWN = 0,

 TYPE_INT = 1,

 TYPE_FLOAT = 2,

 TYPE_STRING = 3

 };

 typedef enum VariableTypes_enum VariableType_t;

 enum AccessMode_enum{
 RO,
 WO,
 RW
 };

 typedef enum AccessMode_enum AccessMode_t;

 int va_init(void* boardHandle, write_func_t wrFunc, read_func_t rdFunc);

 int va_set_property(const char* propName, const char* propValue);

 int va_get_int_value(const char* varName, int64_t *retValue);

 int va_set_int_value(const char* varName, int64_t value);

 int va_get_float_value(const char* varName, double *retValue);

 int va_set_float_value(const char* varName, double value);

 int va_get_string_value(const char* varName, const char **retValue);

 int va_get_enum_value(const char* varName, const char** retValue);

 int va_set_enum_value(const char* varName, const char* value);

 int va_get_enum_item_count(const char* varName, int64_t *itemCount);

 int va_get_enum_item_info(const char* varName, int64_t index, const char** itemName, int64_t *itemValue);

 int va_query_variables_count(int32_t *retCount);

 int va_query_variable_name(int32_t index, const char** retName);

 int va_query_variable_type(const char* varName, VariableType_t *type);

 int va_query_int_variable_properties(const char* varName,

 int64_t *from,

 int64_t *to,

 int64_t *inc,

 AccessMode_t *access);

Embedded VisualApplets (eVA) 330

VisualApplets User Documentation Release 3

 int va_query_float_variable_properties(const char* varName,

 double *from,

 double *to,

 double *inc,

 AccessMode_t *access);

You initialize the interface by calling va_init().

The callback functions for write and read access to the register slave interface of the VA IP core are
registered. The given boardHandle is stored and provided with any triggered call of these write and
read functions. The set of query functions provide a baseline mechanism for implementing a generic
runtime interface. For a given design the set functions and get functions provide parameter access
where parameters are addressed by name. These functions perform the translation from accessing
design parameters to accessing registers on the hardware via the call back functions for register access.

5.6. Licensing Model
Each hardware device that uses an VA IP Core is equipped with one runtime license. The costs of a
runtime license are defined by the maximum sensor bandwidth, the number of FPGA resources that
can be maximally used by the image processing application, and by the DRAM interface availability.

You can generate the runtime licenses yourself. For generating licenses, you get a dongle from Basler
that works on a pay-per-use basis. On the dongle, a predefined number of utilization units (1 unit per
runtime license) for a specific performance class is provided. When all units on the dongle have been
consumed, you can buy a new allotment of units which is loaded onto the dongle.

Your advantages of pay-per-use:

1. No additional hardware on your device required

2. Reliable protection of your intellectual property as the FPGA-internal serial number (DNA of FPGA)
is incorporated into the license

3. Easy integration of licensing into the production flow

You can select from the following performance classes:

5.6.1. Economy

Moderate Resources, no DRAM Interfaces

Bandwidth
Classes

150 MB/s 500 MB/s 1000 MB/s unlimited

Performance Class E150 E500 E1000 EL
Sensor Bandwidth Up to 150 MB/s Up to 500 MB/s Up to 1000 MB/s unlimited

Available
Resources

Up to 50.000 LUT4 Up to 100.000
LUT4

Up to 150.000
LUT4

Up to 200.000
LUT4

DRAM Interfaces Not supported Not supported Not supported Not supported

5.6.2. eXtended

High Resources and Support of DRAM

Embedded VisualApplets (eVA) 331

VisualApplets User Documentation Release 3

Performance
Class

X150 X500 X1000 XL

Sensor Bandwidth Up to 150 MB/s Up to 500 MB/s Up to 1000 MB/s unlimited

Available
Resources

Up to 100.000
LUT4

Up to 300.000
LUT4

Up to 500.000
LUT4

Up to 750.000
LUT4

DRAM Interfaces Supported Supported Supported Supported

5.6.3. Superior

Maximum Resources and Support of DRAM

Performance
Class

S150 S500 S1000 SL

Sensor Bandwidth Up to 150 MB/s Up to 500 MB/s Up to 1000 MB/s unlimited

Available
Resources

unlimited unlimited unlimited unlimited

DRAM Interfaces Supported Supported Supported Supported

5.7. Application Notes

5.7.1. Designing for Non-Stoppable Image Sources

When the incoming stream of image data is not stoppable, as it is typically the case when data comes
from a camera sensor, special care must be taken in order to avoid overflow of input buffers. Consider
the following effects:

• M-type operators may slow down processing (i.e., PARALLELdn).

• Synchronizing different data streams with SYNC may introduce wait cycles.

• Some kernel based operators like FIRkernelNxM require extra clock cycles before accepting new data
after the end of a line and even more after the end of a frame.

In general, it is a good idea to instrument the input data path with a circuit like the following one for
monitoring whether a design can deal with the input data rate:

Embedded VisualApplets (eVA) 332

VisualApplets User Documentation Release 3

Figure 5.19. Circuit for Monitoring the Input Data Rate

The hierarchical box Control is designed as follows:

Figure 5.20. Control Hierarchical Box

Embedded VisualApplets (eVA) 333

VisualApplets User Documentation Release 3

This circuit measures the number of buffered data words between the input and the output of
FIFO StartFifo. The FIFO StartFifo is configured for taking a non-stoppable data stream (parameter
InfiniteSource = ENABLED). It is useful to define a buffer size so one or a few lines can be stored
in that FIFO.

Check the read parameter of the operator MaxPixelInFifo during or after operation. If the subsequent
image processing pipeline is able to deal with the input data rate there should be a low number showing
that the FIFO is only needed to buffer a few data words.

If you find that your design cannot operate with the input data rate, you have following options:

• Increase the throughput of your design, in particular by increasing the parallelism.

• Decrease the amount of data which needs to be processed, for example, you may operate on a
reduced image size by dropping some data from the sensor.

• Use a RAM-based image buffer operator for decoupling the input data rate from the processing rate.

5.7.2. GenICam API

Some VisualApplets operators require that their parameters are set before the processing is started.
Other operators require that parameters are not changed during processing.

To avoid problems with parameterizing a design, it is generally helpful to set all parameters which don’t
need to be changed at runtime in your VisualApplets design to Static. If your applet is not working as
expected, try to write all dynamical parameters before you start processing.

If you need to change an applet parameter during processing check the operator documentation
whether this is supported.

5.7.2.1. Operators Requiring Startup Initialization

SplitLine

If you are working with VisualApplets version 3.0.4 or lower:

The operator SplitLine has a parameter LineLength which may be dynamic or static. If you want to
use parameter LineLength as a dynamic parameter, the parameter value must be written before the
processing is started.

5.7.2.2. Operator Parameters which may not be Changed During Running

The parametrization of some operators can be updated during processing only to a limited extend.
These are the following operators:

ImageBufferMultiRoI

In some operation modes this operator ignores parameters which are set during processing. In
these cases the parent process must be stopped before writing the parameters. For details, see
ImageBufferMultiRoI.

SelectROI

Change the parameter settings of operator SelectROI only after the image data flow has been
terminated, i.e., when no image data entered the operator after the last end of frame.

5.7.3. Deviating Parameter Interface During Runtime

On platforms using embedded VisualApplets (eVA), during runtime some VisualApplets operators
offer a parameter interface that slightly differs from the list of parameters which is presented in the
VisualApplets GUI. This is true for the following nine operators:

• Library Color:

Embedded VisualApplets (eVA) 334

VisualApplets User Documentation Release 3

• ColorTransform

• Library Memory:

• ImageBufferMultiRoi

• KneeLUT

• LUT

• CoefficientBuffer

• RamLUT

• ROM

• Library Compression:

• JPEG_Encoder_Gray

• Library Transformation:

• FFT

Find below information on how to adjust the settings of the affected parameters during runtime.

Operator Name Parameters Showing
Different Interface During
Runtime

Alternative Access During
Runtime

ColorTransform Coefficients:

• CoefficientIndex

• CoeffiecientValue

Field parameter Coefficients
is replaced by separate
index parameter and value
parameters (parameter
names: CoefficientIndex
and CoefficientValue). The
value is written on access to
CoefficientValue.

CoefficientBuffer LoadCoefficients File input/output is not
possible during runtime on eVA
platforms. Thus, coefficient data
cannot be loaded via image file
(the normal use case for this
parameter), but needs to be
loaded as raw data.

To be able to load raw data,
some additional parameters are
used on eVA platforms during
runtime:

RawDataXLength: Width of the
ROI, in which the coefficients
are to be defined.

RawDataXOffset: X position
of the ROI, in which the
coefficients are to be defined.

RawDataYOffset: Y position
of the ROI, in which the
coefficients are to be defined.

LoadCoefficients: The loading
is triggered by a write cycle
of value 1 to this parameter.

Embedded VisualApplets (eVA) 335

VisualApplets User Documentation Release 3

Operator Name Parameters Showing
Different Interface During
Runtime

Alternative Access During
Runtime

Loading into the ROI is
carried out via data word
WriteRawData.

WriteRawData: Data word
that is written into the
RAM at a write cycle to
WriteRawData. With each write
cycle, the writing position is
automatically moved forward
by one position within the
ROI that has been defined by
RawDataLength, RawDataOffset
and RawDataYOffset. This way,
a complete ROI is overwritten
by continous write cycles to
WriteRawData

ImageBufferMultiRoi XOffset XLength YOffset
YLength RoiIndex (additional
parameter)

During runtime on eVA
platforms, the parameters
XOffset, XLength, YOffset and
YLength are available as scalar
parameter. (In the VA GUI
they are defined as arrays.) An
additional parameter RoiIndex
selects the region of interest.
For each RoiIndex, XOffset,
XLength, YOffset, and YLength
can be defined.

KneeLUT StartBasePoints:

• StartBasePointValue

• Index

EndBasePoints:

• EndBasePointValue

• Index

During runtime on eVA
platforms, instead of field
parameter StartBasePoints/
EndBasePoints, the
scalar parameter
StartBasePointValue/
EndBasePointValue is available.
An additional parameter
Index selects the index
of the field parameter
StartBasePoints/
EndBasePointValue of the
VisualApplets operator. With
this common index, parameter
StartBasePointValue/
EndBasePointValue sets
the addressed entry in the
array. For each Index, one
StartBasePointValue/
EndBasePointValue can be
defined.

LUT LUTcontent:

• Value

• Index

During runtime on eVA
platforms, instead of field
parameter LUTcontent, the
scalar parameter Value is
available. An additional
parameter Index selects the
index of the field parameter
LUTcontent of the VisualApplets
operator. With this common

Embedded VisualApplets (eVA) 336

VisualApplets User Documentation Release 3

Operator Name Parameters Showing
Different Interface During
Runtime

Alternative Access During
Runtime

index, parameter Value sets the
addressed entry in the array.
For each Index, one Value can
be defined.

RamLUT InitData

• InitDataValue

• InitDataIndex

During runtime on eVA
platforms, instead of field
parameter InitData, the scalar
parameter InitDataValue
is available. An additional
parameter InitDataIndex selects
the index of the field parameter
InitData of the VisualApplets
operator. With this common
index, parameter InitDataValue
sets the addressed entry
in the array. Parameter
InitDataIndex is only available
when the VisualApplets operator
parameter InitData contains
more than one entry.

RamLUT InitFileLoadMode InitFileName
LoadInitFile

During runtime on eVA
platforms, parameters
InitFileLoadMode, InitFileName,
and LoadInitFile is not available,
as the GenICam API doesn't
support file input/output.

ROM ROMcontent

• Value

• Index

During runtime on eVA
platforms, instead of field
parameter ROMcontent,
the scalar parameter Value
is available. An additional
parameter Index selects the
index of the field parameter
ROMcontent of the VisualApplets
operator. With this common
index, parameter Value sets the
addressed entry in the array.
For each Index, one Value can
be defined.

JPEG_ENCODER_Gray quality_in_percent During runtime on eVA
platforms, parameter
quality_in_percent is not
available. The quantization
matrix must be written
directly via the parameters
quantization_matrix_index and
Quantization_matrix_value
which are used instead of the
VisualApplets field parameter
quantization_matrix (see
description of parameter
quantization_matrix below).

JPEG_ENCODER_Gray quantization_matrix During runtime on eVA
platforms, instead of field
parameter quantization_matrix,
the scalar parameter
quantization_matrix_value

Embedded VisualApplets (eVA) 337

VisualApplets User Documentation Release 3

Operator Name Parameters Showing
Different Interface During
Runtime

Alternative Access During
Runtime

is available. An
additional parameter
quantization_matrix_index
selects the index of
the field parameter
quantization_matrix of the
VisualApplets operator. With
this common index, parameter
quantization_matrix_value
sets the addressed entry
in the array. For each
quantization_matrix_index, one
quantization_matrix_value can
be defined.

FFT This operator currently doesn't
support embedded VisualApplets
devices.

Miscellaneous 338

VisualApplets User Documentation Release 3

6. Miscellaneous
In this chapter, you find a collection of useful information for working with VisualApplets.

6.1. Command Line Options

VisualApplets offers some command line arguments in order to use VisualApplets, for example, in batch
scripts, or for linking the program into a system environment.

The syntax follows the following scheme:

<VISUALAPPLETSINSTALLDIR>\VisualApplets <-COMMAND> <ARGUMENTS>

The commands, together with the expected arguments, are listed in the following table:

Command Line Argument & Meaning
-file Execute commands stored in a specified Tcl

script.

Arguments:

• Filename of Tcl script (*.tcl)

-compile Load a specified file and create an applet. The
design will be checked against the design rules.

Arguments:

• Filename of VisualApplets design file (*.va)

• Filename of resulting applet file (*.hap)

-merge Merges a microEnable IV applet file with a
PixelPlant applet file. A check for suitability of
both source applet files will be done.

Arguments:

• Filename of mother board applet (*.hap)

• Filename of PixelPlant applet (*.hap)

• Filename of resulting applet file

-sdk Generates an SDK Example (C source code) for
using the applet with the Framegrabber SDK. The
design will be checked against the design rules.

Arguments:

• Filename of VisualApplets design file (*.va)

• Filename of PixelPlant applet file (*.hap)

-KeepSyntheseTraceFiles Additional option when generating a hardware
applet. Keeps the intermediate files (created
during the build process) for tracing purposes
after the build is completed.

<VAFilename> Load a specified VisualApplets design file.

Used, for example, when assigning *.va files for
opening by double click inside the Explorer.

Miscellaneous 339

VisualApplets User Documentation Release 3

Command Line Argument & Meaning
Arguments:

• Filename of VisualApplets design file (*.va)

Table 6.1. Command Line Options and According Arguments

6.2. Keyboard Shortcuts

Below, you find a list of all shortcuts available in VisualApplets.

6.2.1. Main Program Window

Shortcut Menu Item
Ctrl+N File -> New Project

Ctrl+O File -> Open Project

Ctrl+S File -> Save Project

Ctrl+P File -> Print Visible Diagram

Ctrl+Q File -> Quit Application

Ctrl+Z Edit -> Undo

Ctrl+Shift+Z Edit -> Redo

Ctrl+Z Edit -> Undo

Ctrl+X Edit -> Cut

Ctrl+C Edit -> Copy

Ctrl+V Edit -> Paste

Del Edit -> Delete

F2 Edit -> Rename Module

Ctrl+I Design -> Add Operator

Mouse 3+ Design -> Add Operator

Ctrl+F Design -> Search Module

F9 Analysis -> Start Simulation

Ctrl+F7 Analysis -> Design Rules Check Level 1

Ctrl+F8 Analysis -> Design Rules Check Level 2

F7 Build -> Build

F5 Build -> Start microDisplay

F11 View -> Fullscreen

Ctrl++ View -> Zoom In Diagram

Ctrl+- View -> Zoom Out Diagram

Ctrl+Mouse wheel up View -> Zoom In Diagram

Ctrl+Mouse wheel down View -> Zoom Out Diagram

Ctrl+Return View -> Zoom Reset

Backspace View -> Window Up

Ctrl+Space View -> Toggle Hand/Selection Tool

Ctrl+Arrow Right Window -> Next Diagram

Ctrl+Arrow Left Window -> Previous Diagram

Miscellaneous 340

VisualApplets User Documentation Release 3

Shortcut Menu Item
Drag+Drop Project files can be dropped on main

window.

Table 6.2. Shortcut List for Main Program Window

6.2.2. Simulation Viewer

Shortcut Menu Item
Ctrl+Q File -> Exit Simulation Viewer

Ctrl+C Edit -> Copy Image to Clipboard

Del Edit -> Remove Selected Images

Ctrl+Del Edit -> Remove all Images

Arrow left Navigation -> Previous Image

Arrow right Navigation -> Next Image

Ctrl++ View -> Zoom In

Ctrl+Mouse wheel up View -> Zoom In

Ctrl+- View -> Zoom Out

Ctrl+Mouse wheel down View -> Zoom Out

Ctrl+Mouse 3 View -> Normal Size 1:1

F11 View -> Full Screen

Ctrl+F View -> Fit to Window

Ctrl+T View -> Mapped Thumbs

Ctrl+R View -> Reset Parameters

Drag+Drop Images can be dropped directly on
simulation viewer (source) or simulation
source module.

Table 6.3. Shortcut List for Simulation Viewer

6.3. Error Reporting
Even the best developed and tested software might – at times – run into some errors. If you want
to help Basler in improving VisualApplets, please report any misbehavior to our support team and
describe the situation.

Additional data like the VisualApplets design file (*.va), a description of the system environment like
operating system and PC hardware, or your specific VisualApplets system settings is helpful for us
when correcting the erroneous misbehavior.

In case of system crashes, a trace file will be generated. This file allows us at Basler to restore the
exact situation that led to the crash. This trace file is stored inside a zip-archive which you will find in
the installation directory of VisualApplets: <INSTDIR>\bin\bugs\bug*.zip. Please decide if you want
to send this supplementary information to Basler or not. Please note that the trace file contains only
information that has been entered into VisualApplets. It does not contain any information regarding
the computer system VisualApplets was running on.

Part II
Tutorial and Examples

Introduction 342

VisualApplets User Documentation Release 3

7. Introduction
VisualApplets is a very easy to learn self explaining software. The usage is very simple. However, as for
all programs and programming languages, examples and step by step tutorials help learning its usage.
We recommend to read and implement the design presented previously in the getting started chapter
to get introduced into the world of VisualApplets (see 2. Getting Started). Next, looking at the tutorials
and examples presented in the following will ease the barrier to start your own implementations.

Always mind to use the operator reference if you need more information about VisualApplets operators
(see Part III, 'Operator Reference'). Each operator description includes a list of examples where it is
used.

If you have problems of understanding a feature of VisualApplets or if you have problems in
understanding the theory behind VisualApplets desings, check the respective chapters in the user
manual (see Part I, 'User Manual').

The tutorial and examples consist of three parts. First, a tutorial presenting the basic design theory is
presented. Next, a list of basic acquisition applets is given which will allow you to start your own project
with the required camera interface and hardware device. The examples chapter is a list of example
files which can be found in the VisualApplets installation folder. These examples show the usage of
operators and might provide implementation ideas.

Hardware Applet: From Idea to Application 343

VisualApplets User Documentation Release 3

8. Hardware Applet: From Idea to
Application
In this Application Note you will learn how to design and create an image processing application
(=applet) in VisualApplets and how to use it on a frame grabber. You will also learn how to use this applet
during runtime using microDisplay and Framegrabber API and how to configure parameters of your
applet in this software. You find an introduction how to design, build and use an applet during runtime
in microDisplay at 2. Getting Started. In this Application Note you will learn the above mentioned
phases of applet development and usage with the example of a Sobel edge filter application.

8.1. Workflow Description

The workflow is as follows:

1. Designing an applet in VisualApplets.

2. Simulating the applet in VisualApplets and performing a Design Rules Check (DRC).

3. Building the applet.

4. For mE5 platforms: Flashing the applet.

5. Using the applet on the hardware via microDisplay or Framegrabber API.

8.2. Designing an Applet in VisualApplets

8.2.1. Starting a New Project

The design phase of an applet takes place in VisualApplets. To open VisualApplets, click on the file
VisualApplets.exe in the bin folder in the VisualApplets installation directory, or the VisualApplets
program icon in the Windows Start menu or on the icon on your desktop.

1. At first, the VisualApplets main window opens up with no project loaded.

Hardware Applet: From Idea to Application 344

VisualApplets User Documentation Release 3

Figure 8.1. VisualApplets Main Window

2. Click on File+New (Ctrl+N) or use the New icon from the File icon bar. A New Project window
opens up which allows you to specify project name, target hardware platform, and target runtime.
You can always change these settings later on.

3. To follow the example here, use the following settings:

Project Name: Sobel_Filter

Hardware Platform: microEnable 5 marathon VCL

Target Runtime: Win 64 (Windows/AMD64)

4. Confirm your settings by clicking OK.

Hardware Applet: From Idea to Application 345

VisualApplets User Documentation Release 3

Figure 8.2. New Project window

VisualApplets now starts a new project and you see a blank design window in the center of the program
window. In the Project Info tab on the right, information regarding the current project, such as project
name, target hardware, target platform etc. is displayed.

8.2.2. Operators and Links

In VisualApplets, image processing operations are represented by operators. You find all these
operators in the Operator Library on the right side of the VisualApplets design window. You can very
easily place operators into the design window using drag-and-drop.

An instance of an operator in the design is called a module. Operators can have input and output
ports. Operators in a design (i.e., modules) can be connected using these ports. Connections between
modules are called links which are represented in the design window by arrows. These modules and
links represent the image- (or signal-) processing pipeline. Hence, the order of operations is determined
by the order of modules.

The operators and links have properties, which describe the settings relevant for the current image
processing pipeline, like image dimensions. To see and edit these properties, double-click the operators.
The properties of the operators are explained in detail in the operator documentation under Help.

Hardware Applet: From Idea to Application 346

VisualApplets User Documentation Release 3

Figure 8.3. Operator Documentation in VisualApplets

8.2.3. Implementation of the Design
This example implements a Sobel edge filter algorithm [https://en.wikipedia.org/wiki/Sobel_operator].

In the VisualApplets design sample library, there are “ready-to-use" samples for edge filtering and
further image processing applications. You find these design examples under Examples\Processing
in your VisualApplets installation directory with the corresponding documentation, see 12. Processing
Examples. You can use these example designs as base for your own application.

For the implementation of this sample Sobel filter design, locate the operators in the Operator Library,
drag them into the design and connect them with links as described in the 2. Getting Started section.

You can rename the modules later on for better overview in the design and for better usage during
runtime.

Whenever useful, structure the design using HierarchicalBoxes for a better design overview.

And don't forget to save the design from time to time.

https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator

Hardware Applet: From Idea to Application 347

VisualApplets User Documentation Release 3

8.2.4. Design Components

The sample design in this application note consists of the following components as shown in the
following figure:

Figure 8.4. Example Design Implementation Sobel_Filter.va

• A Camera Link grayscale camera interface

• An image buffer

• The Sobel edge filter module with edge filtering in x and y direction (based on
the example Sobel_Multi_Gradient.va under Examples\Processing\Filter\EdgeDetection
\Sobel_Multi_Gradient in the VisualApplets installation directory)

• An adjustable binarization threshold and a scale operator for better visualization of the binarized
image on the display during runtime

• The DMA to PC.

You can use the CoefficientBuffer in the design as simulation source for images instead of using the
images acquired by a camera. Via the operator SourceSelector you can choose the image input source
for the processing pipeline in VisualApplets and during runtime.

8.2.5. Parameter Settings

To parameterize the operators and links, you can edit the parameters of each element by double-
clicking the element.

8.2.5.1. Link Parameters

Links have properties, which define the properties of the processed images such as maximum image
dimensions, the image protocol, the bit width, and a parameter which is related to the maximum

Hardware Applet: From Idea to Application 348

VisualApplets User Documentation Release 3

possible bandwidth: the parallelism (i.e. numbers of pixel transferred at one design clock cycle). If
these links are connected to specific operators (see corresponding operator documentation), e.g. the
camera interface operators, you can edit and adjust these properties according to your purpose.

The higher the maximum image dimensions and the parallelism you choose, the higher the FPGA
resource consumption is. Therefore, Basler recommends to set these values only as high as necessary
in order to save FPGA resources. The link properties can only be changed during design phase in
VisualApplets.

Figure 8.5. Link Properties

8.2.5.2. Operator Properties

There are two types of operator properties: static and dynamic. You can change static parameters
only during design phase in VisualApplets, whereas you can change dynamic parameters during design
phase and during runtime. See the screenshot below for examples of static and dynamic parameters
for the operator IS_GreaterThan.

Hardware Applet: From Idea to Application 349

VisualApplets User Documentation Release 3

Figure 8.6. Static and Dynamic Operator Parameters

In this sample design, set the following parameters:

Operator IS_GreaterThan: Set the parameter Number to 600.

This identifies the grayscale of the edges. If you want to find out
the grayscale of your edges, set a simulation probe before the
IS_GreaterThan operator, run a simulation, and zoom into the pixels
that contain edges and see which grayscale they have. This is a
dynamical paramter, which you can alter during runtime.

Operator SCALE: Set the parameter ScaleFactor to 255.

This augments the visibility of the edges. This is a dynamical parameter.
However, to save FPGA resources, you can set this parameter to Static.

8.2.5.3. Preparation for Parameter Access during Runtime

During runtime you can change the dynamic parameters. A common use case is that you have many
operators in a design and you need to change the same parameters e.g. the image dimensions for
many different operators in the design.

The library Parameters provides operators which enable accessing different module parameters in
a design by controlling only one parameter. Additionally, these operators also enable that access
parameters are displayed on a specific hierarchy level. These options make parameter configuration
easier during runtime. Whether the library Parameters is available for you depends on the license you
have purchased. For questions regarding your license, contact the Basler Sales Department [https://
www.baslerweb.com/en/sales-support/sales/]. The example design Sobel_Filter.va (see Figure 8.4,
'Example Design Implementation Sobel_Filter.va') uses translate and reference parameters to easily
access image width and height, the image source selector, the threshold value and the scale factor
on the hierarchy level Parameters. For this, create an empty HierarchicalBox, name it Parameters
and set the DisplayHierarchy parameter of the corresponding translate and reference parameters
to Parameters. You find a detailed documentation of the Parameters library in the corresponding
documentation, see 28. Library Parameters [1053].

https://www.baslerweb.com/en/sales-support/sales/
https://www.baslerweb.com/en/sales-support/sales/
https://www.baslerweb.com/en/sales-support/sales/

Hardware Applet: From Idea to Application 350

VisualApplets User Documentation Release 3

8.2.6. Finalizing the Design

8.2.6.1. Simulation Sources and Probes

During design phase the simulation sources and probes are very helpful. Using the simulation sources
you can load test images and check your processed image on every link in the processing pipeline
within a few moments. Exception: Signals can’t be simulated. Furthermore, the simulation performs a
Design Rule Check Level 1 for the formal correctness of the implementation. The simulation result is
equivalent to the result during runtime. You find the simulation sources and probes in the icon menu
or under Analysis in the text menu in VisualApplets. For a detailed description of the usage of the
simulation sources and probes, see the detailed documentation under Section 3.10, 'Simulation'.

In Figure 8.4, 'Example Design Implementation Sobel_Filter.va' you can see a test image loaded
to a simulation source in the example design Sobel_Filter.va. After threshold and before DMA you
can see the result of the current processing step.

8.2.6.2. Design Rule Check (DRC)

After you have finalized the implementation, it is recommended to perform a Design Rule Check Level
1 and 2. To perform a Design Rule Check Level 1 and 2, select Analysis+Design Rules Check Level
1 and 2 or use the icon Design Rules Check Level 1 and 2 from the icon bar.

Design Rule Check Level 1 reports formal errors in the implementation and their exact location in the
design. You must correct these errors before the design can be translated to a hardware applet.

Design Rule Check Level 2 additionally gives information about the estimated FPGA resources used
in the design. With this information you can check, whether enough FPGA resources are available for
your image processing implementation. If the resources exceed 100% of one of the FPGA resources,
you need to redesign your implementation to save resources.

In Figure 8.7, 'Design Rule Check 1 and 2 for the Example Design Sobel_Filter.va' the result of
Design Rule Check 1 and 2 is shown: Everything is designed correctly and about 36% of the available
Lookup Tables, 22% FlipFlops, 15 % Block RAM and 2 % of the available embedded ALUs are used.
You can see a detailed overview on how many FPGA resources each element in the design consumes
(see Figure 8.8, 'FPGA Resource Estimation') under Analysis+FPGA Resource Estimation

Hardware Applet: From Idea to Application 351

VisualApplets User Documentation Release 3

Figure 8.7. Design Rule Check 1 and 2 for the Example Design Sobel_Filter.va

Hardware Applet: From Idea to Application 352

VisualApplets User Documentation Release 3

Figure 8.8. FPGA Resource Estimation

8.3. Building the Applet in VisualApplets

8.3.1. Precondition

The hardware applet build process can only be performed if the XILINX tools are properly installed.
Under https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-
version-for-which-frame-grabber-platform you can find a detailed overview, which Xilinx versions is
suitable for your frame grabber platform. In this sample design Sobel_Filter.va the microEnable 5
marathon VCL platform is selected. Thus, Xilinx ISE version 14.7 or Vivado versions between 2016.1
and 2020.1 are suitable.

8.3.2. Editing the Build Settings

Now you have finished the example design Sobel_Filter.va and want to translate the design into
a hardware applet. For this translation process, called build you need to select the correct Xilinx
build settings. Open Settings+Build Settings, and select the batch file settings64.bat of your
corresponding Xilinx version (recommended: Xilinx Vivado 2018.2) from your file system and confirm
with OK. You find a detailed description of editing the build settings under Section 4.9, 'Build Settings'.

https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform
https://docs.baslerweb.com/visualapplets/installing-visualapplets#which-xilinx-toolchain-and-version-for-which-frame-grabber-platform

Hardware Applet: From Idea to Application 353

VisualApplets User Documentation Release 3

Figure 8.9. Build Hardware Applet Dialog

VisualApplets now uses the Xilinx tools to translate the application into the FPGA bitstream, i.e., the
program or applet. The duration of this process depends on the complexity of the design. The build of
highly complex designs might take several hours. For this example implementation Sobel_Filter.va,
the build time is about 15 minutes. After successful build, the applet is fully generated. The name of
the applet (*.hap file) is the same as the name of the design file (*.va): Sobel_Filter.hap

8.4. Running the Applet on Hardware

8.4.1. Precondition

To run an applet in hardware on a frame grabber, a programmable (V Series) frame grabber (hardware)
needs to be installed on the system. Furthermore, the Framegrabber SDK software needs to be
installed on the PC. For this example applet for the microEnable 5 marathon VCL, the latest possible
Framegrabber SDK version is 5.7.

8.4.2. Flashing

If, like in this example, you use a frame grabber of the microEnable 5 series (marathon, ironman or a
LightBridge), you need to flash your frame grabber with the new applet using microDiagnostics.

If you are going to use the new applet on a microEnable IV frame grabber or a frame grabber of the
latest CXP 12 series, just skip this section.

To flash the frame grabber, perform the following steps:

1. Start the tool microDiagnostics under bin in the Framegrabber SDK installation directory.

2. Select your frame grabber.

3. Select Firmware in the left side of the dialog.

4. Assign your hardware applet to one of the displayed partitions (0 to 7): Go to the directory, where
the created hardware applet is located and select the file.

Hardware Applet: From Idea to Application 354

VisualApplets User Documentation Release 3

Figure 8.10. Firmware Partitions Displayed in microDiagnostics

5. Click Flash Now

6. Wait until the new firmware is completely installed. When flashing is completed, you get a message
in microDiagnostics.

7. Follow the instructions in the message.

8.4.3. Testing and Loading the Applet in microDisplay

To test your applet Sobel_Filter.hap and to set some first parameters,use the program microDisplay.
Following steps are necessary to load an applet:

1. Save the applet (here: Sobel_Filter.hap) under Hardware Applets\<your frame grabber>
(here: mE5-MA-VCL) in the Framegrabber SDK installation directory.

2. Start microDisplay from the bin folder in the Framegrabber SDK installation directory.

3. In microDisplay, select the frame grabber you want to use under Acquisition Devices.
Immediately, all applets available for the selected frame grabber are displayed.

4. Select the *.hap file you want to use (here: Sobel_Filter.hap) with double-click.

8.4.4. Parameter Settings and Acquisition

After loading the applet, you can see the parameter tree and the image acquisition window in
microDisplay. Below, a screenshot of the applet Sobel_Filter.hap loaded in microDisplay is shown.

Hardware Applet: From Idea to Application 355

VisualApplets User Documentation Release 3

Figure 8.11. Parameter Tree and Image Acquisition Window in microDisplay

On the left side, the parameter tree is displayed. These parameters are equivalent to the operator
names during design phase in VisualApplets. It is important to use a good naming of the operators,
in order to find the correct parameters you want to adjust for acquisition. Dynamic parameters are
adjustable during runtime. There are two kinds of dynamic parameters: Those parameters, which are
only adjustable before start of acquisition (e.g. DMA dimensions) and those, which can be adjusted
even during image acquisition (e.g. threshold values of operator IS_GreaterThan).

In this example, you perform the image acquisition using an image from a simulator source and set
the binarization threshold to value 150. If you have integrated the parameters of the Parameters
library during design phase in VisualApplets, you can set all relevant dynamic parameters under the
hierarchy level Parameters in the parameter tree. Otherwise, you need to step though the different
hierarchy levels to find the correct parameters we want to set.

In this example, go to the hierarchy level Parameters and unfold it:

1. Right mouse-click the Parameter Simulation Image. As a result, you can select the example
image you want to use for image acquisition.

2. Load this image by clicking Load Simulation Image.

3. Set the parameter ImageSource selector to Simulator and the Binarization Threshold to value 150.

4. Set the image dimensions to 1024x1024 pixels.

After you have set these parameters (or all parameters relevant for your applet), you can start the
acquisition. Here you can select between continuous grabbing, grabbing of a sequence or a single
frame. To stop the continuous grabbing, click on the Stop button. For the case of a multi process
design, you can start and stop the the acquisition of the single processes separately.

For a detailed description of the applet configuration and acquisition with microDisplay, see https://
docs.baslerweb.com/frame-grabbers/what-is-micro-display-x.

8.4.5. Starting the Applet in Your Own SDK

Instead of performing the applet configuration and acquisition in mircoDisplay X you can alternatively
integrate them in your own SDK environment. In this section you find an introduction to the basic
functionalities of the relevant SDK componets for image acquisition and configuration.

As base of a C++ SDK you can use the VisualApplets internal SDK code generator, which you find
the icon menu or under Build+Generate SDK Example in VisualApplets. This function automatically

https://docs.baslerweb.com/frame-grabbers/what-is-micro-display-x
https://docs.baslerweb.com/frame-grabbers/what-is-micro-display-x

Hardware Applet: From Idea to Application 356

VisualApplets User Documentation Release 3

generates the corresponding CMake File and the VisualStudio project files, which you can use as base
for your SDK code.

Figure 8.12. Generated SDK Project Files

The generated C++ code in the project file vasFgProject.cpp contains the following code components:

1. Frame Grabber: Initialization

Definition of number of acquisition cycles, definition of board index, call of function
Fg_Init("Sobel_Filter.hap", boardIndex) to start the applet.

2. Allocation of memory for buffers for acquisition.

function: Fg_AllocMemEx(fg, ..., ...)

3. Frame Grabber: Get* and Set* parameters for Process0

functions: Fg_setParameterWithType(fg, ..., ..., ...) and
Fg_getParameterWithType(fg, ..., ..., ...)

Here all parameters contained in the design are listed. Basler recommends to delete all parameters,
which are not necessary for adjustment during runtime, for better overview.

4. Create the display(s)

function CreateDisplay()

5. Start acquisition at applet and camera for each present port:

function: Fg_AcquireEx(fg, 0, nrOfCycles, ...,...);

6. Grab images:

function: Fg_getLastPicNumberBlockingEx(fg, ..., ..., ..., ...);

7. Stop acquisition

Function Fg_stopAcquireEx(fg, .., .., ...)

8. Close the display

function CloseDisplay(...);

9. Release the memory for buffer(s)

function Fg_FreeMemEx(fg, ..);

10. Frame Grabber Uninitialization

function Fg_FreeGrabber(fg);

A detailed description and explanation of the SDK functions is available at https://docs.baslerweb.com/
frame-grabbers/sdk/basler__fg_8h.html

An introduction to the Framegrabber API is available at https://docs.baslerweb.com/frame-grabbers/
framegrabber-api.html.

https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html
https://docs.baslerweb.com/frame-grabbers/framegrabber-api.html
https://docs.baslerweb.com/frame-grabbers/framegrabber-api.html

Hardware Applet: From Idea to Application 357

VisualApplets User Documentation Release 3

You can integrate the generated sample SDK code into a larger SDK environment for the further
software processing of the frame grabber (pre-)processed images.

Basic Design Theory 358

VisualApplets User Documentation Release 3

9. Basic Design Theory
The following tutorial will guide you through the basic principles of VisualApplets step by step. Don't
miss the getting started tutorial before you continue with the following sections. The getting started
tutorial can be found in 2. Getting Started.

1. Section 9.1, 'Applet Parameterization'

The first tutorial uses the VisualApplets design implemented in the getting started guide. It will
show the parameterization of operators and links in a more detailed context. You will learn how
settings can influence the design and you will learn on how to solve conflicts.

2. Section 9.2, ' Multiple DMA Channel Designs '

In this tutorial, the use of multiple DMAs in one design is shown. In detail, a threshold binarization
as well as an image selection is implemented. You will learn how to binarize images and how to
count and remove images from a sequence.

The example will include all required steps of the development including implementation,
verification by using the simulation and the usage in hardware.

3. Section 9.3, ' Synchronization of Asynchronous Image Pipelines '

The third tutorial outlines two synchronization examples. You will learn how to merge the images
of two camera sources. One example will present an image overlay of the images of port B to the
images of port A. The second example shows a simple image stitching.

9.1. Applet Parameterization

Let's have a look on the design of the getting started tutorial once again. If you have not made the
design of the getting started so far, you should go back and do the getting started first (2. Getting
Started). So far, the only adaptation we made were the parameter names. Now, we want to adapt the
applet to process images from cameras with the following properties

• image side size 512 x 512

• 12 bit / pixel grayscale

• Camera Link interface in dual tap base configuration mode

Our design is already equipped with a CameraGrayAreaBase operator. This operator is from the
mE4VD4-CL operator library and is only available for mE4 Camera Link frame grabbers, i.e., the
mE4VD4-CL library is a library containing hardware specific operators. The CameraGrayAreaBase
operator supports grayscale area scan cameras using Camera Link in base configuration mode. Double
click on the camera module in your design to open it's properties. One of the parameters is called
"Format". Here, the specific Camera Link format can be selected. We select DualTap12Bit, apply our
changes and close the window. Our design is now capable to acquire 12 bit camera images.

Basic Design Theory 359

VisualApplets User Documentation Release 3

Figure 9.1. Properties of Operator CameraGrayAreaBase

Note that the "Format" parameter is dynamic. This means, the value can be changed after synthesis
of your design in hardware which allows the flexible use of multiple camera formats. However, if we
double click on the link at the camera, we see that the link's bit width is still at 8 bit/pixel. Moreover,
the maximum image dimension is not large enough. You might ask yourself why a 12 bit camera
can be used if the link only has 8 bits. The answer is that only to eight most significant bits of the
camera images are transported i.e. only the available link bits are used. The operator will automatically
select the correct bits from the images depending on the settings in the camera operator. Check the
documentation of the camera operators for more information (Section 29.12, 'CameraGrayAreaBase').
We will change the bit width to 12 bit to process the full camera bit depth.

Basic Design Theory 360

VisualApplets User Documentation Release 3

Figure 9.2. Changed the Link Bit Width of the Camera Operator

After changing the value, click on Apply. As you can see, the color of the links between the camera, the
buffer and the DMA has changed from black to green. This indicates that the change was accepted and
validated. Moreover the link property "bit width" was propagated through the image buffer to the link
between the buffer and the DMA module. Thus, users are not required to change the bitwidth on every
link. Link properties are propagated through modules until they change the link bitwidth themselves
or require user input. If you open the link properties of the link between the buffer and the DMA, you
will notice that it is not possible to change the bitwidth here.

Basic Design Theory 361

VisualApplets User Documentation Release 3

Figure 9.3. Bit Width Cannot be Changed at Buffer Module Output Link

That's because the antecedent operator ImageBuffer is not capable to change the link bit width. Hence,
link properties can only be changed if the connected operator allows the change i.e. is by definition
an operation which influences the bit width.

The required image side size for the camera is 512 x 512 pixel. In the link properties, we can see
properties called Max. Img Width and Max. Image Height. These properties represent the maximum
image dimension on the link. This is the maximum. Any lower dimensions are allowed. However, an
image size exceeding this limitation will violate the VisualApplets design rules and you might get an
error when using the applet in hardware.

The setting of the image dimension should always be chosen to the required minimum as a lower image
dimension can save FPGA logic and memory resources. Back to our example: Open the link properties
of the link between the camera and the buffer and select a maximum image width and height of 512
x 512. After you are done, click on apply.

Basic Design Theory 362

VisualApplets User Documentation Release 3

Figure 9.4. Illegal Condition after Link Property Change

Again, you will notice that the change directly influenced the link properties of the current link and
the link located after the buffer module. Moreover, you can see that the buffer module is now marked
red. That's because we now have created a so called "illegal condition". This means, one or more of
the link properties are not compatible with the parameter settings in the module. In our case, the
parameter settings of the ImageBuffer cannot be used with the settings of the link. If you close all
property windows and perform a design rules check Ctrl+F7 you will get error messages as shown
in the following figure.

Basic Design Theory 363

VisualApplets User Documentation Release 3

Figure 9.5. DRC Error Messages Invalid Parameters

You can click on one of the error messages to highlight the module with the error. This is very useful
if you have large designs in multiple hierarchies and cannot immediately see where the operator
is located. Now, open the properties dialog of the Buffer module. Again, you can see that the four
parameters which cause the error are dyed in red.

Figure 9.6. Red Parameters show Illegal Condition

Also, the reason for the error now becomes obvious: A region of interest in the operator is set
which is larger than the maximum allowed image dimension on the link. This will violate the
operator's parameter range and the VisualApplets design rules and therefore, causes the error. You can
immediately bring your design into a valid condition by changing the XLength and YLength parameters
to value 512.

We are almost done with our design. We can already start the build and use the design in hardware.
However, there is one more step we should consider. So far, we connected our 12 bit pixel values
directly to the DMA module. This will cause the transfer of 12 bit for each pixel to the PC. This format is
very difficult to be handled by software programs as pixels are distributed to multiple bytes. Therefore,
each pixel should consume exactly one or more byte. In our example, we expand our pixel to 16 bit. To
do so, we need to place another operator between the buffer and the DMA module. There exists several
operators to solve our task. We will use operator ConvertPixelFormat from the base operator library.
Place the operator between the buffer and the DMA module. If you place the operator directly over the

Basic Design Theory 364

VisualApplets User Documentation Release 3

link, the operator will automatically be inserted. Next, you should rename the module to "To16Bit" and
open the link properties behind the operator. As you can see, the default link bit width is chosen for the
module output which is 8 bit per pixel. Thus, the module has overwritten the input link bit width. Any
changes of the input link bit width are ignored. The module will always output the parameterized value.
The default eight bit per pixel will decrease the bit width from 12 to 8, but instead, we want to increase
the bit width. So, you just need to change the link property value to 16 bit and confirm the changes.

The ConvertPixelFormat operator will now expand the 12 bit input pixels to 16 bit by inserting four
constant zero-bits at lower positions. In other words, we performed a left shift by four bit. Instead
of using the ConvertPixelFormat operator, operator ShiftLeft can be used in alternative. Delete the
ConvertPixelFormat operator from you design by selecting it with the mouse and press delete from
the pop-up menu or from the main menu bar; or simply press Del . Insert operator ShiftLeft from
the arith operator library. Insert it into the design and check the link properties. As you can see, the
link bit width is still at 12 bit and cannot be changed in the link properties. For this operator, the link
bit width is changed by a parameter. Namely parameter Shift. Change the parameter value to 4 and,
apply the changes and go back to the link properties. As you can see, the link bit width has now been
changed to 16 bit. To summarize: Some link properties can be changed on the link while some are
changed using operator properties. In the respective example these two methods are required for the
operators because one is used to specify the output bitwidth independent of the input bitwidth i.e. the
shift value is automatically determined. While the shift operator is used to specify the shift value. Here,
the output bitwidth is automatically determined by the parameterized value and the input bit width.

Figure 9.7. ConvertPixelFormat Operator Added for 16Bit Output

Figure 9.8. ShiftLeft Operator Added for 16Bit Output

In the example, we inserted four bits at the lower bit position. If you rather want to add four bits to
higher bit positions to get 16 bit you can use operator CastBitWidth instead.

An explanation and examples of the bit manipulation operators can be found in the operator reference.
See Section 20.8, 'ConvertPixelFormat', Section 19.15, 'ShiftLeft', Section 19.16, 'ShiftRight' and
Section 20.2, 'CastBitWidth'.

We now have finalized the extension of our basic acquisition design. Next, you can build and use your
design in hardware. You have learned on how to set parameters and how to solve conflicts. In the next
section, a list of the basic acquisition applets for all kind of cameras is given.

Basic Design Theory 365

VisualApplets User Documentation Release 3

9.2. Multiple DMA Channel Designs

Most VisualApplets applications require the acquisition of camera images, process the image through
image processing algorithms and output the results to the host PC. Besides that users want to monitor
the original monitoring images. Thus we need two image outputs. The original monitoring images
and the processed results of the algorithmic implementation. In the following we will implement a
VisualApplets design which fulfills the following specification:

• grayscale images using a Camera Link camera in base configuration mode

• maximum resolution = 1024 x 1024 pixel @ 8Bit/pixel

• buffer images and forward every 10th acquired image to the host PC (monitoring)

• binarize each of the acquired images uising thresholding and output the resulting images to the
host PC

• the binarized output images have to be in the format: 0 = black, white = 255 (8Bit/Pixel)

Using the specification, we can generate a block diagram.

Figure 9.9. Block Diagram of Threshold Binarization Design with Monitoring

As we can see images are grabbed and buffered. After the buffer the processing pipeline is split into
two paths. The first path is responsible for the output of every 10th image for monitoring. The second
path includes the binarization and the output of the binary images.

Most VisualApplets implementations follow the same principle: Image acquisition and buffering comes
first. After the buffering, the image processing logic is located. In Section 3.5, 'Data Flow ' you can find
more information on VisualApplets processing pipelines and the basic setup of designs. In the following
we will go through the implementation of a VisualApplets design which fulfills the specification step by
step. Besides the VisualApplets implementation, we will verify the design using the build-in simulation
and use the design in real hardware.

9.2.1. VisualApplets Implementation of Binarization with Monitoring

1. We will start with the basic operators we used in the previous examples. These are the camera
operator CameraGrayAreaBase, the buffer ImageBuffer and the operator to transfer the results
to the host PC, namely DmaToPC. In contrast, this time we will need a second DmaToPC module
in the design to transfer the original image as well as the binarized results. Locate and rename
all operators as shown in the following design.

Basic Design Theory 366

VisualApplets User Documentation Release 3

2. As you can see, we renamed the DMA modules to DMA0_OriginalImages and
DMA1_BinarizedImages. Thus we gave them an index. That's because each DMA channel uses
a channel index. This channel index is used to access the data from any PC software. Most non
FPGA-internal resources use an index to specify their location. Some of the operators using
FPGA external hardware are the camera operators, operators using DRAM e.g. the ImageBuffer,
operators using general purpose input outputs e.g. trigger signals and DMA operators. In fact,
all operators which are in our design so far are using external resources and can be allocated to
an index. The camera operator can be allocated to the Camera Link port A or B. The buffer can
be allocated to one of the four DRAMs on the microEnable IV VD4-CL and the DMA to one of the
DMA channels. A detailed explanation of the use of the device resources can be found in Section
3.8, 'Allocation of Device Resources'. A list of the available device resources for all supported
hardware platforms is presented in Appendix A, 'Device Resources'.

Most of the device resources can be changed using the resource dialog window in VisualApplets.
Some can change their resources using the operator's parameters. To change a device resource,
we have to open the resource dialog window which can be accessed from Design -> Resource
or by using the icon in the edit menu bar.

Basic Design Theory 367

VisualApplets User Documentation Release 3

Ensure that the DMA module DMA0_OriginalImages is allocated to index 0 and
DMA1_BinarizedImages is allocated to index 1. The camera module should be allocated to index
0 which represents Camera Link port A. We don't really care which of the DRAM chips our buffer
is using, so we let VisualApplets choose an index automatically if there is a conflict between
some memory operators. In general, VisualApplets will always chose an unused index. If you
have two camera modules and delete the module using index 0, the remaining camera module
will use index 1. So ensure to check all device resource indices before the start the build of the
applet. The resource indices cannot be changed after synthesis.

3. Next, we need to include our image processing algorithms. As we have to implement two
different image processing algorithms, we need to branch our pipeline into two paths. This is
simply done by a branch operator. Locate the operator in the base operator library and drag
it into your design. When you release the mouse button a window will pop-up which will allow
users to specify the number of output links i.e. the number of branches. Select two and OK. You
will now have a branch module in your design with two output links and one input link. Move the
module next to the buffer and connect them.

Basic Design Theory 368

VisualApplets User Documentation Release 3

We now have branched our pipeline and can implement both image processing algorithms
between the branch and the DMA modules.

a. First, we will implement the original image output path where only every 10th image is
required to be output. Instead of placing all required operators on the main design level, we
will use a hierarchical box. With the help of hierarchical modules, it is practical to implement
a hierarchical structure into your design and combine an arbitrary number of operators to a
new operator. The use of hierarchical modules ease the overview of the construction area.
Insert an hierarchical box with one input and one output into your design. You can find the
hierarchical box in the base operator library, from the design area pop-up menu or form the
main menu "Design".

Place the HierarchicalBox module between the branch and the DMA and connect them. You
can rename the module using it's context menu or by selecting it and hitting the F2 key.

To edit the hierarchical module content just double-click on it. A new blank design window
will open. It only includes the input and output connectors. We will place the required
operators in-between and connect them to the ports. To exit the hierarchical module hit

Backspace or icon .

To remove 9 out of 10 images, we need the operators as shown in the following.

and parameterization:

• Properties of module CountFrames

Basic Design Theory 369

VisualApplets User Documentation Release 3

• Link Properties of the output of module CountFrames

• Properties of module Not0

Basic Design Theory 370

VisualApplets User Documentation Release 3

How it works: The CountFrames module will replace the pixels of each image by a value
between 0 and 9. Hence, it will repetively count from 0 to 9 with each image. Module Not0
will replace every pixel of each image by value 1, if the current count value is not 0. The
RemoveImage module deletes each image, if the pixel value of the second input "Rem" is
value 1. Thus, image number 0, 10, 20, 30, ... will be bypassed. All other images will be
deleted.

b. For the implementation of the binarization we will add another hierarchical module into the
design.

The operators in this hierarchical module are "Is_GreaterThan" and "Scale".

Module ThresholdFrom represents the actual binarization. For each input pixel value grater
than value specified by parameter Number, value one is output, otherwise zero. Thus,
the output bit depth of the module will be one bit. You can check this by opening the link
properties. As we do not want to output one bit values, we need to bring our results to
eight bit values. A very simple solution to do is to scale each of the values with 255. Thus,
binary value one becomes 255 and binary value 0 remains at 0. Set the parameters of the
ScaleBy255 module to the following values.

Basic Design Theory 371

VisualApplets User Documentation Release 3

As you can see, we have set the parameter type of parameter ScaleFactor to Static. For this
operator this is very important as it will require much less FPGA resources compared to a
dynamic parameter. In general, always set parameters to a static type if you know that you
will not need to change them after synthesis.

4. The final step of your implementation will be the check for design rule errors. Perform a DRC to
check for errors. If you have no errors you can now build your design and use it in hardware. In
alternative, you can verify your implementation using the simulation which is shown in the next
section. Do not forget to save your design from time to time.

9.2.2. Verification of the Binarization Design using Simulation

For most designs it is very useful to verify the functionality of the implementation using the simulation
before the use in real FPGA hardware. We will verify our design using the simulation in the following.

1. Preparation

First we will need an image to simulate. You will need to use an image file in TIFF or BMP format.
You have to use an image with a single color component if you like to inject the image data to
an image processing pipeline using grayscale images as in our example. More information about
allowed image files for simulation can be found in Section 3.10, 'Simulation'. There are some
sample images in the VisualApplets installation folder.

2. Sources and Probes

Image files can be injected to any image transporting link using "simulation_source"" modules
and can be monitored on any other link using "simulation_probe" modules. In our example, we
add a simulation source to the link between the camera and the buffer and simulation probes
according to the following screenshot. You can add simulation sources and probes from the
"Analysis" menu, from the context menu of the design window, or simply from the icons marked
in the Figure.

Basic Design Theory 372

VisualApplets User Documentation Release 3

3. Add Image File

To add an image file to the simulation source, open the Simulation Source Viewer using a
double-click on the source in your design. Now simply drag-and drop your image file to the
Simulation Source Viewer window or use the File -> Open menu.

Basic Design Theory 373

VisualApplets User Documentation Release 3

The image file was now added to the simulation source. You can add more files to the source by
simply dragging them on the module or window. At the bottom of the Simulation Source Viewer
Windows you can see all images in the sequence.

4. Simulation Start

We are now ready to start the simulation. Select Analysis -> Start Simulation (F9) to
open the main Simulation window. Each time you open this window a design rules check will
automatically be performed. It is not possible to simulate a design with a failed design rules
check.

In VisualApplets, simulations are processed in cycles. Each cycle represents the injection of an
image from all simulation sources in the design. Simply click on Start to start the simulation.
VisualApplets will now perform the simulation. Depending on the complexity of the design this
might take some seconds.

5. Check Results

We can now check the results of our simulation. Close the Simulation window. The simulation
probes should now have been filled with results.

Basic Design Theory 374

VisualApplets User Documentation Release 3

If you open the Simulation Probe Viewer of the probe located behind the binarization, you can
immediately see if the simulation worked. The image should include pixels having values 0 and
255.

Results can now be saved to disk, if required.

6. Sequence Simulation

We could verify the binarization in the previous step. However, a single simulation image is not
sufficient to verify the monitoring output as only every 10th image is supposed to be transfered
to the host PC. Thus we need to simulate a sequence of images.

a. Open the Simulation window once again.

b. Click on Reset to reset the sequence from previous simulations. In general, if you want to
start a new simulation, it is useful to always reset the simulation to avoid user errors.

c. Click on Start to simulate one image. We will get a result in each of the simulation probes.
It is not required to close the Simulation window now. You can get the current number

Basic Design Theory 375

VisualApplets User Documentation Release 3

of images in a simulation probe by looking at the numbers of the modules in the design
window.

d. Now perform another cycle by a click on Start. This time, the image number of all
simulation probes should have been increased to two except the one at the DMA0 module.

Repeat this step until you have simulated 11 cycles in total. The probe at DMA 0 should now
include two images. This shows the correct functionality of our implementation.

Basic Design Theory 376

VisualApplets User Documentation Release 3

e. Instead of clicking 11 times on Start you can set the number of processing cycles using the
spin box in the Simulation window. The simulation result will be the same. Also, you can set
10 simulation cycles, start them and start the next 10 cycles after. As you like...

9.2.3. Verification of the Binarization Design in Hardware

After we verified the functionality of our implementation we can test and use it in hardware. You will
need to build your design to get the hardware applet file HAP. (User Manual: Section 3.12, 'Build')
Ensure that your design matches the hardware platform e.g. mE4VD4-CL in our example. Moreover
ensure that your project is using the correct architecture e.g. Windows 64 Bit. It has to be the same
as the installed Framegrabber SDK. Start the build by Build -> Synthesize (F7). VisualApplets will
now use the FGPA manufacturer tool to translate your design into the FPGA bitstream.

The result of the synthesis is an HAP-file. It contains the FPGA bitstream and the software interface to
access data and parameters. The HAP file is located in your Framegrabber SDK installation directory in
subdirectory "Hardware Applets" or, if no Framegrabber SDK is installed or you selected another target
runtime, the file is located in the folder specified in the system settings (See Section 4.7, 'System
Settings').

We will test our design in the Framegrabber SDK tool microDisplay. microDisplay is a tool for a first test
of applets. Open microDisplay and load the applet. microDisplay will show two DMA image windows,
namely the original image window where only every 10th image is shown and the second DMA window
showing the binarized images. A detailed explanation on the use of applets in the Framegrabber
SDK can be obtained from the Framegrabber SDK documentation [https://docs.baslerweb.com/frame-
grabbers/managing-applets-micro-diagnostics].

Figure 9.10. Use of the Binarization Applet in microDisplay

https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics
https://docs.baslerweb.com/frame-grabbers/managing-applets-micro-diagnostics

Basic Design Theory 377

VisualApplets User Documentation Release 3

9.3. Synchronization of Asynchronous Image Pipelines

9.3.1. Synchronizing Cameras

A powerful feature of VisualApplets is to combine the images of different camera sources. In the
following we will learn on how to

1. switch between camera sources

2. overlay the images of two cameras

3. multiplex the camera images

4. stitch the images of two cameras

9.3.1.1. Switch Between two Cameras

To switch between two cameras, we need a simple design including two camera modules. In
VisualApplets operator SourceSelector (see Section 32.23, 'SourceSelector') can be used to switch
between two asynchronous sources. This operator allows the selection of one of it's inputs, while the
data on the other inputs is discarded. If one of the inputs is selected, the others behave like they are
connected to a Trash operator. It is possible to switch the inputs while the acquisition is running. The
operator will switch with the start of a new frame. The frame rate and image sizes of both inputs do
not have to be the same.

Figure 9.11. VisualApplets design to switch between two cameras

9.3.1.2. Combine Image Data From Two Camera Sources - Building an
Overlay Blend

In the following, we will have a look on how to combine the image data of both cameras. In our
example, we use an overlay-blend to combine both images.

The specification for our example will be:

• Camera: Two CameraLink RGB area scan cameras in base configuration mode

• Resolution: 1024 x 1024 pixel

• Overlay-Blend:

ResultColor =

8>><>>:
2ColorAColorB

256
if ColorA · 128

255¡ 2(255¡ ColorA)(255¡ ColorB)

256
else

Equation 9.1. Overlay Blend

Basic Design Theory 378

VisualApplets User Documentation Release 3

1. Basic Operators

We start with the basic operators in our design as shown in the following figure. We can use all
the default parameters and link properties.

2. Synchronization

Next we need to synchronize the data streams of both cameras. This can simply be done
by using operator SYNC. The SYNC operator controls it's inputs so that the outputs are fully
synchronized. As you can see, we used two buffer modules before the synchronization. We need
to use them because we cannot ensure that both cameras are 100% synchronous.

Although we synchronized our image data, we still need pay attention to some constraints:

• The number of frames i.e. the frame rate of both cameras has to be the same. If one camera
has a higher frame rate than the other camera, one of the ImageBuffer modules will need to
store some images and might get in an overflow condition. Thus, for a long time acquisition,
both cameras have to acquire their frames using the same frame rate. A trigger system can
ensure this.

• The image size and the image position of the ROIs of both cameras may differ. The SYNC
operator will, depending on it's parametrization, automatically expand the smaller image to
the larger one or cut the larger image. See the description of the SYNC operator for more
details: (Section 32.26, 'SYNC')

3. Overlay-Blend

The last step to do is to implement the overlay blend to combine both images. For convenience,
we use a hierarchical box for the overlay-blend implementation.

The overlay blend has to be individually applied to all color components. Thus we need to split
our links into all three color components. The overlay blends are placed in hierarchical boxes
once again. Thus we have three hierarchical boxes inside the current hierarchical box. You can
use copy and paste to duplicate the boxes for each color component.

Basic Design Theory 379

VisualApplets User Documentation Release 3

We will have varying possibilities to realize the equation given above using VisualApplets
operators. In general, you should always try to adapt and optimize an equation for FPGA use
before implementing it.

The equation includes some multiplications and divisions with constant values. These operations
are available in VisualApplets but cannot be very efficiently implemented on FPGAs. If the
multiplication or division can be written as a power of two multiplication we can use a simple bit
shift for implementation. A bit shift will require no resources at all! We will simplify

2=256
to

1=128 = 1=27

which is a simple right shift by 7 bit i.e. we discard the seven least significant bit.

ResultColor =

8>><>>:
ColorAColorB

128
if ColorA · 128

255¡ (255¡ ColorA)(255¡ ColorB)

128
else

Next, there are some parts in the equation like 255 minus ColorA. This is a simple color
inversion. White becomes dark, dark becomes white. An inversion of an value can also be made
using a simple inversion of each bit. This allows us to finally rewrite the equation:

ResultColor =

8>>><>>>:
ColorAColorB

128
if ColorA · 128µ

ColorA ColorB

128

¶
else

Equation 9.2. Optimized Overlay Blend for FPGA Implementation

We can now start our implementation. The remaining operations in the equation are available as
VisualApplets operators. We will need

• IF

• NOT for the inversion

• ShiftRight for the division by 2^7

• HWMULT for the multiplication

Besides HWMULT, VisualApplets includes the MULT operator. The do the same, but HWMULT
will use dedicated multiplier in the FPGA and therefore, will require much less resources.

Basic Design Theory 380

VisualApplets User Documentation Release 3

• For bit depth limitation, we will need a CastBitWidth operator. This operator can be used to
switch from 9 bit to 8 bit by discarding the MSB. From the formula we know that there will be
no values greater than 255.

4. Verification using the Simulation

a. We can easily verify the functionality of our overflow-blend using the VisualApplets
simulation. Use two simulation sources to inject an image for both cameras. Place simulation
probes to any link you like. The simulation results will show you the overlay of both images.
If interested, you can also check the intermediate results of the overlay in the hierarchical
boxes.

Basic Design Theory 381

VisualApplets User Documentation Release 3

b. The verification of the synchronization is not possible with the simulation as the simulation
will only reflect the functional parts of the applets and not the timing. A verification in
hardware is required.

5. Adding a Trigger

As mentioned, both cameras have to run at the same frame rate to avoid an overflow on one of
the buffers. This can be easily solved using a trigger system.

9.3.1.3. Multiplex the Images of Two Cameras

The multiplexing of images or lines in VisualApplets is very easy. We will start with the example of
multiplexing the images of two cameras i.e. we want to use the same DMA channel to alternately
output the images of camera A and camera B.

1. Basic Operators

We will need the standard design for two cameras using two cameras modules, two buffers and
one DMA.

Basic Design Theory 382

VisualApplets User Documentation Release 3

2. Multiplex Images

To multiplex the images, we use operator InsertImage. This operator will forward the images
of it's inputs one after another. For example, if we use two inputs, the operator will forward the
images of input 0, 1, 0, 1, 0, 1, ... Thus, after one input has been processed, the next one will
be used. Therefore, it is required that the number of frames at both inputs is the same i.e. the
inputs will have the same frame rate.

As you can see, we placed the image buffer modules before the insertion. This is because the
InsertImage operator has no buffer itself. While images of input 0 are forwarded, input one is
blocked, thus camera images need to be buffered to avoid the loss of data.

For each input (I0, I1, ..) the operator provides a second input called Ins0, Ins1, ... This input
is a control input to control whether images shall be used or discarded. Thus an input can be
skipped if value 0 is at the Ins input and will be used if value 1 is provided. The input groups
I and Ins have to be synchronous, i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators. See Section 3.6.1, 'Operator Types' for more
information. As both inputs are synchronous, they will need to have the same image dimension.
InsertImage will use the first pixel on the Ins inputs to decide whether an image is used or
discarded. As you can see in the previous screenshots, we simply used a CONST operator to
enable the use of the images. Set the output link bit depth of the CONST operator to one bit and
the parameter "Value" to 1 to enable the insertion.

Please note: If the value at one of the Ins inputs is zero, the operator will still need to process
the images on this inputs. A value zero does not mean, that no image has to be provided. If no
image is provided at an input, the operator waits until an image is available.

As mentioned always one of the inputs is opened at a time, while the others are blocked. The
images have to be sourced asynchronously e.g. from different buffers. In the following figure,

Basic Design Theory 383

VisualApplets User Documentation Release 3

you can see two configurations which will not work. You will not get any results from the applet
as it is blocking itself. It is a so called "deadlock" condition.

Figure 9.12. Deadlock Configurations using InsertImage

Always check if one of the inputs can be buffered when stopped, while the other one is active.
Do not forget that deadlock situations cannot be detected by the DRC nor the simulation. More
information on deadlocks can be found in Section 3.6.6, 'Timing Synchronization'.

9.3.1.4. Stitching of Two Cameras

In the previous section we multiplexed two cameras images. Stitching is almost done in the same
way. We use operator InsertLine instead and need to append two successive lines using an AppendLine
operator.

InsertLine will first multiplex the lines of both inputs and after, we need to append two lines.

Of course, it is possible to use the same image source for the last two examples, too. The only thing
we have to care is that we have sufficient buffers before the insertion. For inserting an image, we will
need to buffer a full image. For duplicating a line, we simply need to buffer one of the lines, while the

Basic Design Theory 384

VisualApplets User Documentation Release 3

same line is processed on the other path. To buffer only a few lines we can use operator ImageFifo.
This operators will not use frame grabber DRAM memory. Instead, it uses the FPGA internal BlockRAM
memory. We will configure the FIFOs to store a maximum of one line. In the following example, we
duplicated an image line, where the duplication is inverted. Thus our result is the original image on
the left, and the inverted (negative) version on the right.

Figure 9.13. Line Duplication

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 385

VisualApplets User Documentation Release 3

10. Basic Acquisition Designs for
Varying Camera Types and Hardware
Platforms
VisualApplets is designed to easily switch between different camera interfaces and protocols. In the
following, basic acquisition designs for different camera interfaces are presented. All designs are
implemented for a specific frame grabber. These are the microEnable IV VD4-CL/-PoCL, microEnable
IV VQ4-GE, microEnable 5 marathon VCL, LightBridge and microEnable 5 VCX-QP, microEnable 5 VQ8-
CXP6D and microEnable 5 VD8-CL platforms. If you like to use another frame grabber which has the
same camera interface and is of the same frame grabber generation, you can save the design to
another frame grabber model. Check Section 4.5, 'Target Hardware Porting' for more information on
how to change the frame grabber of a design.

The following examples will not explain details such as bandwidth and the use of multiple DMAs. We
have a look on this in Section 9.2, ' Multiple DMA Channel Designs '.

The following table lists all basic acquisiton examples.

Interface Sensor Color Frame Grabber
Generation

Example

Camera Link base
configuration

area scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.1.1,
'Grayscale Camera Link
Base Area'

Camera Link base
configuration

area scan RGB mE4VD4-CL/-
PoCL

Section 10.1.1.2, 'RGB
Camera Link Base Area'

Camera Link medium
configuration

area scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.1.3,
'Grayscale Camera Link
Medium Area'

Camera Link medium
configuration

area scan RGB mE4VD4-CL/-
PoCL

Section 10.1.1.4, 'RGB
Camera Link Medium
Area'

Camera Link full
configuration

area scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.1.5,
'Grayscale Camera Link
Full Area'

Camera Link base
configuration

line scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.2.1,
'Grayscale Camera Link
Base Line'

Camera Link base
configuration

line scan RGB mE4VD4-CL/-
PoCL

Section 10.1.2.2, 'RGB
Camera Link Base Line'

Camera Link medium
configuration

line scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.2.3,
'Grayscale Camera Link
Medium Line'

Camera Link full
configuration

line scan grayscale mE4VD4-CL/-
PoCL

Section 10.1.2.4,
'Grayscale Camera Link
Full Line'

GigE Vision area scan grayscale mE4VQ4-GE Section 10.2.1.1, ' GigE
Vision Grayscale Area
Scan Cameras '

GigE Vision area scan RGB mE4VQ4-GE Section 10.2.1.2, ' GigE
Vision RGB Area Scan
Cameras '

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 386

VisualApplets User Documentation Release 3

Interface Sensor Color Frame Grabber
Generation

Example

GigE Vision line scan grayscale mE4VQ4-GE Section 10.2.2.1, 'GigE
Vision Grayscale Line Scan
Cameras'

GigE Vision line scan RGB mE4VQ4-GE Section 10.2.2.2, 'GigE
Vision RGB Line Scan
Cameras'

Camera Link base
configuration

area scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL/-
PoCL

Section 10.3.1.1,
'Grayscale Camera Link
Base Area'

Camera Link base
configuration

area scan RGB mE5-MA-
VCL/LB-VCL/
mE5VD8-CL/-
PoCL

Section 10.3.1.2, 'RGB
Camera Link Base Area'

Camera Link medium
configuration

area scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL/-
PoCL

Section 10.3.1.3,
'Grayscale Camera Link
Medium Area'

Camera Link medium
configuration

area scan RGB mE5-MA-
VCL/LB-VCL/
mE5VD8-CL/-
PoCL

Section 10.3.1.4, 'RGB
Camera Link Medium
Area'

Camera Link full
configuration

area scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.1.5, 'Camera
Link Full Area'

Camera Link base
configuration

line scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.2.1,
'Grayscale Camera Link
Base Line Scan Cameras '

Camera Link base
configuration

line scan RGB mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.2.2, 'RGB
Camera Link Base Line
Scan Cameras '

Camera Link medium
configuration

line scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.2.3,
'Grayscale Camera
Link Medium Line Scan
Cameras '

Camera Link medium
configuration

line scan RGB mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.2.4, 'RGB
Camera Link Medium Line
Scan Cameras '

Camera Link full
configuration

line scan grayscale mE5-MA-
VCL/LB-VCL/
mE5VD8-CL

Section 10.3.2.5,
'Grayscale Camera Link
Full Line Scan Cameras '

CoaXPress area scan grayscale/
RGB

mE5-MA-VCX-
QP/ mE5VQ8-
CXP6D/ iF-
CXP12-Q

Section 10.4.1,
'CoaXPress Area Scan
Cameras'

CoaXPress line scan grayscale/
RGB

mE5-MA-VCX-
QP/ mE5VQ8-
CXP6D/ iF-
CXP12-Q

Section 10.4.2,
'CoaXPress Line Scan
Cameras'

Table 10.1. List of Basic Acquisition Examples

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 387

VisualApplets User Documentation Release 3

10.1. Basic Acquisition Examples for Camera Link Cameras for
microEnable IV VD4-CL/-PoCL Frame Grabber

You can find Camera Link scan examples for mE4VD4-CL/-PoCL platform in the following sections. In
subsection Section 10.1.1, ' Camera Link Area Scan Cameras ' examples for area scan cameras and in
subsection Section 10.1.2, 'Camera Link Line Scan Cameras' for line scan cameras are described.

10.1.1. Camera Link Area Scan Cameras

The basic acquisition for area scan cameras is very easy. You simply need to select a suitable camera
operator. Connect the camera operator to an ImageBuffer and DmaToPC operator. Any processing logic
can be placed in between, preferably behind the buffer.

10.1.1.1. Grayscale Camera Link Base Area

Simply connect the three operators and parameterize them to meet your requirements. If you are
using a bit depth not equal to 8 or 16, you should consider a change of the output bit depth to one of
these formats. In tutorial Section 9.1, 'Applet Parameterization' explanations on bit depth modifications
can be found.

Figure 10.1. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Base Configuration Mode

The design includes two cameras in two different processes. You can find this example
under \examples\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan\DualBaseAreaGray8.va. Check
Section 4.4, 'Multiple Processes' for more information on multiple processes. Under \examples
\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan\BaseAreaGray8.va and \examples\Acquisition
\BasicAcquisition\mE4VD4-CL\AreaScan\BaseAreaGray12.va you also have access to two basic single
acquisition processes for 8 bit and 12 bit input bit depth.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 388

VisualApplets User Documentation Release 3

10.1.1.2. RGB Camera Link Base Area

The use of RGB cameras is similar to the use of grayscale cameras. Again, it might be necessary
to modify the output bit depth. You can find the following example under \examples\Acquisition
\BasicAcquisition\mE4VD4-CL\DualBaseAreaRGB24.va. It is an example with two processes analog
to the example in Section 10.1.1.1, 'Grayscale Camera Link Base Area'. An single process example
for RGB area scan cameras is placed under \examples\Acquisition\BasicAcquisition\mE4VD4-CL
\BaseAreaRGB24.va.

Figure 10.2. Basic Acquisition for RGB Camera Link Area Scan Cameras in Base Configuration Mode

10.1.1.3. Grayscale Camera Link Medium Area

The use of medium cameras is similar to the use of cameras in Camera Link base configuration mode.
The camera medium configuration camera operator allows a higher bandwidth.

Figure 10.3. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Medium Configuration
Mode

The examples for 8 bit and 12 bit input bit depth are placed under \examples
\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan\MediumAreaGray8.va and \examples\Acquisition
\BasicAcquisition\mE4VD4-CL\AreaScan\MediumAreaGray12.va.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 389

VisualApplets User Documentation Release 3

10.1.1.4. RGB Camera Link Medium Area

Designs for RGB Camera Link cameras in medium configuration mode need a little modification
compared to the other modes. For the medium configuration mode up to 85MPixel/s @ 36 bit per pixel
i.e. 382.5MB/s can be transfered. The frame grabber RAM operators cannot process this high data
rate. Thus, it is not possible to connect a single ImageBuffer operator to the camera module. From the
operator documentation of operator ImageBuffer we know that only 64 bit can be connected to the
buffer input. As we need parallelism 2 and 36 bit, we will get a DRC error. A simple solution to solve
the bandwidth bottleneck is the use of two buffers in parallel. One buffer module will store the lower
bits (LSBs) while another buffer module is used to store the upper bits (MSBs).

Figure 10.4. Basic Acquisition for RGB Camera Link Area Scan Cameras in Medium Configuration Mode

You can find this example under \examples\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan
\MediumAreaRGB36.va.

10.1.1.5. Grayscale Camera Link Full Area

For the microEnable IV frame grabbers, designs for cameras in Camera Link full configuration mode
need a little modification compared to cameras in medium or base configuration mode. The full
configuration mode represents the fastest Camera Link mode. In theory, up to 850 Mbyte/s can be
transfered. The frame grabber RAM operators cannot process this high data rate. Thus, it is not possible
to connect a single ImageBuffer operator to the camera module. From the operator documentation of
operator ImageBuffer we know that only 64 bit can be connected to the buffer input. We will obtain a
DRC error when trying to build a design with only one ImageBuffer module. A simple solution to solve

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 390

VisualApplets User Documentation Release 3

the bandwidth bottleneck is the use of two buffer operators in parallel. One buffer module will store
the lower bits (LSBs), while another buffer module is used to store the upper bits (MSBs).

Figure 10.5. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Full Configuration Mode

The use of a 10 bit Camera Link full camera is similar. Change the properties in the camera module
and link to 10 bit and parallelism 12. The SelectBitField modules now have to be changed to 5 bit and
5 bit offset. Note that the DMA output is 10 bit in this case. This is a packed format as one byte can
contain multiple pixel. If you extend the output to 16 bit you might get a bandwidth limitation.

Figure 10.6. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Full Configuration 10 Bit
Mode

You find the two basic acquisition examples for 8 bit and 10 bit input bit depth
under \examples\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan\FullAreaGray8.va and \examples
\Acquisition\BasicAcquisition\mE4VD4-CL\AreaScan\FullAreaGray10.va.

10.1.2. Camera Link Line Scan Cameras

The acquisition for line scan cameras always requires the cut of the camera lines into images of a
specific height. In detail, line scan cameras transfer line by line to the frame grabber. They will not
include information on the end or start of a new image. The transfer of data from the frame grabber
to the PC is required to be send in packages i.e. frames. Therefore, the lines from line scan cameras
have to be assembled into an image of a specific height. There exist numerous possibilities to specify
the height. One simple possibility is to accumulate a specific number of lines to form an image, or
the image height is determined by other dynamic sources such as external image trigger gate signals.
The following Camera Link examples are equipped with a TrgPortLine operator (see Section 29.50,
'TrgPortLine'). This operator covers a wide range of trigger functionalities and can be used as an all-

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 391

VisualApplets User Documentation Release 3

purpose trigger module. Besides the image trigger functionality it can be used to trigger the camera.For
more information on the data transfer of line scan cameras Section 3.5.3, 'Image Protocols, Image
Dimensions and Data Structure' The following designs show simple Camera Link line scan VisualApplets
implementations for basic acquisition.

10.1.2.1. Grayscale Camera Link Base Line

The example (\examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan\DualBaseLineGray8.va)
in the following figure is a dual process design for 8 bit input bit depth. The equivalent
single process example is placed under \examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan
\BaseLineGray8.va.

Figure 10.7. Basic Acquisition for Grayscale Camera Link Line Scan Cameras in Base Configuration Mode

10.1.2.2. RGB Camera Link Base Line

The following dual process acquisition example for RGB cameras in Camera Link Base configuration
mode is equivalent to the grayscale example in Section 10.1.2.1, 'Grayscale Camera Link
Base Line'. You can find it under \examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan
\DualBaseLineRGB24.va.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 392

VisualApplets User Documentation Release 3

Figure 10.8. Basic Acquisition for RGB Camera Link Line Scan Cameras in Base Configuration Mode

For the single process example see \examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan
\BaseLineRGB24.va.

10.1.2.3. Grayscale Camera Link Medium Line

The following two examples show acquisition designs for 8 bit (\examples\Acquisition\BasicAcquisition
\mE4VD4-CL\LineScan\MediumLineGray8.va) and 12 bit (\examples\Acquisition\BasicAcquisition
\mE4VD4-CL\LineScan\MediumLineGray12.va) input bit depth.

Figure 10.9. Basic Acquisition for Grayscale Camera Link Line Scan Cameras in Medium Configuration
Mode

For medium 12 bit cameras two buffers are required as shown in the example for the area scan cameras
(see Section 10.1.1.4, 'RGB Camera Link Medium Area').

Figure 10.10. Basic Acquisition for Grayscale 12 Bit Camera Link Line Scan Cameras in Medium
Configuration Mode

10.1.2.4. Grayscale Camera Link Full Line

The example in the following figure presents an acquisition design in the Camera Link full configuration
mode for 8 bit (\examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan\FullLineGray8.va) and
10 bit (\examples\Acquisition\BasicAcquisition\mE4VD4-CL\LineScan\FullLineGray8.va) input bit
width.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 393

VisualApplets User Documentation Release 3

Figure 10.11. Basic Acquisition for Grayscale Camera Link Line Scan Cameras in Full Configuration Mode

10.2. Basic Acquisition Examples for GigE Vision Cameras for
microEnable IV Frame Grabber
You can find GigE Vision scan examples for mE4VQ4-GE platforms in the following sections. In Section
10.2.1, ' GigE Vision Area Scan Cameras ' or Section 10.2.2, 'GigE Vision Line Scan Cameras' examples
for area scan cameras or line scan cameras are described.

10.2.1. GigE Vision Area Scan Cameras

The designs for acquisition of GigE Vision cameras is very simple as can be seen in the following
figures. Note that the microEnable IV VQ4-GE/-GPoE allows the connection of up to four cameras with
gigabit ethernet interface. Thus, user can use all four cameras at the same time in either four different
processes individually or by combining their images and use a common processing. Check Section
4.4, 'Multiple Processes' for more information on multiple processes and Section 9.3.1, ' Synchronizing
Cameras ' for more information on how to combine the images of multiple cameras.

10.2.1.1. GigE Vision Grayscale Area Scan Cameras

The example "DualAreaGray8.va" is a two process acquisition design for two grayscale GigE cameras
with 8 bit pixel depth. The designs "QuadAreaGray8.va" and "QuadAreaGray12.va" are two 4 process
designs for 4 GigE area scan cameras with 8 bit and 12 bit grayscale values. You can find the examples
under \examples\Acquisition\BasicAcquisition\mE4VQ4-GE\Area. In Fig. 10.12 you can se the basic
design structure of the 4 processes design "QuadAreaGray8.va".

Figure 10.12. Basic Acquisition for Grayscale GigE Vision Area Scan Cameras

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 394

VisualApplets User Documentation Release 3

10.2.1.2. GigE Vision RGB Area Scan Cameras

The examples "DualAreaRGB24.va" and "DualAreaRGB36.va" are dual process designs for RGB image
acquisition for 24 bit (8 bit per color component) and 36 bit (12 bit per color component) pixel depth.
The design "QuadAreaRGB24.va" is a quad process design and equivalent to the example in Section
10.2.1.1, ' GigE Vision Grayscale Area Scan Cameras '. You can see its basic design structure in Fig.
10.13. Please find the examples under \examples\Acquisition\BasicAcquisition\mE4VQ4-GE\Area.

Figure 10.13. Basic Acquisition for RGB GigE Vision Area Scan Cameras

10.2.2. GigE Vision Line Scan Cameras

The acquisition for line scan cameras always requires the cut of the camera lines into images of a
specific height. In detail, line scan cameras transfer line by line to the frame grabber. They will not
include information on the end or start of a new image. The transfer of data from the frame grabber
to the PC is required to be send in packages i.e. frames. Therefore, the lines from line scan cameras
have to be assembled into an image of a specific height. The GigE Vision examples use the SplitImage
operator (See Section 32.24, 'SplitImage') to set a parameter defined image height to all acquired
images. Another possibility is the usage of operator SignalGate (See Section 31.25, 'SignalGate'). For
more information on the data transfer of line scan cameras Section 3.5.3, 'Image Protocols, Image
Dimensions and Data Structure' The following designs show simple Camera Link line scan VisualApplets
implementations for basic acquisition. The following designs show the basic acquisition for GigE Vision
line scan cameras.

10.2.2.1. GigE Vision Grayscale Line Scan Cameras

This example is a four processes design for a grayscale camera with 8 bit. You can find it under
\examples\Acquisition\BasicAcquisition\mE4VQ4-GE\QuadLineGray8.va.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 395

VisualApplets User Documentation Release 3

Figure 10.14. Basic Acquisition for Grayscale GigE Vision Line Scan Cameras

10.2.2.2. GigE Vision RGB Line Scan Cameras

This example is a four process design for a RGB camera . You can find it under \examples\Acquisition
\BasicAcquisition\mE4VQ4-GE\QuadLineRGB.va.

Figure 10.15. Basic Acquisition for RGB GigE Vision Line Scan Cameras

10.3. Basic Acquisition Examples for Camera Link Cameras for
marathon, LightBridge and ironman Frame Grabbers

You can find Camera Link scan examples for marathon (mE5-MA-VCL), LightBridge (LB-VCL) and
ironman (mE5VD8-CL/-PoCL) platforms in the following sections. The basic acquisition examples are
very similar to the ones on the mE4VD4-CL/-PoCL platform. In 10.3.1 and in 10.3.2 examples for area
and line scan cameras are described.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 396

VisualApplets User Documentation Release 3

10.3.1. Camera Link Area Scan Cameras

The basic acquisition for area scan cameras is very easy. You simply need to select a suitable camera
operator. Connect the camera operator to an ImageBuffer and DmaToPC operator. Any processing logic
can be placed in between, preferably behind the buffer. In the following basic examples for Camera
Link configuration mode base, medium and full are presented.

10.3.1.1. Grayscale Camera Link Base Area

Simply connect the three operators and parameterize them to meet your requirements. If you are
using a bit depth no equal to eight or 16, you should consider a change of the output bit depth to one of
these formats. In tutorial Section 9.1, 'Applet Parameterization' explanations on bit depth modifications
can be found.

Figure 10.16. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Base Configuration
Mode on LightBridge VCL, marathon VCL and ironman VCL

You can find the examples "BaseAreaGray8.va", "DualBaseAreaGray8.va" and "BaseAreaGray12.va"
for 8 bit and 12 bit under \examples\Acquisition\BasicAcquisition\mE5-MA-VCL\Area and \examples
\Acquisition\BasicAcquisition\mE5VD8-CL\Area. The example "DualBaseAreaGray8.va" is a dual
process design. Please read for information purpose under Appendix A, 'Device Resources' the concept
of shared memory on the microEnable 5 marathon and LightBridge platforms. For more information
about the Trigger box in "BaseAreaGray8.va" and how to trigger Camera Link area scan cameras see
Section 12.15, 'Trigger'.

10.3.1.2. RGB Camera Link Base Area

Please find the examples "BaseAreaRGB24.va" and "DualBaseAreaRGB24.va" for RGB 24 bit
for acquisition with a camera in Camera Link base configuration under \examples\Acquisition
\BasicAcquisition\mE5-MA-VCL\Area and \examples\Acquisition\BasicAcquisition\mE5VD8-CL\Area.
The example "DualBaseAreaRGB24.va" is a dual process design. Please read for information purpose
under Appendix A, 'Device Resources' the concept of shared memory on the microEnable 5 marathon
and LightBridge platforms. For more information on how to trigger your Camera Link camera see
Section 12.15, 'Trigger'.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 397

VisualApplets User Documentation Release 3

Figure 10.17. Basic Acquisition for RGB Camera Link Area Scan Cameras in Base Configuration Mode on
LightBridge VCL, marathon VCL and ironman VCL

10.3.1.3. Grayscale Camera Link Medium Area

The use of medium cameras is similar to the use of cameras in Camera Link base configuration mode.
The camera medium configuration camera operator allows a higher bandwidth. You find the example
designs "MediumAreaGray8.va" and "MediumAreaGray12.va" for 8 bit and 12 bit for the medium
configuration of a Camera Link grayscale camera under \examples\Acquisition\BasicAcquisition\mE5-
MA-VCL\Area and \examples\Acquisition\BasicAcquisition\mE5VD8-CL\Area.

Figure 10.18. Basic Acquisition for Grayscale Camera Link Area Scan Cameras in Medium Configuration
Mode on LightBridge VCL, marathon VCL and ironman VCL

10.3.1.4. RGB Camera Link Medium Area

Please find the example "MediumAreaRGB36.va" for 36 bit input bit depth for acquisition with a
camera in Camera Link medium configuration under \examples\Acquisition\BasicAcquisition\mE5-MA-
VCL\Area and \examples\Acquisition\BasicAcquisition\mE5VD8-CL\Area. In comparison to the medium
RGB design for the mE IV VD4 CL/-Pocl (see section 10.1.1.4) the design requires only one DRAM
element at a parallelism of 2 and 36 bit pixel depth due to the allowed DRAM data width of 256 bit
(mE5-MA-VCL) and 128 bit on (mE5VD8-CL/-PoCL) (see Appendix A, 'Device Resources').

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 398

VisualApplets User Documentation Release 3

Figure 10.19. Basic Acquisition for RGB Camera Link Area Scan Cameras in Base Configuration Mode on
LightBridge VCL, marathon VCL and ironman VCL

10.3.1.5. Camera Link Full Area

For the marathon, LightBrige and ironman frame grabber the usage of an area scan camera
in full configuration mode is simple. The following figure shows the usage. Ensure to set the
VALT_IMAGE2D image protocol in the link properties. You can find the examples "FullAreaGray8.va"
and "FullAreaGray10.va" for 8 and 10 bit pixel depth under \examples\Acquisition\BasicAcquisition
\mE5-MA-VCL\Area and \examples\Acquisition\BasicAcquisition\mE5VD8-CL\Area.

Figure 10.20. Basic Acquisition Design for marathon VCL, LightBridge VCL and ironman VCL Frame
Grabber for Camera Link Area Scan Cameras in Full Configuration Mode

10.3.2. Camera Link Line Scan Cameras

The acquisition for line scan cameras always requires the cut of the camera lines into images of a
specific height. In detail, line scan cameras transfer line by line to the frame grabber. The transfer
of data from the frame grabber to the PC is required to be send in packages i.e. frames. Therefore,

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 399

VisualApplets User Documentation Release 3

the lines from line scan cameras have to be assembled into an image of a specific height. There
exist numerous possibilities to specify the height. One simple possibility is to accumulate a specific
number of lines to form an image, or the image height is determined by other dynamic sources such
as external image trigger gate signals. For the microEnable 5, the TrgPortLine operator (see Section
10.1.2, 'Camera Link Line Scan Cameras') is not available. The following example converts the line
data from camera to 2D image data in SplitImage. Ensure to set the image protocol output of the
camera operator to VALT_LINE1D. The examples are for grayscale cameras for Camera Link base and
full configuration mode. Please adapt the example design for RGB cameras and Camera Link medium
configuration equivalently.

10.3.2.1. Grayscale Camera Link Base Line Scan Cameras

The examples "BaseLineGray8.va", "DualBaseLineGray8.va" and "BaseLineGray12.va" for 8 bit
and 12 bit pixel depth are basic acquisition designs for greyscale line cameras in Camera
Link base configuration mode. The design "DualBaseLineGray8.va" is a dual process design.
Please read for information purpose under Appendix A, 'Device Resources' the concept of
shared memory on the microEnable 5 marathon and LightBridge platforms. You can find the
examples under \examples\Acquisition\BasicAcquisition\mE5-MA-VCL\Line and \examples\Acquisition
\BasicAcquisition\mE5VD8-CL\Line.

Figure 10.21. Basic Acquisition Design for marathon, LightBridge and ironman Frame Grabber for
Grayscale Camera Link Line Scan Cameras in Base Configuration Mode

For the LightBridge, marathon and ironman frame grabbers we use as an alternative TrgBoxLine instead
of TrgPortLine. See the following figure. Ensure to set the image protocol output of the camera operator
to VALT_LINE1D.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 400

VisualApplets User Documentation Release 3

Figure 10.22. Basic Acquisition for Grayscale Camera Link Line Scan Cameras in Base Configuration Mode
on the LightBridge VCL, marathon VCL and ironman VCL

10.3.2.2. RGB Camera Link Base Line Scan Cameras

You find the examples "BaseLineRGB24.va" and "DualBaseLineRGB24.va" for 24 bit pixel depth (8
bits per color component) for acquisition with RGB line cameras in Camera Link base configuration
mode under \examples\Acquisition\BasicAcquisition\mE5-MA-VCL\Line and \examples\Acquisition
\BasicAcquisition\mE5VD8-CL\Line. They are equivalent to the grayscale line scan acquisition design
(see section 10.3.2.1). Please read in section Appendix A, 'Device Resources' the concept of shared
memory on the microEnable 5 marathon and LightBridge platforms. This information is highly relevant
for multiple process designs (e.g. "DualBaseLineRGB24.va") or designs which use multiple DRAM
elements.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 401

VisualApplets User Documentation Release 3

Figure 10.23. Basic Acquisition Design for marathon, LightBridge and ironman Frame Grabber for RGB
Camera Link Line Scan Cameras in Base Configuration Mode

10.3.2.3. Grayscale Camera Link Medium Line Scan Cameras

The examples "MediumLineGray8.va" and "MediumLineGray12.va" for 8 bit and 12 bit pixel depth are
basic acquisition designs for greyscale line cameras in Camera Link medium configuration mode. They
are equivalent to the designs for base configuration but allow a higher data rate. You can find the
examples under \examples\Acquisition\BasicAcquisition\mE5-MA-VCL\Line and \examples\Acquisition
\BasicAcquisition\mE5VD8-CL\Line.

Figure 10.24. Basic Acquisition Design for marathon, LightBridge and ironman Frame Grabber for
Grayscale Camera Link Line Scan Cameras in Base Configuration Mode

10.3.2.4. RGB Camera Link Medium Line Scan Cameras

You find the example "MediumLineRGB36.va" for 36 bit pixel depth (12 bits per color
component) for acquisition with RGB line scan cameras in Camera Link medium configuration
mode under \examples\Acquisition\BasicAcquisition\mE5-MA-VCL\Line and \examples\Acquisition
\BasicAcquisition\mE5VD8-CL\Line. It is equivalent to the grayscale line scan acquisition designs (see
section 10.3.2.3).

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 402

VisualApplets User Documentation Release 3

Figure 10.25. Basic Acquisition Design for marathon, LightBridge and ironman Frame Grabber for RGB
Camera Link Line Scan Cameras in Base Configuration Mode

10.3.2.5. Grayscale Camera Link Full Line Scan Cameras

You can find the Camera Link full line scan acquisition design examples "FullLineGray8.va" and
"FullLineGray10.va" for 8 bit and 10 bit pixel depth under \examples\Acquisition\BasicAcquisition\mE5-
MA-VCL\Line\FullLineGray8.va \examples\Acquisition\BasicAcquisition\mE5VD8-CL\Line. If you want
to perform RGB image acquisition instead of grayscale, simply replace the operator "FullGrayCamera"
by the operator "FullRgbCamera".

Figure 10.26. Basic Acquisition for marathon, LightBridge and ironman Frame Grabber for Camera Link
Line Scan Cameras in Full Configuration Mode

10.4. Basic Acquisition Examples for CoaXPress Cameras for
marathon and ironman Frame Grabbers

In the following you can find basic acquisition examples for CoaXPress cameras for the marathon and
ironman frame grabbers mE5-MA-VCX-QP and mE5VQ8-CXP6D. In Section 10.4.1, 'CoaXPress Area
Scan Cameras' designs for area scan cameras and in Section 10.4.2, 'CoaXPress Line Scan Cameras'
designs for line scan cameras are presented.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 403

VisualApplets User Documentation Release 3

10.4.1. CoaXPress Area Scan Cameras

Basic acquisition for CoaXPress cameras on the marathon mE5-MA-VCX-QP and ironman mE5VQ8-
CXP6D platforms is very simple. You have to use either operator CXPSingleCamera, CXPDualCamera
or CXPQuadCamera. With "double-mouse-click" on the camera operator you can choose the format
type (i.e. Gray, RGB, or also Bayer Raw) and the format mode i.e the corresponding bit depth.
Therefore for the CoaXPress cameras no separate camera operators for grayscale and RGB acquisition
exist. In the following sections example designs for image acquisition with the three camera types
(CXPSingleCamera, CXPDualCamera and CXPQuadCamera) are introduced. Keep in mind to set the
correct link format in the output links of the camera operators. Ensure that the maximum image width
and the correct image protocol is set. Some operators output their data at a parallelism which is not
a multiple of a power of two value. As it is more convenient to work on power of two parallelism, the
parallelism can be increase with a PARALLELup operator. The successive ImageBuffer will then cut the
correct ROI and remove dummy pixel which might have been added due to parallelism conversions.

10.4.1.1. Basic Acquisition Example for Single Line CoaXPress Area Scan
Cameras

Please find the basic acquisition designs "SingleCXP6x1AreaGray8", "SingleCXP6x1AreaGray10.va",
"SingleCXP6x1AreaGray12.va" (grayscale 8 bit, 10 bit and 12 bit) and
"SingleCXP6x1AreaRGB24.va" (color 24 bit) for one single link aggregation camera for the mE5VQ8-
CXP6D and mE5-MA-VCX-QP platforms under \examples\Acquisition\BasicAcquisition\mE5VQ8-
CXP6D\Area and \examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP\Area. The designs for
the two platforms are equivalent. The following figure shows the basic design structure of
the example designs. The examples for four single link aggregation cameras are the designs
"QuadCXP6x1AreaGray12.va" (grayscale 12 bit) and "QuadCXP6x1AreaRGB36.va" (color 36 bit with
12 bit per component) and are located in the same folder. Please read the shared memory concept
for the mE5-MA-VCX-QP platform under Appendix A, 'Device Resources'. This information is highly
relevant when you use multiple DRAM elements in one design.

Figure 10.27. Basic Acquisition for Grayscale CoaxPress Area Scan Cameras in 6GBit/s Mode with Link
Aggregation 1 on the ironman Frame Grabber

10.4.1.2. Basic Acquisition Examples for two Dual Line CoaXPress Area
Scan Cameras

Please find the two example designs "DualCXP6x2AreaGray8.va" (grayscale 8 bit) and
"DualCXP6x2AreaRGB24.va" (RGB 24 bit, 8 bits per color component) for the mE5VQ8-CXP6D and
mE5-MA-VCX-QP platform under \examples\Acquisition\BasicAcquisition\mE5VQ8-CXP6D\Area and
\examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP\Area. The designs are dual process designs
for two CoaXPress cameras with dual link aggregation. Please read also under Appendix A, 'Device
Resources' information on the shared memory concept for the mE5-MA-VCX-QP platform. The following
figure shows the basic acquisition design for the design "DualCXP6x2AreaGray8.va".

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 404

VisualApplets User Documentation Release 3

Figure 10.28. Basic Acquisition for RGB CoaxPress Area Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 2 on the ironman Frame Grabber

10.4.1.3. Basic Acquisition Examples for One Quad Line CoaXPress Area
Scan Camera

"SingleCXP6x4AreaGray8.va" (grayscale 8 bit) and "SingleCXP6x4AreaRGB36.va" (RGB with 12 bits
per color component) are example designs for one camera with 4 link aggregation. You can find
the designs for the mE5VQ8-CXP6D and mE5-MA-VCX-QP platform under \examples\Acquisition
\BasicAcquisition\mE5VQ8-CXP6D\Area and \examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP
\Area. The designs for the two platforms differ but follow the same principle. In Fig. 10.29 you can
see the basic design structure of the design "SingleCXP6x4AreaGray8.va" for the mE5VQ8-CXP6D
platform. As the memory bandwidth (128 bit RAM data width at 3.2 GB/s) for the 6 Gbit/s with link
aggregation 4 is not sufficient with a single buffer, two buffers have to be used in parallel for the
mE5VQ8-CXP6D platform. For the mE5-MA-VCX-QP platform only one DRAM element is necessary
to achieve the required bandwidth of 6Gbit/s per line. Here up to 512 bit RAM data width at a RAM
bandwidth of 12.8 GB/s are possible. Please read for more information on the devices resources
Appendix A, 'Device Resources'. In Fig. 10.30 you can see the basic design structure of the example
"SingleCXP6x4AreaGray8.va" on the mE5-MA-VCX-QP platform.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 405

VisualApplets User Documentation Release 3

Figure 10.29. Basic Acquisition for Grayscale CoaxPress Area Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 4 on the ironman Frame Grabber

Figure 10.30. Basic Acquisition for Grayscale CoaxPress Area Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 4 on the marathon Frame Grabber

10.4.2. CoaXPress Line Scan Cameras

The examples presented in the following subsections are basic acquisition designs for grayscale line
scan CoaXPress cameras. They are equivalent to the designs in section Section 10.4.1, 'CoaXPress
Area Scan Cameras'. Just set the camera operator to VALT_LINE1D and add the operator "SplitImage".

10.4.2.1. Basic Acquisition Example for Single Line CoaXPress Line Scan
Cameras

Please find the basic acquisition designs "SingleCXP6x1LineGray8", "SingleCXP6x1LineGray10.va",
"SingleCXP6x1LineGray12.va" (grayscale 8 bit, 10 bit and 12 bit) and
"SingleCXP6x1LineRGB24.va" (color 24 bit) for one single link aggregation camera for the mE5VQ8-
CXP6D and mE5-MA-VCX-QP platforms under \examples\Acquisition\BasicAcquisition\mE5VQ8-
CXP6D\Line and \examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP\Line. The designs for the
two platforms are equivalent. The following figure shows the basic design structure of the
example designs. The examples for four single link aggregation cameras are the designs
"QuadCXP6x1LineGray12.va" (grayscale 12 bit) and "QuadCXP6x1LineRGB36.va" (color 36 bit) and are
located in the same folder. Please read the shared memory concept for the mE5-MA-VCX-QP platform
under Appendix A, 'Device Resources'. This information is highly relevant when you use multiple DRAM
elements in one design.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 406

VisualApplets User Documentation Release 3

Figure 10.31. Basic Acquisition for Grayscale CoaxPress Line Scan Cameras in 6 GBit/s Mode with Link
Aggregation 1 on the ironman Frame Grabber

10.4.2.2. Basic Acquisition Examples for two Dual Line CoaXPress Line
Scan Cameras

Please find the two example designs "DualCXP6x2LineGray8.va" (grayscale 8 bit) and
"DualCXP6x2LineRGB24.va" (RGB 24 bit, 8 bits per color component) for the mE5VQ8-CXP6D and
mE5-MA-VCX-QP platform under \examples\Acquisition\BasicAcquisition\mE5VQ8-CXP6D\Line and
\examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP\Line. The designs are dual process designs
for two CoaXPress cameras with dual link aggregation. Please read also under Appendix A, 'Device
Resources' information on the shared memory concept for the mE5-MA-VCX-QP platform. Fig. 10.32
shows the basic acquisition design for the design "DualCXP6x2LineGray8.va".

Figure 10.32. Basic Acquisition for RGB CoaxPress Line Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 2 on the ironman Frame Grabber

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 407

VisualApplets User Documentation Release 3

10.4.2.3. Basic Acquisition Examples for One Quad Line CoaXPress Line
Scan Camera

"SingleCXP6x4LineGray8.va" (grayscale 8 bit) and "SingleCXP6x4LineRGB36.va" (RGB with 12 bits
per color component) are example designs for one camera with 4 link aggregation. You can find
the designs for the mE5VQ8-CXP6D and mE5-MA-VCX-QP platform under \examples\Acquisition
\BasicAcquisition\mE5VQ8-CXP6D\Line and \examples\Acquisition\BasicAcquisition\mE5-MA-VCX-QP
\Line. The designs for the two platforms differ but follow the same principle. In Fig. 10.33 you can
see the basic design structure of the design "SingleCXP6x4LineGray8.va" for the mE5VQ8-CXP6D
platform. As the memory bandwidth (128 bit RAM data width at 3.2 GB/s) for the 6 Gbit/s with link
aggregation 4 is not sufficient with a single buffer, two buffers have to be used in parallel for the
mE5VQ8-CXP6D platform. For the mE5-MA-VCX-QP platform only one DRAM element is necessary
to achieve the required bandwidth of 6Gbit/s per line. Here up to 512 bit RAM data width at a RAM
bandwidth of 12.8 GB/s are possible. Please read for more information on the devices resources
Appendix A, 'Device Resources'. In Fig. 10.34 you can see the basic design structure of the example
"SingleCXP6x4LineGray8.va" on the mE5-MA-VCX-QP platform.

Figure 10.33. Basic Acquisition for Grayscale CoaxPress Line Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 4 on the ironman Frame Grabber

Figure 10.34. Basic Acquisition for Grayscale CoaxPress Line Scan Cameras in 6 Gbit/s Mode with Link
Aggregation 4 on the ironman Frame Grabber

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 408

VisualApplets User Documentation Release 3

10.5. Basic Acquisition Examples for Cameras for CoaXPress
12 imaFlex Frame Grabber

In the following you can find basic acquisition examples for for the CoaXPress12 frame grabber imaFlex.
In Section 10.5.1, 'CoaXPress Area Scan Cameras' designs for area scan cameras and in Section 10.5.2,
'CoaXPress Line Scan Cameras' designs for line scan cameras are presented.

10.5.1. CoaXPress Area Scan Cameras

In this section you find example implementations for basic acquisition for the CoaXPress 12 frame
grabber imaFlex. In contrast to the camera interfaces of the microEnbale 5 series, only one camera
operator exists for different CXP link aggregations. Via parameter ConnectionCount, you can set the
number of CXP connections of the corresponding camera. Possibil values are x1,x2 and x4. The
parallelism at the output link of the camera interface corresponds to the number of chosen CXP
connections. At the output link of the camera operator CxpCamera on the imaFlex platform only the
color format VAF_Gray and the bit width 8bit is possible. In the example designs shown here, you
can implement image acquisition designs, which support multiple bit widths, color formats and image
protocols of the corresponding camera. The example designs are located at \examples\Acquisition
\BasicAcquisition\iF-CXP12-Q.

10.5.1.1. Basic Acquisition Example for One CoaXPress12 Quad Link Area
Scan Camera

The basic acquisition design for one quad link aggregation camera for the imaFlex platform is
SingleCXP12x4AreaGray8.va. The following figure shows the basic design structure of the example
design.

Figure 10.35. Basic Acquisition for One Grayscale CoaxPress Area Scan Camera with Link Aggregation 4
on the imaFlex Frame Grabber

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 409

VisualApplets User Documentation Release 3

10.5.1.2. Basic Acquisition Examples for Four CoaXPress-12 Single Link
Area Scan Cameras

The example for four single link aggregation cameras is the design QuadCXP12x1AreaGray8.va
(grayscale 8 bit). The shared memory concept is valid for the imaFlex platform. This information is
highly relevant when you use multiple DRAM elements in one design. In the design and the LineBuffer
documentation you find relevant information for the DRAM element LineBuffer on imaFlex in the context
of maximum bandwidth performance: This operator performs an automatic aggregation of pixels for
matching the memory data width as close as possible, in order to reach an optimal performance.

Figure 10.36. Basic Acquisition for Four CoaXPress12 Single Link Area Scan Cameras

10.5.1.3. Basic Acquisition Example for Multiple Bit Widths on imaFlex
Platform

The example design SingleCXP12x1Area_MultipleBitWidth.va for the imaFlex platform
demonstrates, how you can implement acquisition designs which support camera input bit widths of
8bit, 10bit, 12bit, 14bit and 16bit. The implementation differs from the microEnable 5 implementation,
as on imaFlex platform the output link at the camera operator supports only 8-bit format. You find
detailed comments and descriptions in the VisualApplets design. The following figure shows the basic
acquisition design for the design SingleCXP12x1Area_MultipleBitWidth.va.

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 410

VisualApplets User Documentation Release 3

Figure 10.37. Basic Acquisition Example for Multiple Bit Widths on imaFlex Platform

10.5.1.4. Basic Acquisition Example for Color Format Support on imaFlex
Platform

The example design SingleCXP12x1Area_RGB.va for the imaFlex platform demonstrates, how you
can implement acquisition designs which support cameras with color format. The implementation
differs from the microEnable 5 implementation, as on imaFlex platform the output link at the
camera operator supports only grayscale color format. You find detailed comments and descriptions
in the VisualApplets design. The following figure shows the basic acquisition design for the design
SingleCXP12x1Area_RGB.va.

Figure 10.38. Basic Acquisition Example for Color Format Support on imaFlex Platform

Basic Acquisition Designs for Varying Camera Types and Hardware Platforms 411

VisualApplets User Documentation Release 3

10.5.2. CoaXPress Line Scan Cameras

The example presented in the following subsections is a basic acquisition design for grayscale line scan
CoaXPress cameras. It is equivalent to the design in section Section 10.5.1, 'CoaXPress Area Scan
Cameras'. The difference here is that the camera operator is set to VALT_LINE1D and add the operator
SplitImage has been added.

10.5.2.1. Basic Acquisition Example for Single Line CoaXPress Line Scan
Cameras

Find the basic acquisition designs SingleCXP12x4LineGray8.va (grayscale 8 bit) for one single link
aggregation camera for the imaFlex platform at \examples\Acquisition\BasicAcquisition\iF-
CXP12-Q. The following figure shows the basic design structure of the example design.

Figure 10.39. Basic Acquisition for Grayscale CoaxPress Line Scan Cameras on the imaFlex Frame
Grabber

imaFlex CXP-12 Quad and Penta Implementation Examples 412

VisualApplets User Documentation Release 3

11. imaFlex CXP-12 Quad and Penta
Implementation Examples
The imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms currently don't provide support for
all DRAM-based memory operators, which are available on the microEnable 5 platforms. Operators
which are not supported are: ImageBufferMultiRoi and CoefficientBuffer. In the VisualApplets
example designs described in this chapter, you find user library elements and implementations
with VisualApplets standard operators, which provide the same functionality as the missing memory
operators. See Section 4.2.8, 'Delivered User Libraries' for instructions how to work with user library
elements. In addition, the FrameBufferMultiRoiDyn operator is introduced, which substitutes the
ImageBufferMultiRoiDyn operator on imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

The example "imaFlex_Jpeg_Color_iF_Advanced.va" demonstrates the usage of user library element
JPEG_Encoder_Color_iF on imaFlex platform. Its functionality is equivalent to the functionality of the
user lib elements of library JPEG_Color for microEnable 5 frame grabber series

In Section 10.5, 'Basic Acquisition Examples for Cameras for CoaXPress 12 imaFlex Frame Grabber'
basic acquisition examples are described, which show how to support multiple bit widths, image formats
and protocols using the camera interface operator CxpCamera on imaFlex CXP-12 Quad platform. In
section Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT', an
example implementation is described, which shows how to perform 2D shading correction based on
operator RamLUT as alternative to the operator CoefficientBuffer. The example Section 11.8, 'Example
for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform' shows how images (in the example
images containing shading correction coefficients) can be transferred from PC to the frame grabber
using the DMAFromPC operator.

11.1. Functional Example for the FrameBufferMultRoiDyn
Operator on the imaFlex CXP-12 Penta Platform

Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlexPenta_CXP12_FrameBufferMultiRoiDyn.vad
Default Platform: imaFlex CXP-12 Penta

Short Description

Demonstration of the functionality of the
FrameBufferMultiRoiDyn operator.

This example demonstrates how the FrameBufferMultiRoiDyn operator substitutes the functionality of
the ImageBufferMultiRoiDyn operator on imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

11.2. Functional Example for the FrameBufferMultRoi User
Library Element on the imaFlex CXP-12 Penta Platform

imaFlex CXP-12 Quad and Penta Implementation Examples 413

VisualApplets User Documentation Release 3

Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlexPenta_CXP12_FrameBufferMultiRoi.vad
Default Platform: imaFlex CXP-12 Penta

Short Description

Demonstration of the functionality of the
FrameBufferMultiRoi user library element.

This example demonstrates how the FrameBufferMultiRoi user library element substitutes the
functionality of the ImageBufferMultiRoi operator, which is not supported on the imaFlex CXP-12 Quad
and imaFlex CXP-12 Penta platforms. See Section 4.2.8, 'Delivered User Libraries' for instructions
how to work with user library elements. The functionality is equivalent to the functionality of the
ImageBufferMultiRoi user library element, but uses less FPFA resources.

11.3. Functional Example for the FrameBufferMultRoi User
Library Element on the imaFlex CXP-12 Quad Platform
Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlexQuad_CXP12_FrameBufferMultiRoi.vad
Default Platform: imaFlex CXP-12 Quad

Short Description

Demonstration of the functionality of the
FrameBufferMultiRoi user library element.

This example demonstrates how the FrameBufferMultiRoi user library element substitutes the
functionality of the ImageBufferMultiRoi operator, which is not supported on the imaFlex CXP-12 Quad
and imaFlex CXP-12 Penta platforms. See Section 4.2.8, 'Delivered User Libraries' for instructions
how to work with user library elements. The functionality is equivalent to the functionality of the
ImageBufferMultiRoi user library element, but uses less FPFA resources.

11.4. Functional Example for Loading Test Images Using
ImageInjector
Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlex_CXP12_ImageInjector_SimulationSource.vad
Default Platform: iF-CXP12-Q

Short Description

Demonstration of loading test images during
runtime using operator ImageInjector .

This example demonstrates how the test images can be loaded during runtime using the operator
ImageInjector. The example implementation can substitute the functionality of the operator

imaFlex CXP-12 Quad and Penta Implementation Examples 414

VisualApplets User Documentation Release 3

CoefficientBuffer as test image source on the imaFlex CXP-12 Quad platform. The operator
CoefficientBuffer is not supported on the imaFlex CXP-12 Quad platform.

11.5. Functional Example for Multi Tap Camera Interface with
Tap Geometry Sorting
Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlex_CXP12_CxpCameraMultiTap.vad
Default Platform: iF-CXP12-Q

Short Description

Demonstration of CxpCameraMultiTap succeeding
with tap geometry sorting.

This example shows how to use operator CxpCameraMultiTap with succeeding tap geometry sorting
on imaFlex CXP-12 Quad platform. In this example the tap geometry is 1X-2YE.

11.6. Functional Example for the JPEG_Encoder_Color_iF User
Library Element on the imaFlex CXP-12 Quad Platform
Brief Description
Files: examples
\imaFlex_ImplementationExamples
\imaFlex_Jpeg_Color_iF_Advanced.vad
Default Platform: iF-CXP12-Q

Short Description

Demonstration of the functionality of the user
library element JPEG_Encoder_Color_iF.

This example demonstrates the usage of user library element JPEG_Encoder_Color_iF on the imaFlex
CXP-12 Quad platform. Its functionality is equivalent to the functionality of the user lib elements of
library JPEG_Color for microEnable 5 frame grabber series. See Section 4.2.8, 'Delivered User Libraries'
for instructions how to work with user library elements.

11.7. Functional Example for the
JPEG_Encoder_Color_iF_Penta User Library Element on the
imaFlex CXP-12 Penta Platform
Brief Description
Files: examples
\imaFlex_ImplementationExamples
\penta_Jpeg_Color_iF_Advanced.vad
Default Platform: iF-CXP12-Penta

Short Description

imaFlex CXP-12 Quad and Penta Implementation Examples 415

VisualApplets User Documentation Release 3

Brief Description
Demonstration of the functionality of the user
library element JPEG_Encoder_Color_iF_Penta.

This example demonstrates the usage of user library element JPEG_Encoder_Color_iF_Penta on the
imaFlex CXP-12 Penta platform. Its functionality is equivalent to the functionality of the user lib
elements of library JPEG_Color for microEnable 5 frame grabber series. See Section 4.2.8, 'Delivered
User Libraries' for instructions how to work with user library elements.

11.8. Example for the DMAFromPC Operator on the imaFlex
CXP-12 Quad Platform

Brief Description
Files: examples
\imaFlex_ImplementationExamples\DMAFromPC
\DMAFromPC.vad
Default Platform: imaFlex CXP-12 Penta

Short Description

Demonstration of the functionality of the
DMAFromPC operator.

This example demonstrates how you can use the DMAFromPC operator on an imaFlex CXP-12 Quad
platform to transfer images from the PC to the frame grabber using the example of shading correction.
See the Framegrabber SDK example script, which you can find in the same directory as the *.va file,
to see how the DMAFromPC functionality can be used during runtime.

Processing Examples 416

VisualApplets User Documentation Release 3

12. Processing Examples
VisualApplets includes numerous examples which will show the usage of operators and will provide
you with implementation ideas. All examples can be found in the VisualApplets installation directory
in sub-directory examples i.e. “%VASINSTALLDIR%/examples”. Testimages for simulation can be
found in “%VASINSTALLDIR%/testimages”

The following sections show an overview on all examples. A brief introduction is presented as well
as the folder and filename. All examples use a default hardware platform. Nearly most of them can
easily be converted to other hardware platforms. See Section 4.5, 'Target Hardware Porting' for more
information on how to switch the hardware platform.

12.1. Advanced
This section contains advanced examples on laser pointer detection and laser triangulation. Also
examples for the usage of the operators ImageBuffer_JPEG_Gray, JPEG_Encoder_Gray and the
fast fourier transformation operator FFT are provided. Additional examples show how lossless image
compression can be performed based on run length encoding methods.

12.1.1. Fast Fourier transform

Brief Description
File: \examples\Processing\Advanced
\FastFourierTransform\mE5-MA-VCL\fft.va

File: \examples\Processing\Advanced
\FastFourierTransform\mE5-VD8-CL\fft.va

File: \examples\Processing\Advanced
\FastFourierTransform\iF-CXP12-Q\fft.va

Default Platform: mE5-MA-VCL or mE5-VD8-CL

Short Description

Shows the usage of operator FFT. The applet
generates a sine pattern and performs the FFT.
The results show the frequency part. Use the
VisualApplets simulation.

The provided example will demonstrate the use of the FFT. In the example, a simple sine wave with
period 256 and magnitude ± 16384 is generated.

Figure 12.1. Sinewave

Processing Examples 417

VisualApplets User Documentation Release 3

The resulting real and imaginary part are squared and added. So the output is the squared absolute
value.

The result shows the expected peak at x = 32 i.e. a period of 8192 / 32 = 256. At position 32 the real
part value is -43 and imaginary part is -67108738. When we compare the values with a Matlab FFT
calculation we see real = 8,7e-10 and imag = 6710900. So we can see that the result is very good.
There exists a small inaccuracy in the calculation only.

Figure 12.2. FFT Result

The implementation is very simple. A sine wave input. H-Box DynamicReduceResolutionFFTOut is used
to shift results and reduce their resolution. This is not required for the given sine wave.

Figure 12.3. FFT Result

12.1.2. JPEG Encoder Gray

Processing Examples 418

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Advanced\JPEG
\JPEG_Gray\JPEG_Gray.va

Default Platform: mE5-MA-VCL

Short Description

A simple example which shows the usage of the
JPEG operators.

12.1.3. Using more than one JPEG encoder to enhance the bandwidth of
JPEG compression.

Brief Description
Files:
\examples\Processing\Advanced\JPEG
\JPEG_multi\JPEG_Color.va
\examples\Processing\Advanced\JPEG
\JPEG_multi\JPEG_Gray.va
\examples\Processing\Advanced\JPEG
\JPEG_multi\Software

Default Platform:
mE5-MA-VCL
mE5-MA-ACX-QP

Short Description

Using more than one encoder to enhance the
bandwidth for a JPEG compression.

This example is designed to enhance the bandwidth for a JPEG compression. To allow this several
encoders are used in parallel. There exist two examples for the marathon mE5 VCL plattform. The
JPEG_Gray example uses 4 encoders to encode a full configuration grayscale image. The JPEG_Color
example uses 6 encoders to encode an image from a bayer camera with a subsampling in horizontal
and vertical direction for the Chroma components.

12.1.3.1. JPEG_Gray - VisualApplets Design

This Design uses four JPEG_Encoder_Gray operators to to encode an image with a bandwidth of
maximum 1200MP/s (this would be suffizient for a CameraLink Camera in full configuration).
A JPEG Stream bases on a runlength encoding. Each Stream starts with a DC part followed by several
AC components. So in order to split an image to several encoders the encoding needs to be restarted
in intervals. This can be done in the JPEG format using Restart markers. The VisualApplets design
therefor splits the Image into Blocks of 8 Lines (1 Line of MCUs). At the end of each MCU Line a restart
Marker is inserted.

Processing Examples 419

VisualApplets User Documentation Release 3

Figure 12.4. Basic design structure

In Fig. 12.4 you can see the general applet. For the compression there are three interesting hierarchical
boxes (JPEGBlockSorter8x8, SplitImage and SYNC). In JPEGBlockSorter8x8(Fig. 12.5) the data
of 8 lines is rearanged to blocks of 8x8 pixel. These blocks are send consecutively.
To keep the image handy the dimensions are kept the same.
SplitImage(Fig. 12.7) saves the image to the DRAM and rearanges the lines in a way, that the 4
consecutive lines addresses 4 independend MCU-block-lines. In this way for streams of MCU-block-
lines can be split and send to 4 independend encoders.
SYNC collects the encoded streams, replaces the information Tag at the end by a restart marker and
appends all lines to an image.

Figure 12.5. Content of box JPEGBlockSorter8x8

First 8 pixel are appended to one "block-pixel". In the Sort Box these "block-pixel" are arranged in a
way that the block pixel of each line follow after another as shown in Fig. 12.6

Processing Examples 420

VisualApplets User Documentation Release 3

Figure 12.6. Rearangement of Pixel in JPEGBlockSorter8x8

The SplitImage(Fig. 12.7) box rearanges the lines from the JPEGBlockSorter8x8(Fig. 12.5) into a
schema, where always 4 blocks are separatly transmitted. Each Block consists of 8 Lines. This procedure
is repeated till all lines are transmitted.
In the Split box the image is split into 4 Images. This is done by removing all lines from each link that
doesn't belong to the image. These sub images are split to images of the height 8, so that the applet
can insert restart intervalls at the end of 8 lines.

Processing Examples 421

VisualApplets User Documentation Release 3

Figure 12.7. Content of SplitImage box

The SYNC box combines the streams of each JPEG_Converter into one image. This is done in three
steps. First the final bytes (0xFFD9 - End of Image Marker + Informations from the operator) are
marked for removal. This is done in the Box RemoveFillByte(Fig. 12.8). Second restart markers are
added in between the blocks. Restart Markers in a JPEG stream are in a structure: "0xFFDx", where x
is a value from 0 to 7 counting round and robbin. This is done in the Box RestartMarker(Fig. 12.5).
Third unused Bytes are removed.

Figure 12.8. Content of the RemoveFillByte box

Processing Examples 422

VisualApplets User Documentation Release 3

Figure 12.9. Content of the RestartMarker box

For the imagedata you get out of this applet you need to add Restart information to the header. This
is done by adding the DRI Marker (0xFF DD) to the header.

12.1.3.2. JPEG_Gray - VisualApplets Design

Figure 12.10. Basic design structure

This Example is basically the same as the Gray example. The differences are:
1. RGB data from a Bayer conversion is converted to the YCrCb colorspace.
2. Cr and Cb components are subsampled.
3. The separated images are buffered in a separate buffer. In order to sort the Lines to 6 converters
without inserting dummy lines an independend sorting buffer is needed.
4. Sync needs to be split into 3 different images of different height.

In order to use restart interfalls in a subsampled image the sampling factor needs to be adjusted to
the minimum number of MCUs in a channel. We use a 4:2:0 Subsampling. This means we have only
half the line width in the Cr and Cb image. That's why lines need to be split in half in the Y image as
well in order to get all restart markers in the same place.

12.1.4. JPEG Compression Using Operator JPEG_Encoder

Brief Description
File: \examples\Processing\Advanced\JPEG
\mE5-MA-VCL\JPEG_DualBaseAreaGray.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCL\JPEG_SingleFullAreaGray.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_SingleCXP6x4AreaGray.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_DualCXP6x2AreaGray.va

Processing Examples 423

VisualApplets User Documentation Release 3

Brief Description
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_QuadCXP6x1AreaGray.va

Default Platform: mE5-MA-VCL
mE5-MA-VCX-QP

Short Description

Simple examples which show the usage of the
operator JPEG_Encoder.

In these VisualApplets examples we show the usage of the operator JPEG_Encoder
for the compression of grayscale 8 bit images for mE5-MA-VCL and mE5-MA-VCX-QP
platform for various link configurations and input bandwidths. For news on the operator
JPEG_Encoder, the example designs or if you have questions please have a look in our
VisualApplets forum under https://forum.silicon.software/forum/index.php?thread/100-new-high-
speed-jpeg-operator-and-examples-va-3-2-0/ .

12.1.4.1. Grayscale JPEG Encoding

In Fig. 12.11 you can see the top level design of a process of the VisualApplets examples for grayscale
JPEG encoding with the modules Implementation and Parameters. In this top level design you find
also information on the number of processes in the design and on the design clock frequency used
in the example implementation.

Figure 12.11. Top level design structure

With right-mouse-click on the box Parameters you can set the applet parameters like image
dimension, JPEG quality or pixel format. You can set these parameters dynamically during execution
of the applet in hardware. In the module Implementation the JPEG compression is implemented.
Please see Fig. 12.12 for the basic implementation structure.

https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/

Processing Examples 424

VisualApplets User Documentation Release 3

Figure 12.12. Basic implementation of grayscale JPEG compression using operator JPEG_Encoder

An grayscale 8 bit image with maximum image dimensions of 5120x5120 pixels is forwarded from
camera interface directly to operator JPEG_Encoder. In comparison to previous JPEG operator
JPEG_Encoder_Gray no external 8x8 pixels block sorting module is necessary. With right-mouse-
click on the operator you can set parameters like image width and height or you can include or exclude
a JPEG header. The quality of the JPEG compression can be set using two options: You can set the
quality of the compression in percent using parameter Quality or you can configure the quantization
table values individually in setting the values of the matrix parameter LuminanceQuantization.
As alternative you can modify these parameters in the top level design with right-mouse-click on
module Parameters using the corresponding translate and reference operators (see Fig. 12.12). The
compressed JPEG stream is then transmitted via DMA1_JPEG to PC. Via DMA0_Original the user has
the possibility to transfer the original input image to PC. This can be realized in setting the parameter
ImageOutput in the Properties library of module Parameters in the top level design (see above)
to "Enable". A disabling of the transfer of the original image via DMA minimizes the DMA payload. In
the design the user has the possibility to transmit images generated by a pattern generator instead of
images acquired by a camera. This can be done in choosing the input source of Source Selector operator
EnablePattern Generator or in setting the corresponding parameter TestImageGenerator in the
module Parameters in the top level design.

12.1.4.2. Design Versions

For JPEG grayscale encoding five example designs for microEnable 5 marathon platform for CameraLink
and CoaxPress camera interfaces and for different link configurations and bandwidths are implemented.
With the operator JPEG_Encoder the full data rate defined by the input link parameters can be
processed. The bandwidth which can be processed in a design is defined by the by the design clock
frequency and the link paraellism. Please see the following table for the available design versions:

Example Camera Interface Number of
Processes

Input Bandwidth per
Camera Interface

JPEG_DualBaseAreaGray.va Camera Link Base (mE5-
MA-VCL)

2 Camera Link Base Speed
255 MP/s: Parallelism 4,
Design Clock Frequency:
125 MHz

JPEG_SingleFullAreaGray.va Camera Link Full (mE5-
MA-VCL)

1 Camera Link Full Speed
850MP/s: Parallelism 8,
Design Clock Frequency:
125 MHz

JPEG_SingleCXP6x4AreaGray.va CoaxPress Quad Link
(mE5-MA-VCX-QP)

1 2500 MPixel/s:
Parallelism 16, Design

Processing Examples 425

VisualApplets User Documentation Release 3

Example Camera Interface Number of
Processes

Input Bandwidth per
Camera Interface
Clock Frequency: 160
MHz

JPEG_DualCXP6x4AreaGray CoaxPress Dual
Link(mE5-MA-VCX-QP)

2 1280 MPixel/s:
Parallelism 8, Design
Clock Frequency: 160
MHz

JPEG_QuadCXP6x1AreaGray CoaxPress Single
Link(mE5-MA-VCX-QP)

4 CoaxPress Single Link
Speed 780 MPixel/s:
Parallelism 8, Design
Clock Frequency: 125
MHz

Table 12.1. Design Versions for Grayscale JPEG Encoding

12.1.5. JPEG Color Compression Using User Library Elements

Brief Description
File: \examples\Processing\Advanced\JPEG
\mE5-MA-VCL\JPEG_DualBaseAreaBayer.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCL\JPEG_SingleFullAreaBayer.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_SingleCXP6x4AreaBayer.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_DualCXP6x2AreaBayer.va
\examples\Processing\Advanced\JPEG\mE5-MA-
VCX-QP\JPEG_TripleCXP6x1AreaBayer.va

Default Platform: mE5-MA-VCL
mE5-MA-VCX-QP

Short Description

Simple examples which show the
usage of the user library elements
JPEG_Encoder_Color_300MPs_VCL,
JPEG_Encoder_Color_850MPs_VCL,
JPEG_Encoder_Color_600MPs_VCX,
JPEG_Encoder_Color_800MPs_VCX and
JPEG_Encoder_Color_2500MPs_VCX.

In these VisualApplets examples we show the usage of the user library
elements JPEG_Encoder_Color_300MPs_VCL, JPEG_Encoder_Color_850MPs_VCL and
JPEG_Encoder_Color_2500MPs_VCX for the compression of color images for mE5-MA-VCL and
mE5-MA-VCX-QP platform for various link configurations and input bandwidths. For news on these user
library elements, the corresponding design examples or if you have questions please have a look in
our VisualApplets forum under https://forum.silicon.software/forum/index.php?thread/100-new-high-
speed-jpeg-operator-and-examples-va-3-2-0/ .

12.1.5.1. Color JPEG Encoding

In Fig. 12.13 you can see the top level design for each process of the VisualApplets examples for color
JPEG encoding with the modules Implementation and Parameters. In this top level design you find
also information on the number of processes in the design and on the design clock frequency used
in the example implementation.

https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/

Processing Examples 426

VisualApplets User Documentation Release 3

Figure 12.13. Top level design structure

With right-mouse-click on the box Parameters you can set the applets parameters like image
dimension, JPEG quality, pixel format or Bayer Pattern. You can set these parameters dynamically
during execution of the applet in hardware. In the module Implementation the JPEG compression is
implemented. Please see Fig. 12.14 for the basic implementation structure.

Figure 12.14. Basic implementation of color JPEG compression using user library elements

The input images acquired by a Bayer camera with maximum image dimensions of 5120x5120
pixels are forwarded to the module Bayer. In this module the color images are reconstructed using
the DeBayering operator Bayer3x3Linear. Output of this module are RGB color images with 8 bit
per color component. These images are converted from RGB to YCbCr color space using module
YCbCr before they are forwarded to the user library elements for color JPEG compression. The
color JPEG compression is performed using a chroma subsampling of 4:2:0. With right-mouse-click

Processing Examples 427

VisualApplets User Documentation Release 3

on the user library element you can configure parameters like image width and height (maximum
image dimensions: 5120x5120 pixels) or the quality of the JPEG compression in percent. As a more
comfortable alternative you can modify these parameters in the top level design with right-mouse click
on module Parameters (see above). The compressed JPEG Huffman stream with included header is
then transmitted via DMA0_JPEG to PC. Each of the user elements for color JPEG compression is
optimized for a specific platform and can process an individual maximum bandwidth. The name of the
user library elements gives hint to these properties. In the following section you find a table of the user
library elements used in the example designs for color JPEG compression. In the designs the user has
furthermore the possibility to process images generated by a color pattern generator instead of images
acquired by a camera. This can be realized in choosing the input source for Source Selector operator
EnablePatternGenerator or in setting the corresponding parameter TestImageGenerator of the
module Parameters in the top level design (see above).

12.1.5.2. Design Versions

For JPEG color compression six example designs for microEnable 5 marathon platform for CameraLink
and CoaxPress camera interfaces and for different link configurations and bandwidths are available.
In each design an user library element for color JPEG compression, which is optimized for a specific
platform and bandwidth is used. Please see the following table for the available design versions, the
user library elements, the camera interface and the input bandwidth:

Example Camera
Interface

User Library
Element

Number of
Processes

Input
Bandwidth
per Camera
Interface

JPEG_DualBaseAreaBayer.va Camera Link
Base (mE5-MA-
VCL)

JPEG_Encoder_
Color_300MPs_
VCL

2 Camera Link
Base Speed
255MP/s:
Parallelism 4,
Design Clock
Frequency: 125
MHz

JPEG_SingleFullAreaBayer.va Camera Link
Full (mE5-MA-
VCL)

JPEG_Encoder_
Color_850MPs_
VCL

1 Camera Link
Full Speed
850 MP/s:
Parallelism 8,
Design Clock
Frequency: 170
MHz

JPEG_SingleCXP6x4AreaBayer.va CoaxPress Quad
Link (mE5-MA-
VCX-QP)

JPEG_Encoder_
Color_
2500MPs_
VCX

1 2500 MPixel/s:
Parallelism 16,
Design Clock
Frequency: 160
MHz

JPEG_DualCXP6x2AreaBayer.va CoaxPress Dual
Link (mE5-MA-
VCX-QP)

JPEG_Encoder_
Color_
800MPs_ VCX

1 Mean Bandwidth
800 MPixel/s:
Parallelism 8,
Design Clock
Frequency: 160
MHz

JPEG_TripleCXP6x1AreaBayer.va CoaxPress
Single Link
(mE5-MA-VCX-
QP)

JPEG_Encoder_
Color_
600MPs_ VCX

1 Mean Bandwidth
600 MPixel/s:
Parallelism 4,
Design Clock
Frequency: 155
MHz

Table 12.2. Design Versions for Color JPEG Encoding

Processing Examples 428

VisualApplets User Documentation Release 3

12.1.6. Laser Pointer Detection

Brief Description
File: \examples\Processing\Advanced
\LaserPointerDetection\LaserPointerDetection.va

Default Platform: mE5-MA-VCL

Short Description

A convolution with high intensity spot coefficients
is made. For results above threshold, the
respective pixels are dyed in red.

12.1.7. Laser Triangulation

Brief Description
File: \examples\Processing\Advanced
\LaserTriangulation\LaserTriangulation.va

Default Platform: mE5-MA-VCL

Short Description

A high speed and robust laser line detection
algorithm. The algorithm determines center of
gravity coordinates to obtain sub-pixel resolution
results.

12.1.8. Run Length Encoder

Brief Description
File: \examples\Processing\Advanced
\Compression\RunLengthEncoder.va

Default Platform: mE5-MA-VCL

Short Description

A run length encoding example of defined
format. Check the design comments for more
information.

12.1.9. Packbits Run Length Encoder

Processing Examples 429

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Compression
\PackbitsRLE.va

Default Platform: mE5-MA-VCL

Short Description

A packbits run length encoding example of
defined format. Check the design comments for
more information.

12.2. Binarization

In the following subsections you find four examples for binarization methods. A simple threshold
binarization, an adaptive threshold algorithm, an example for automatical thresholding controlled by
average brightness and a histogram threshold example are provided.

12.2.1. Adaptive Threshold

Brief Description
File: \examples\Processing\Binarization
\AdaptiveThreshold\AdaptiveThreshold.va

Default Platform: mE5-MA-VCL

Short Description

A binarization example for local adaptive
thresholding. A kernel size of 8 by 8 pixel is
used.

12.2.2. Auto Threshold Mean

Brief Description
File: \examples\Processing\Binarization
\AutoThresholdMean\AutoThresholdMean.va

Default Platform: mE5-MA-VCL

Short Description

Determines the mean value of an image and
used the value as threshold value for the next
image processed.

12.2.3. Histogram Threshold

Processing Examples 430

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Binarization
\HistogramThreshold\HistogramThreshold.va

Default Platform: mE5-MA-VCL

Short Description

Histogram thresholding.

12.2.4. Simple Threshold Binarization

Brief Description
File: \examples\Processing\Binarization
\SimpleThreshold\SimpleThreshold.va

Default Platform: mE5-MA-VCL

Short Description

Simple thresholding for binarization.

12.3. Blob Analysis

The example designs in this section are about the blob analysis of an image using the one and two
dimensional operators Blob_Analysis_1D and Blob_Analysis_2D.

12.3.1. Blob 1D

Brief Description
File: \examples\Processing\BlobAnalysis\Blob1D
\Blob1D.va

Default Platform: mE5-MA-VCL

Short Description

Shows the usage of operator Blob_Analysis_1D
in line scan applications. Please note that the
example was build for a special hardware setup.

12.3.2. Blob 2D

Processing Examples 431

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\BlobAnalysis\Blob2D
\Blob2D.va

Default Platform: mE5-MA-VCL

Short Description

Shows the usage of operator Blob_Analysis_2D.
The applet binarizes the input data and
determines the blob analysis results. The results
as well as the original image are output using
two DMA channels.

12.3.3. Blob2D ROI Selection

Brief Description
File: \examples\Processing\BlobAnalysis
\Blob2D_ROI_select\Blob2D_ROI_select.va

Default Platform: mE5-MA-VCL

Short Description

The blob analysis operator is applied to an input
camera image. The applet shows the usage of
the blob data in the applet. In this case, the
object with the maximum are is localized and the
coordinates are used to cut out the object from
the original image.

12.4. Color

Find examples on color processing in the following sections. The examples contain color plane
separation, Bayer demosaicing, RGB white balancing and Hue saturation intensity classification.

12.4.1. Bayer Demosaicing

In literature different algorithms for interpolation of an color image from a Bayer Pattern image (Bayer
demosaicing) exist. In this section we give several examples of such algorithms. In the following table
they are summarized:

Algorithm Description Example
“Nearest Neighbor filter" according to [Ada95] Section 12.4.1.1, 'Nearest

Neighbor Demosaicing'

“Bayer3x3filter" bilinear interpolation; based
on VisualApplets operator
BAYER3x3Linear

Section 12.4.1.2, 'Bayer 3x3
Demosaicing'

“Bayer3x3filter" with white
balancing

bilinear interpolation; based
on VisualApplets operator
BAYER3x3Linear with
additional white balancing

Section 12.4.1.4, 'Bayer
3x3 Demosacing with White
Balancing'

Processing Examples 432

VisualApplets User Documentation Release 3

Algorithm Description Example
“Bayer5x5filter" bilinear interpolation; based

on VisualApplets operator
BAYER5x5Linear

Section 12.4.1.3, 'Bayer 5x5
Demosaicing'

“Bayer5x5filter" with white
balancing

bilinear interpolation; based
on VisualApplets operator
BAYER5x5Linear with
additional white balancing

Section 12.4.1.5, 'Bayer
5x5 Demosacing with White
Balancing'

"Laplace filter" edge sensitive Section 12.4.1.6, 'Edge
Sensitive Bayer Demosaicing
Algorithm'

"Original Laroche filter" according to [Lar94] Section 12.4.1.7, 'Bayer
Demosaicing Algorithm
According to Laroche'

"Modified Laroche filter" according to [Lar94]; modified Section 12.4.1.8, 'Modified
Laroche Bayer Demosaicing
Algorithm '

"Bilinear Bayer Red/
BlueFollowedByGreen
GreenFollowedByBlue/Red"

according to [Bas13] Section 12.4.1.9, 'Bayer
Demosaicing For Bilinear
Line Scan Cameras
with Color Pattern Red/
BlueFollowedByGreen
GreenFollowedByBlue/Red '

"Bilinear Bayer Red/
BlueFollowedByBlue/Red
GreenFollowedByGreen"

Section 12.4.1.10, 'Bayer
Demosaicing For Bilinear Line
Scan Cameras with Color
Pattern RedFollowedByBlue
GreenFollowedByGreen '

"Bayer Demosaicing a Line
Scan Camera with 8 Bit
BiColor Bayer Pattern"

Demosaicing an 8 bit Bayer
RAW pattern of a racer 2 L CXP
line scan camera with BiColor
Bayer pattern: BiColorRGBG,
BiColorGRGB, BiColorBGRG and
BiColorGBGR

Section 12.4.1.11, 'Bayer
Demosaicing a Line Scan
Camera with 8 Bit BiColor Bayer
Pattern'

"Bayer Demosaicing a Line
Scan Camera with 10 Bit
BiColor Bayer Pattern)"

Demosaicing a 10 bit Bayer
RAW pattern of a racer 2 L CXP
line scan camera with BiColor
Bayer pattern: BiColorRGBG,
BiColorGRGB, BiColorBGRG and
BiColorGBGR

Section 12.4.1.12, 'Bayer
Demosaicing a Line Scan
Camera with 10 Bit BiColor
Bayer Pattern'

"Bayer Demosaicing a Line
Scan Camera with 12 Bit
BiColor Bayer Pattern"

Demosaicing a 12 bit Bayer
RAW pattern of a racer 2 L CXP
line scan camera with BiColor
Bayer pattern: BiColorRGBG,
BiColorGRGB, BiColorBGRG and
BiColorGBGR

Section 12.4.1.13, 'Bayer
Demosaicing a Line Scan
Camera with 12 Bit BiColor
Bayer Pattern'

Table 12.3. List of Bayer Demosaicing Examples

The algorithms named above are explained in detail in the corresponding sections. Here we give a short
overview on the qualitative results obtained with the different demosaicing methods for an artificial
test image (Figure 12.15, 'Artificial test image').

Processing Examples 433

VisualApplets User Documentation Release 3

Figure 12.15. Artificial test image

The following figures show closer details on single structures. From left to right for: a) the "original
Laroche filter" [Lar94], b) the "modified Laroche filter", c) the "Laplace filter", d) the
“Bayer5x5filter", e) the nearest neighbor interpolation method and for f) the “Bayer3x3filter":

Figure 12.16. Straight edge

Figure 12.17. Diagonal edge

Figure 12.18. Curved edge

Processing Examples 434

VisualApplets User Documentation Release 3

Figure 12.19. Periodic structure

For the artificial test image the "original Laroche filter" shows the best subjective result according
to zipper- and false color effects. The "modified Laroche filter" has light zipper effects and is
comparable to the "Laplace filter". For the “Laplace filter" in addition many false color pixel
appear at curved and diagonal edges. The “Bayer5x5filter" shows strong zipper effects, whereas the
“Nearest Neighbor filter" shows strong false color effects. For straight edges strong zipper effects
appear here. All edges appear blurry with the "Bayer3x3filter".

Attention: The "original Laroche filter" is not always the best solution for Bayer demosaicing! It
has no or very few zipper effects for an artificial test image but may have those for a noisy Bayer RAW
image. During research we found, that the filtering algorithm is influenced by the noise.The "modified
Laroche" filter" has zipper effects for the artificial test image but only light zipper effects for a
noisy Bayer RAW image. Here the filtering algorithm is less than the "original Laroche filter" filter
influenced by the noise. Also the "Laplace filter" has zipper effects for the artificial test image but no
zipper effects for a noisy Bayer test image. False color effects appear here in addition. In a consequence
you have to choose, which Bayer demosaicing algorithm is the best for your special purpose.

12.4.1.1. Nearest Neighbor Demosaicing

Brief Description
File: \examples\Processing\Color\Bayer
\NearestNeighbor_maVCL.va

Default Platform: mE5-MA-VCL

Short Description

Nearest Neighbor Bayer Demosaicing

12.4.1.1.1. Theory

The nearest neighbor interpolation method is the simplest Bayer demosaicing algorithm. For a Bayer
pattern [Bay76] of four neighboring pixels P1 to P4 (see Figure 12.20, 'Bayer pattern') the missing red
(R), green (G) and blue (B) colors can be interpolated according to [Ada95]:

R2 = R3 = R4 = R1;

B1 = B2 = B3 = B4;

G1 = G2;

G3 = G4 :

(12.1)

Here a pattern Red-followed-by-Green is shown, but this interpolation method is equivalent for all
Bayer patterns.

Processing Examples 435

VisualApplets User Documentation Release 3

Figure 12.20. Bayer pattern

12.4.1.1.2. VisualApplets Design

In VisualApplets an example design for nearest neighbor interpolation is implemented. You can find
it under \examples\Processing\Color\Bayer\NearestNeighbor_maVCL.va. You can see its basic design
structure in Figure 12.21, 'Basic design structure'. The content of the HierarchicalBoxes InputImage
and OutputImage is equivalent to a basic acquisition design (see e.g. Section 10.3, 'Basic Acquisition
Examples for Camera Link Cameras for marathon, LightBridge and ironman Frame Grabbers').

Figure 12.21. Basic design structure

In Figure 12.22, 'Content of NearestNeighbour' you can see the content of the HierarchicalBox
NearestNeighbour. A 2£ 2 kernel is defined. The current pixel position is here the upper left corner.
The colors red, green and blue are calculated according to Equation 12.1 in the HierarchicalBoxes
Red, Green, Blue and with CurrentPixel using the VisualApplets operator SelectSubkernel. In
WhereAmI_Colour the color of the current pixel position in the Bayer pattern is determined
using Modulo-,AND-, NOT and NotEqual-operators. The comment boxes in the design give detailed
information of the color at the current position and at every link. With three IF operators the
missing colors are added to the current pixel. All three colors are merged with the operator
MergeComponents.

Processing Examples 436

VisualApplets User Documentation Release 3

Figure 12.22. Content of NearestNeighbour

12.4.1.2. Bayer 3x3 Demosaicing

Brief Description
File: \examples\Processing\Color\Bayer
\Bayer3x3.va

Default Platform: mE5-MA-VCL

Short Description

The example shows the demosaicing of a Bayer
RAW pattern using a 3x3 filter. Note the usage
of operator ConvertPixelFormat to reduce the bit
width to 8 bit per component.

12.4.1.3. Bayer 5x5 Demosaicing

Brief Description
File: \examples\Processing\Color\Bayer
\Bayer3x3.va

Default Platform: mE5-MA-VCL

Short Description

The example shows the demosaicing of a Bayer
RAW pattern using a 5x5 filter. Note the usage
of operator ConvertPixelFormat to reduce the bit
width to 8 bit per component.

Processing Examples 437

VisualApplets User Documentation Release 3

12.4.1.4. Bayer 3x3 Demosacing with White Balancing

Brief Description
File: \examples\Processing\Color\Bayer
\BayerWhiteBalancing3x3.va

Default Platform: mE4VD4-CL

Short Description

The example shows the demosaicing of a Bayer
RAW pattern using a 3x3 filter. Moreover, a white
balancing for color correction is added.

12.4.1.5. Bayer 5x5 Demosacing with White Balancing

Brief Description
File: \examples\Processing\Color\Bayer
\BayerWhiteBalancing5x5.va

Default Platform: mE4VD4-CL

Short Description

The example shows the demosaicing of a Bayer
RAW pattern using a 5x5 filter. Moreover, a white
balancing for color correction is added.

12.4.1.6. Edge Sensitive Bayer Demosaicing Algorithm

Brief Description
File: \examples\Processing\Color\Bayer
\LaplaceFilter_maVCL.va

Default Platform: mE5-MA-VCL

Short Description

Laplace Edge Sensitive Bayer Demosaicing

In this section we give an example of an edge sensitive Bayer demosaicing algorithm, which we call
"Laplace filter". In the following we first describe the interpolation algorithm and introduce shortly
the implementation in VisualApplets afterwards.

12.4.1.6.1. Interpolation Algorithm

For the interpolation of the green values on red and blue pixels gradients in vertical and horizontal
directions (¢h and ¢v) are used:

Processing Examples 438

VisualApplets User Documentation Release 3

¢v = jGx;y¡1¡Gx;y+1j+ j2 ¢ Ix;y¡ Ix;y¡2¡ Ix;y+2j;
¢h = jGx¡1;y¡Gx+1;yj+ j2 ¢ Ix;x¡ Ix¡2;y¡ Ix+2;yj :

(12.2)

Ix;y is the chrominance value (red or blue) on the pixel where the green value has to be interpolated.
Green Gx;y is then on the red and blue pixel positions:

If ¢v < ¢h¡ c :

Gx;y = A =
2 ¢ [Gx;y¡1 +Gx;y+1 + Ix;y]¡ Ix;y¡2¡ Ix;y+2

4
;

If ¢v¡ c > ¢h :

Gx;y = B =
2 ¢ [Gx¡1;y+Gx+1;y+ Ix;y]¡ Ix¡2;y¡ Ix+2;y

4
;

If j¢v¡¢hj · c :

Gx;y =
A+B

2
:

(12.3)

Here the value c determines the significance of an edge. For the interpolation of the colors red and
blue there exist three cases:

1. Interpolation of color Ix;y on a green pixel in a line with the same color:

Ix;y =
2 ¢ [Ix¡1;y+ Ix+1;y+Gx;y]¡Gx¡2;y¡Gx+2;y

4
: (12.4)

2. Interpolation of color Ix;y on a green pixel in a line with other color:

Ix;y =
2 ¢ [Ix;y+1 + Ix;y¡1 +Gx;y]¡Gx;y+2¡Gx;y¡2

4
: (12.5)

3. For the interpolation of a color on a pixel with other color gradients ¢d1 and ¢d2 are used:

¢d1 = jIx¡1;y+1¡ Ix+1;y¡1j+ j2 ¢ Ix;y¡ Ix+2;y¡2¡ Ix¡2;y+2j ;
¢d2 = jIx¡1;y¡1¡ Ix+1;y+1j+ j2 ¢ Ix;y¡ Ix¡2;y¡2¡ Ix+2;y+2j :

(12.6)

The color (red or blue) is then:

If ¢d1 < ¢d2¡ c :

Ix;y = C =
2 ¢ [Ix¡1;y¡1 + Ix+1;y+1 + Ix;y]¡ Ix+2;y+2¡ Ix¡2;y¡2

4
;

If ¢d1¡ c > ¢h :

Ix;y = D =
2 ¢ [Ix+1;y¡1 + Ix¡1;y+1 + Ix;y]¡ Ix+2;y¡2¡ Ix¡2;y+2

4
;

If j¢d1¡¢d2j · c :

Gx;y =
C+D

2
:

(12.7)

12.4.1.6.2. Implementation in VisualApplets

You can find the VisualAplets design for the Laplace filter" under \examples\Processing\Color\Bayer
\LaplaceFilter_maVCL.va. In Fig. 12.23 you can see the basic design structure. The content of
InputImage and OutputImage is equivalent to the basic acquisition examples (see e.g. Section
10.3, 'Basic Acquisition Examples for Camera Link Cameras for marathon, LightBridge and ironman
Frame Grabbers').

Processing Examples 439

VisualApplets User Documentation Release 3

Figure 12.23. Basic design structure

In Figure 12.24, 'Content of HierarchicalBox Laplace' the content of the HierarchicalBox Laplace is
shown.

Figure 12.24. Content of HierarchicalBox Laplace

In the HierarchicalBoxes HorizontalValues, VerticalValues, Green_On_Color_Pixel and
Color_On_Other_Color the single kernel components of a 5£ 5 kernel are used for calculation of the
single equation steps of Equation 12.2 to Equation 12.7. Comment boxes give detailed information on
the content of each HierarchiaclBox and the current equation step.

In Figure 12.25, 'Content of HierarchicalBox SortToComponents' you can see the content of the
box SortToComponents. Here the calculated color values red, green and blue are assigned to the
output value in dependence on the current pixel color. The color of the current pixel is determined in
the HierarchicalBox WhereAmI_Colour. Here different you can choose different Bayer patterns as
explained in the corresponding comment box in the example.

Processing Examples 440

VisualApplets User Documentation Release 3

Figure 12.25. Content of HierarchicalBox SortToComponents

12.4.1.7. Bayer Demosaicing Algorithm According to Laroche

Brief Description
File: \examples\Processing\Color\Bayer
\Laroche_original_maVCL.va

Default Platform: mE5-MA-VCL

Short Description

Bayer Demosaicing Algorithm According to
Laroche

According to Laroche et al. [Lar94] the red, green and blue pixel values from a Bayer pattern [Bay76]
can be extrapolated using the following algorithm:

12.4.1.7.1. Interpolation Step 1

In a first step all green pixel values (luminance values) are extrapolated with horizontal and vertical
chrominance gradients (¢H and ¢V). The gradients are defined using a 5£ 5 kernel:

Processing Examples 441

VisualApplets User Documentation Release 3

¢H = jIx¡2;y+ Ix+2;y
2

¡ Ix;yj ;

¢V = jIx;y¡2 + Ix;y+2
2

¡ Ix;yj :
(12.8)

Ix;y is the chrominance value (red or blue) on the pixel where the green value has to be interpolated.
Green Gx;y is then on the red and blue pixel positions:

If ¢H < ¢V :

Gx;y =
Gx¡1;y+Gx+1;y

2
;

If ¢V < ¢H :

Gx;y =
Gx;y¡1 +Gx;y+1

2
;

If ¢H¼¢V :

Gx;y =
Gx¡1;y+Gx+1;yGx;y¡1 +Gx;y+1

4
:

(12.9)

12.4.1.7.2. Interpolation Step 2

From the interpolated luminance the missing red and blue pixel values can be calculated [Lar94]. Blue
on a red pixel or red on a blue pixel:

Ix;y =
(Ix¡1;y¡1¡Gx¡1;y¡1) + (Ix+1;y¡1¡Gx+1;y¡1) + (Ix+1;y+1 +Gx+1;y+1) + (Ix¡1;y+1¡Gx¡1;y+1)

4
+Gx;y ; (12.10)

blue on a green pixel in a red line or red on a green pixel in a blue line:

Ix;y =
(Ix;y¡1¡Gx;y¡1) + (Ix;y+1¡Gx;y+1)

2
+Gx;y ; (12.11)

and blue on a green pixel in a blue line and red on a green pixel in a red line:

Ix;y =
(Ix¡1;y¡Gx¡1;y) + (Ix+1;y¡Gx+1;y)

2
+Gx;y : (12.12)

Here Ix;y is the color value red or blue, that has to be determined. The red, green and blue values on
the red, green and blue pixels are the ones from the Bayer pattern input image.

12.4.1.7.3. VisualApplets-Design

The complete algorithm (\examples\Processing\Color\Bayer\Laroche_original_maVCL.va) is
implemented in a VisualApplets design for a microEnable5 frame grabber (marathon, Lightbride or
ironman). You can see its basic design structure in Figure 12.26, 'Basic design structure'. The content
of the HierarchicalBoxes Image and OutputToPC is equivalent to the basic acquisition designs, see
e.g. Section 10.3, 'Basic Acquisition Examples for Camera Link Cameras for marathon, LightBridge
and ironman Frame Grabbers'. In the HierarchicalBox WhiteBalancing a white balancing equivalent
to the example in Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing' is performed. In
Figure 12.27, 'Interpolation step 1 of the Bayer demosaicing process' to Figure 12.29, 'Content of
the HierarchicalBox BlueAndRed' the content of box BayerFilter with detailed comments is shown:
In Figure 12.27, 'Interpolation step 1 of the Bayer demosaicing process' the gradients ¢H and ¢V
are calculated according to Equation 12.8. The green values on red and blue pixels are determined
according to Equation 12.9.

Processing Examples 442

VisualApplets User Documentation Release 3

Figure 12.26. Basic design structure

Figure 12.27. Interpolation step 1 of the Bayer demosaicing process

In Figure 12.28, 'Content of ColourInterpolation' the content of the HierarchicalBox
ColourInterpolation is displayed: In the HierarchicalBox GreenOut the green values of interpolation
step 1 are determined as output green values if the current position is a red or blue pixel. Otherwise,
if the current position is a green pixel, the output green value is the input green value from the Bayer
pattern. The position determination takes place in WhereAmI RedOrBlue using Modulo-,AND-, NOT
and NotEqual-operators. In the HierarchicalBox BlueAndRed all red and blue values are interpolated
from the input Bayer pattern (using a 3£ 3 kernel) and the interpolated green values according to
Equation 12.9. In Figure 12.29, 'Content of the HierarchicalBox BlueAndRed' you can see the content
of the hierarchical box BlueAndRed with the interpolation step 2. The synchronization is performed
not for a kernel but for a sum of kernel values to save resources on the FPGA. Finally (see Figure
12.28, 'Content of ColourInterpolation') with the IF-operators RedOut and BlueOut the calculated
red and blue values are assigned to the corresponding pixel positions, which are determined in the
HierarchicalBox WhereAmIColour (analog to WhereAmI RedOrBlue).

Processing Examples 443

VisualApplets User Documentation Release 3

Figure 12.28. Content of ColourInterpolation

Figure 12.29. Content of the HierarchicalBox BlueAndRed

12.4.1.7.4. Result of the Bayer-Demosaicing Process
In Figure 12.31, 'Image demosaiced with the algorithm of Laroche et al. [Lar94]' you can see
the result of the Bayer-demosaicing process with the implemented algorithm in comparison to the
original artificial color image (Figure 12.30, 'Original color image') and an image demosaiced with an
bilinear 5£ 5 interpolation algorithm, using a VA-standard operator Bayer5x5 (Figure 12.32, 'Image
demosaiced with an bilinear 5£ 5 algorithm').

Processing Examples 444

VisualApplets User Documentation Release 3

Figure 12.30. Original color image

Figure 12.31. Image demosaiced with the algorithm of Laroche et al. [Lar94]

Figure 12.32. Image demosaiced with an bilinear 5£ 5 algorithm

As a result you can see a reduced zipper effect and reduced false color artefacts in comparison to the
5£ 5 interpolation method.

12.4.1.8. Modified Laroche Bayer Demosaicing Algorithm

Brief Description
File: \examples\Processing\Color\Bayer
\Laroche_modified_maVCL.va

Default Platform: mE5-MA-VCL

Short Description

Resource optimized Bayer Demosaicing Algorithm
According to Laroche

In this section we describe a slightly modified version of the Bayer demosaicing algorithm
of Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'. The only difference
in the interpolation algorithm (see Equation 12.8 to Equation 12.12) is, that the green color
values (Gx¡1;y¡1; Gx+1;y+1; Gx;y¡1; Gx;y+1; Gx;y¡1; Gx;y+1) for the interpolation of the red and blue color
values (Equation 12.10 to Equation 12.12) are bilinearly interpolated. All other color interpolation
steps are equivalent to the "original Laroche filter". In Section 12.4.1, 'Bayer Demosaicing
' the qualitative difference in the Bayer demosaicing results are presented. You can find the

Processing Examples 445

VisualApplets User Documentation Release 3

corresponding VisualApplets example for the modified version under \examples\Processing\Color
\Bayer\Laroche_modified_maVCL.va. It is implemented for a microEnable 5 frame grabber for 8 bit
input bit depth and a parallelism of 2 but can easily adapted to a version for a microEnable IV frame
grabber, other input bit depths or parallelisms. In the following shortly the modified parts in the
VisualApplets design are presented. In Figure 12.33, 'Content of ColourInterpolation for the modified
Laroche filter.' you can see the content of the HierarchicalBox ColourInterpolation (see Figure 12.27,
'Interpolation step 1 of the Bayer demosaicing process').

Figure 12.33. Content of ColourInterpolation for the modified Laroche filter.

The red and blue color values are interpolated in the box RedandBlue out of a 5£ 5) kernel of a
Bayer pattern and the calculated green value Gx;y at the current pixel position. The calculation of the
green value is done in the HierarchicalBox GreenOut. Equivalent to the example in Section 12.4.1.7,
'Bayer Demosaicing Algorithm According to Laroche' the color at the current pixel position is found in
whereAmI_Colour. All three color components are finally merged together.

12.4.1.9. Bayer Demosaicing For Bilinear Line Scan Cameras with Color
Pattern Red/BlueFollowedByGreen GreenFollowedByBlue/Red

Processing Examples 446

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Color\Bayer
\BilinearBayer_RG_GB.va

Default Platform: mE5-MA-VCL

Short Description

The example shows the demosaicing of
a Bayer RAW pattern of a bilinear line
scan camera with color pattern Red/
BlueFollowedByGreen_GreenFollowedByBlue/
Red in "Bayer Enhanced Raw" and "Bayer Raw"
mode.

In the VisualApplets design example "BilinearBayer_RG_GB.va" the Bayer demosaicing for a bilinear
line scan camera with colors red or blue followed by green in the first sensor (top) line and colors green
followed by blue or red in the second (bottom) sensor line (or vice versa) is implemented. See Fig.
12.34 for the visualization of the sensor layout.

Figure 12.34. Sensor layout of a bilinear line scan camera with color pattern Red/
BlueFollowedByGreen_GreenFollowedByBlue/Red

The Bayer demosaicing for this sensor layout is implemented in the applet for two camera modes:
the "Bayer Raw" mode and the "Bayer Enhanced Raw" mode. In the first case the motion between
two acquisitions is two sensor lines, in the second case one line. Due to this, one color component
is acquired for each pixel in the "Bayer Raw" mode and two color components (red and green or
green and blue) per pixel in the "Bayer Enhanced Raw" mode. You find further informations on the
camera modes for example under [Bas13]. In Fig. 12.35 you can see the basic structure of the design
"BilinearBayer_RG_GB.va".

Processing Examples 447

VisualApplets User Documentation Release 3

Figure 12.35. Basic design structure of "BilinearBayer_RG_GB.va"

An image acquired in "Bayer Raw" or "Bayer Enhanced Raw" mode from an bilinear line scan camera in
Camera Link Full configuration (see camera interface operator FullGrayCamera) is demosaiced in the
HierarchicalBox DeBayer. With "right-mouse-click" on this box you can choose the Bayer pattern under
"Properties" and the white balancing coefficients for red, green and blue. The fully color interpolated
rgb image is transmitted to PC via DMA. The default platform for this design is microEnable 5 marathon
VCL, but it can easily be adapted to another platform. For the design you can find test images for
the "Bayer Raw" mode and the "Bayer Enhanced Raw" mode under \examples\Processing\Color\Bayer
\TestImagesBilinearBayer. The content of box DeBayer is shown in Fig. 12.36.

Processing Examples 448

VisualApplets User Documentation Release 3

Figure 12.36. Content of HierarchicalBox DeBayer

In the HierarchicalBox MergeLines the current 8 bit pixel value is merged with its neighbor in the next
line to one 16 bit value. In the HierarchicalBoax WhiteBalance a white balancing of the red, green and
blue components is performed. You can choose the white balancing coefficients directly with "double-
mouse-click" on the operator WhiteBalanceBayer in this box or with "right-mouse-click" on the box
"DeBayer" as described above. With the operator SourceSelector_EnableFast you can choose the
DeBayer mode DeBayerEnhancedRAW or DeBayerRAW. In Fig. 12.37 you can see the content of
box DeBayerEnhancedRAW.

Figure 12.37. Content of HierarchicalBox DeBayerEnhancedRAW

In the HierarchicalBox MakeKernel a 6x1 Kernel is created. The kernel components are the two 8
bit color components of the current pixel value ("Enhanced Raw" mode!) with its next neighbors.
See for visualization of the kernel components order Fig. 12.38 for an example Bayer pattern of
"RedFollowedByGreen_GreenFollowedByBlue".

Processing Examples 449

VisualApplets User Documentation Release 3

Figure 12.38. Kernel components created in HierarchicalBox MakeKernel

In the box Mode you can choose the Bayer pattern in setting the operator Const_Mode to a value
between 0 and 4. See for more information on the corresponding Bayer pattern the comment box beside
Const_Mode. As more comfortable alternative you can choose the Bayer pattern of your camera with
"right-mouse-click" on the box DeBayer under "Properties" on the top level of the design as described
above. In the boxes GetGreen and GetPresent the green component and the current color, which is
red or blue, is selected for each pixel. In the box Interpolation the missing third color component
red (Ri;j) or blue (Bi;j) at pixel position i; j is interpolated according to [Bas13]:

Ri;j =
Ri;j¡1 +Ri;j+1

2
+
¡Gi;j¡1 + 2Gi;j¡Gi;j+1

2
_ (12.13)

The color components are finally merged together with the operator MergeComponents. If you
choose the "Bayer Raw" mode of your camera you can choose for DeBayering of the color components
box DeBayerRAW (see Fig. 12.36). See the content of box DeBayerRAW in Fig. 12.39.

Figure 12.39. Content of HierarchicalBox DeBayerRAW

Here the DeBayering of the color components is performed with the operator BAYER5x5Linear on a
5x5 kernel around the current pixel. The color interpolated image is then transmitted via DMA to PC
as shown in the basic design structure in Fig. 12.35.

12.4.1.10. Bayer Demosaicing For Bilinear Line Scan Cameras with Color
Pattern RedFollowedByBlue GreenFollowedByGreen

Processing Examples 450

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Color\Bayer
\BilinearBayer_RB_GG.va

Default Platform: mE5-MA-VCL

Short Description

The example shows the demosaicing of a Bayer
RAW pattern of a bilinear line scan camera
with color pattern Red/BlueFollowedBlue/
Red_GreenFollowedGreen in "DeBayer Enhanced"
and "DeBayer Fast" (is "Bayer Raw") mode.

In the VisualApplets design example "BilinearBayer_RB_GG.va" the Bayer demosaicing for a bilinear
line scan camera with colors red followed by blue or vice versa in the first sensor (top) line and
colors green in the second (bottom) sensor line (or vice versa) is implemented. See Fig. 12.40 for the
visualization of the sensor layout.

Figure 12.40. Sensor layout of a bilinear line scan camera with color pattern Red/BlueFollowedByBlue/
Red_GreenFollowedByGreen

The Bayer demosaicing for this sensor layout is implemented in the applet for two camera modes:
the "DeBayer Fast" mode and the "DeBayer Enhanced" mode. In the first case the motion between
two acquisitions is two sensor lines, in the second case one line. Due to this, one color component is
acquired for each pixel in the "DeBayer Fast" mode and two color components (red and green or blue
and green) per pixel in the "DeBayer Enhanced" mode. In Fig. 12.41 you can see the basic structure
of the design "BilinearBayer_RB_GG.va".

Processing Examples 451

VisualApplets User Documentation Release 3

Figure 12.41. Basic design structure of "BilinearBayer_RB_GG.va"

An image acquired in "DeBayer Fast" or "DeBayer Enhanced" mode by a bilinear line scan camera in
Camera Link Full configuration (see camera interface operator FullGrayCamera) is demosaiced in the
HierarchicalBox DeBayer. With "right-mouse-click" on this box you can choose the Bayer pattern and
the white balancing coefficients for red, green and blue under "Properties". The fully color interpolated
rgb image is transmitted to PC via DMA. The default platform for this design is microEnable 5 marathon
VCL, but it can easily be adapted to another platform. For the design you can find test images for
the "DeBayer Enhanced" mode and the "DeBayer Fast" mode under \examples\Processing\Color\Bayer
\TestImagesBilinearBayer. The content of box DeBayer is shown in Fig. 12.42.

Processing Examples 452

VisualApplets User Documentation Release 3

Figure 12.42. Content of HierarchicalBox DeBayer

In the HierarchicalBox WhiteBalance a white balancing of the red, green and blue components is
performed. You can choose the white balancing coefficients directly with "double-mouse-click" on
the operator WhiteBalanceBayer in this box or with "right-mouse-click" on the box "DeBayer"
as described above. The operator FIRkernelNxM_Kernel5x5 creates a 5x5 pixel kernel around
the current pixel. With the operator SourceSelector_SelectFast you can choose the DeBayer
mode DeBayerEnhanced or DeBayerFast. In Fig. 12.43 you can see the content of box
DeBayerEnhanced.

Figure 12.43. Content of HierarchicalBox DeBayerEnhanced

From the 5x5 kernel, a 3x2 sub kernel is selected. In the first row the red and blue values and in the
second the green color values (or vice versa) are located. See for visualization of the kernel components
order Fig. 12.44 for an example Bayer pattern of "RedFollowedByBlue_GreenFollowedByGreen".

Processing Examples 453

VisualApplets User Documentation Release 3

Figure 12.44. Kernel components selected in HierarchicalBox DeBayerEnhanced by operator
SelectSubKernel3x2

With the operator combination SelectSubKernel-FirstPixel, ModuloCountLine and RemoveLine
redundant image lines are removed. (The line redundancy occurs from the kernel creation.) With
the operators SelectSubKernel-BR and SelectSubKernel-G the red and blue kernel components
are separated from the green kernel components. If the Bayer pattern has the green values in the
first kernel row, the components can be swapped in the HierarchicalBox Swap with the constant
IsBRthenGG. The constant is set automatically, if you have chosen the Bayer pattern with "right-
mouse-click" on the box "DeBayer" as described above. In the box Interpolation the missing third
color component red (Ri;j) or blue (Bi;j) at pixel position i; j is interpolated according to:

Ri;j =
Ri¡1;j+Ri+1;j¡ 4Gi¡1;j+1 + 8Gi;j¡ 4Gi+1;j+1

2
(12.14)

where Gi;j are the green color components at pixel position i; j. The color components are finally
merged together with the operator MergeComponents.

If you choose the "Bayer Raw" (also called "DeBayer Fast") mode of your camera, for each pixel only
one color is acquired, due to the doubled line speed in comparison to the method described above.
For this camera mode you can choose for DeBayering of the color components box DeBayerFast (see
Fig. 12.42). You can see the content of box DeBayerFast in Fig. 12.45.

Processing Examples 454

VisualApplets User Documentation Release 3

Figure 12.45. Content of HierarchicalBox DeBayerFast

Here the DeBayering of the color components red Ri;j, blue Bi;j or green Gi;j at pixel position i; j is
performed in the following way. The red or blue color components on a blue or red pixel are interpolated
according to:

Ri;j =
8Bi;j+ 8Ri¡1;j+ 8Ri+1;j¡ 2Ri;j¡2¡ 2Ri¡2;j¡ 2Ri;j+2¡ 2Ri+2;j

16
_ (12.15)

The green color components on a red or blue pixel are interpolated according to:

Gi;j =
4Ri;j+ 6Gi;j¡1 + 6Gi;j+1 +Gi¡1;j¡1 +Gi+ 1; j¡ 1 +Gi¡1;j+1 +Gi+1;j+1¡Ri;j¡2¡Ri¡2;j¡ 2Ri;j+2¡Ri+2;j

16
_(12.16)

The red or blue color components on a green pixel in a red or blue pixel column can be calculated as:

Ri;j =
8Ri;j¡1 + 8Ri;j+1 + 8Gi;j¡ 4Gi¡1;j¡ 4Gi+1;j

16
_ (12.17)

Finally the red or blue color components on green pixel in a blue or red pixel column are evaluated as:

Ri;j =
4Ri¡1;j¡1 + 4Ri+1;j¡1 + 4Ri¡1;j+1 + 4Ri+1;j+1¡ 4Gi¡ 1; j+ 8Gi;j¡ 4Gi+1;j

16
_ (12.18)

For each pixel the evaluated red, green and blue color components are merged together with the
operator MergeComponents (see Fig. 12.45) The complete image is finally transmitted via DMA to
PC as shown in the basic design structure in Fig. 12.41.

Processing Examples 455

VisualApplets User Documentation Release 3

12.4.1.11. Bayer Demosaicing a Line Scan Camera with 8 Bit BiColor
Bayer Pattern

Brief Description
File: \examples\Processing\Color\Bayer
\BiColorDeBayering_racer2L.vad

Default Platform: imaFlex CXP-12 Penta

Short Description

This example shows the demosaicing of an 8
bit Bayer RAW pattern for a CXP-12 line scan
camera with BiColor Bayer pattern.

This example shows the demosaicing of an 8 bit Bayer RAW pattern of a CXP-12 line scan camera
with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for example
for the racer 2 L camera. In addition, the example contains a line scan trigger module and a white
balancing module.

12.4.1.12. Bayer Demosaicing a Line Scan Camera with 10 Bit BiColor
Bayer Pattern

Brief Description
File: \examples\Processing\Color\Bayer
\BiColorDeBayering_racer2L_10bit.vad

Default Platform: imaFlex CXP-12 Penta

Short Description

This example shows the demosaicing of a 10
bit Bayer RAW pattern for a CXP-12 line scan
camera with BiColor Bayer pattern.

This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan camera
with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for example
for the racer 2 L camera. In addition, the example contains a line scan trigger module and a white
balancing module.

12.4.1.13. Bayer Demosaicing a Line Scan Camera with 12 Bit BiColor
Bayer Pattern

Processing Examples 456

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Color\Bayer
\BiColorDeBayering_racer2L_12bit.vad

Default Platform: imaFlex CXP-12 Penta

Short Description

This example shows the demosaicing of a 12
bit Bayer RAW pattern for a CXP-12 line scan
camera with BiColor Bayer pattern.

This example shows the demosaicing of a 12 bit Bayer RAW pattern of a CXP-12 line scan camera
with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for example
for the racer 2 L camera. In addition, the example contains a line scan trigger module and a white
balancing module.

12.4.2. Color Plane Separation

In machine vision a basic requirement is to separate color components in different images. This could
be for example the separation of RGB into it's components, but as well the separation of HSL or XYZ
etc. In the following, some examples for color separation are shown. All examples use a RGB area
scan camera for input. Of course, the examples can be applied to line scan cameras as well. Moreover,
an antecedent Bayer De-Mosaicing or a color space conversion is likely and can be easily added to
the examples.

The examples assume that the color separation is required for post processing on the host PC.
Therefore, the examples focus on color separated DMA transfers. If you need a processing on color
separated data in the FPGA, the examples can also be applied to your requirements.

Several examples are shown. The result of all examples is the same. However, the implementations
are completely different and all have their pros and cons. You will need to select the example which
fits best to your requirements. The following table lists all examples and some of the properties.

Example Name Latency DRAM No. of Block RAM DMA Output
Three DMAs No additional

latency
1 DRAM buffer low 3 DMA. One

for each color
component.

Sequential with 3
buffers

Latency minimized
to theoretical
minimum.

3 DRAM buffers low 1 DMA. Sequential
color component
output.

Sequential with
MultiROI Buffer

1 frame latency
and bandwidth
limitation.

1 DRAM buffer normal 1 DMA. Sequential
color component
output.

Sequential
with pre-sorted
MultiROI Buffer

1 frame latency 1 DRAM buffer high 1 DMA. Sequential
color component
output.

Sequential with
advanced buffer
usage

1 frame latency 1 DRAM buffer low 1 DMA. Sequential
color component
output.

Table 12.4. Overview of Color Separation Examples

A full description of the properties shown in the previous table as well as full descriptions of the different
methods are outlined in the following sections.

Processing Examples 457

VisualApplets User Documentation Release 3

12.4.2.1. Color Plane Separation Option 1 - Three DMAs

Brief Description
File: \examples\Processing
\Color\ColorPlaneSeparation
\ColorPlaneSeparation_Option1_ThreeDMA.va

Default Platform: mE5-MA-VCL

Short Description

RGB color plane separation examples. The
components are split into three DMA output
channels.

This example is very simple. The input RGB image is buffered and after, the color planes are split
into three output links. These three links are transfered to the PC using three DmaToPC operators. An
advantage of this solution is, that you have a minimized latency. The image is not buffered in the frame
grabber. Operator ImageBuffer will only delay the image by one line if the host PC is fast enough. No
additional delay is generated. Another advantage is that only one DRAM operator is required.

A disadvantage of the implementation is that three DMA output operators are required. These operators
consume many FPGA logic resources of the frame grabber. If you do not require such a minimized
latency, you should consider one of the solution presented in the following chapters.

12.4.2.2. Color Plane Separation Option 2 - Three Buffers, One DMA

Brief Description
File: \examples\Processing
\Color\ColorPlaneSeparation
\ColorPlaneSeparation_Option2_ThreeBuffersOneDMA.va

Default Platform: mE5-MA-VCL

Short Description

RGB color plane separation example. The
components are split and buffered in three frame
grabber buffers. After that, the color planes are
sequentially output using one DMA channel.

In this solution for RGB color plane separation, the color planes are output in sequential order over
DMA channel. This is done by splitting the RGB input into its components and buffering the colors
separately in three ImageBuffer modules. Using operator InsertImage, the color planes are read one
after each other from the ImageBuffers.

In this example, it is important to increase the parallelism before writing the data into the ImageBuffer.
Otherwise you will get a bottleneck after the InsertImage module.

The advantage of this approach is that you will only need one DMA channel which reduces the required
resources. Also, the latency is at its theoretic minimum for sequential output. The DMA transfer for the
red channel immediately starts without delay. A drawback of this solution is that three frame grabber
memory operators are required. As they are limited this solution is only useful if not more of these
buffers are required.

Processing Examples 458

VisualApplets User Documentation Release 3

12.4.2.3. Color Plane Separation Option 3 - Sequential with Operator
ImageBufferMultiRoI

Brief Description
File: \examples\Processing
\Color\ColorPlaneSeparation
\ColorPlaneSeparation_Option3_SequentialMultiROI.va

Default Platform: mE5-MA-VCL

Short Description

RGB color plane separation example. A
sequential DMA output of the three RGB color
planes is performed. The sequence is generated
by ImageBufferMultiRoI. This solution is not good
as it limits the bandwidth. See the next example,
for an optimized solution.

This solution is an intermediate step between the previous and the next example. Because of bandwidth
limitations, it is not advised to implement this solution. However, it explains in a simple way on how
to get the same output as the previous example with requiring only one frame grabber RAM. To
sequentialize the image, we use operator ImageBufferMultiRoI. In this operator, we simply read the
same image three times. After, we select the red component for the first image, the green for the
second image and the blue for the third image. This can be easily done with the ModuloCount and
the CASE operators. The ModuloCount is parameterized to count frame numbers modulo 3 i.e. {0, 1,
2, 0, 1, 2, ...}.

As mentioned, this solution is not the optimum as it reduces the bandwidth. The reason is that we
read the same input image three time, but using only one of the three components. Thus in every
read cycle, we discard two third of the the data. The next example will show a similar solution which
overcomes this limitation.

12.4.2.4. Color Plane Separation Option 4 - Sequential with Operator
ImageBufferMultiRoI and a pre-sort of the Color Planes

Brief Description
File: \examples\Processing
\Color\ColorPlaneSeparation
\ColorPlaneSeparation_Option4_SequentialPreSortMultiROI.va

Default Platform: mE5-MA-VCL

Short Description

RGB color plane separation example. A
sequential DMA output of the three RGB color
planes is performed. The sequence is generated
by ImageBufferMultiRoI. An additional pre-
sorting optimizes the bandwidth and solves the
problem presented in the previous example.

This example is similar to the previous example. In contrast, we do not have a bandwidth limitation in
this case. The idea is the same. By use of operator ImageBufferMultiRoI, we sequentialize the three
color components. In contrast to the previous example, we do not separate the colors after the buffer.
Instead we separate the colors before writing them to the buffer. This is done in the the HierarchicalBox
PreSort which content is shown in the following figure.

Processing Examples 459

VisualApplets User Documentation Release 3

Figure 12.46. Pre-Sorting of Color Components

The idea of this approach is to separate the color components before writing them into the buffer.
This is done for every image line. Thus we split the color components into three links. These resulting
grayscale links now contain the image lines of the input images. Next, the lines are multiplexed and
appended. The result is that we have thre grayscale images in one large image. The red component
is on the left, the green in the middle and the blue on the right. Have a look at the simulation results
in the next figure to understand the implementation.

Figure 12.47. Simulation Result of Pre-Sorted Color Components

In the ImageBufferMultiRoI, we now have to read the left part first. After that the middle part and
finally the right part. Thus, we need to set a different XOffset for each ROI as shown in the following.

Processing Examples 460

VisualApplets User Documentation Release 3

Figure 12.48. Parameter Setting for XOffset of the ImageBufferMultiRoI Operator

When using, do not forget to increase the parallelism before separating the components as shown in
the example. This is required to avoid a bottleneck after the InsertLine module. We need at least a
three times higher parallelism than the input as we transfer grayscale 8 bit image and not 24 bit RGB
images anymore.

This solution does require only one DRAM operator and does not limit the bandwidth. This is an
optimized solution. However, some block RAM is required to buffer the separated component lines
in the FIFOs. For small images, this should not cause a problem. However, if you have large image
widths such as 16384 pixel per line, many block RAM is required. This last drawback is solved with
the next example.

12.4.2.5. Color Plane Separation Option 5 - Sequential Output with
Advances Processing

Brief Description
File: \examples\Processing
\Color\ColorPlaneSeparation
\ColorPlaneSeparation_Option5_SequentialAdvanced.va

Default Platform: mE5-MA-VCL

Short Description

Example on separation of color planes. The
RGB input is split into its component and
sequentially output via one DMA channel.
The splitting if performed by collecting same
components in parallel words and reading with
FrameBufferRandomRead.

This is the most advanced example for color plane separation in VisualApplets. It is focused on a
minimum resource usage and maximum bandwidth. The previous example used a pre-sorting to
separate the color components so that we could individually read them from the buffer. However,

Processing Examples 461

VisualApplets User Documentation Release 3

some block RAM is required for the FIFOs in the pre-sorting. In this approach, we use a pre-sorting,
too. In contrast, we collect 8 successive pixels of each color component only before switching to the
next component. In the previous example, we collected a full line of one component before switching
to the next line. This modification results in that we do not need FIFOs anymore. However, the
ImageBufferMultiRoI cannot be used in this case. Instead, we have to use a FrameBufferRandomRead.

The pre-sorting is simple. First, we increase the parallelism to eight. Next, the components are split.
This results in three links with parallel eight each. MergeParallel will now put the eight pixel of the
components in a sequence. We will therefore get a sequence: R0 to R7, G0 to G7, B0 to B7, R8 to
R15, G8 to G15, B8 to B15, ...

Figure 12.49. Pre-Sorting for Color Separation by collecting eight successive pixel of the same
component.

The FIFO at the input is required because of PARALLELdn from 16 to 8. This FIFO is required only to
avoid a DRC level 2 error. In fact, it will not need to buffer data, so that we set it to a very small
size of 2 pixel only.

After we have pre-sorted the pixel, they are buffered in a FrameBufferRandomRead operator. This
operator has read row and column address inputs and allows to randomly read the data.

Figure 12.50. Color Separation with FrameBufferRandomRead

The operator can only be used with a parallelism of one. Therefore, we use CastParallel to cast from
parallelism 8 at 8 bit per pixel to parallelism 1 at 64 bit per pixel. That's why we collected eight
successive pixel in the previous step.

To separate the color components we have to increase the addresses by two to jump over the unwanted
colors. For the red component, the read addresses will therefore be: RColA(0) = 0, RColA(1) = 2,
RColA(2) = 5, ... For the green component, the read addresses will be: RColA(0) = 1, RColA(1)
= 3, RColA(2) = 6, ... Hierarchical box AdressGenerator does generate these read addresses. A
CreateBlankImage operator defines the required image dimension. As we previously used CastParallel
from 8 to 1, we have to use an image width divided by 8.

Processing Examples 462

VisualApplets User Documentation Release 3

Figure 12.51. Address Generator for FrameBufferRandomRead Input

The column address is simply generated with scaling the Coordinate_X output by 3. Depending on the
current component, we add 0, 1 or 2 as an offset to the values.

By use of AppendImage, the three address images are merged into one larger image. The row address
is simply generated with a counter between 0 and the image height. In this case, we use a ModuloCount
operator for this task. The addresses can now be fed into the FrameBufferRandomRead operator. Do
not forget to use a parallelism two at the CreatBlankImage output to maximize the performance of
FrameBufferRandomRead.

After the buffer, we obtain a large image where the first lines include the red image, after the image
contains the green image and finally the blue. To split this large image into three separated DMA
outputs, we use SplitImage and set the image height.

The easiest way to understand the implementation is by looking at the intermediate results step by
step. Note that you will need to simulate three steps for one result image. That's because 3 images
have to be generated by operator CreateBlankImage.

This solution is resource optimized, as only few block RAM resources are required. Moreover, the FPGA
logic resources are efficiently used. The address generation only requires few resources.

12.4.3. HSL Color Classification

Processing Examples 463

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Color
\HSI_Classification\HSI_Classification.va

Default Platform: mE5-MA-VCL

Short Description

Color Classification is very simple on HSL
images. The applet converts the RGB image
into an HSL image and performs a color
classification. The hue is filtered using a lookup
table. Moreover, the saturation and lightness is
thresholded using custom threshold values.

12.4.4. RGB White Balancing

Brief Description
File: \examples\Processing\Color\Whitebalancing
\RGBWhiteBalancing.va

Default Platform: mE5-MA-VCL

Short Description

The applet shows an example for white balancing
on RGB images.

For white balancing on Bayer RAW images see Section 12.4.1.5, 'Bayer 5x5 Demosacing with White
Balancing'.

12.5. Co-Processor

In this section we provide two co-processor examples. For these no buffer is required. One design is
a large 12x12 filter implementation, the second a 5x5 median filter algorithm.

12.5.1. Co-Processor Median Filter

Brief Description
File: \examples\Processing\CoProcessor
\CoprocessorMedian\CoprocessorMedian.va

Default Platform: mE4VD1-CL only

Short Description

The coprocessor feature of the microEnable IV
VD1-CL is shown. As an example, a median filter
is calculated.

12.5.2. Co-Processor Large Filter Calculation

Processing Examples 464

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\CoProcessor
\LargeFilter\LargeFilter.va

Default Platform: mE4VD1-CL only

Short Description

The coprocessor feature of the microEnable IV
VD1-CL is shown. As an example, a large filter
kernel is calculated.

12.6. Debugging and Test

Examples to assist in debugging of applets and test of hardware.

12.6.1. Hardware Test

Brief Description
File: \examples\Processing\DebuggingAndTest
\HardwareTest\HardwareTest.va

Default Platform: mE5-MA-VCL

Short Description

An example for hardware self test of DMA,
RAM, GPIOs, Trigger and LEDs. This example
extensively uses operators of the parameters
library.

The example Hardware Test performs a hardware self test.

The applet comprises the following functions:

• DMA Performance test: Different image dimensions for varying memory sizes and interrupt rates

• RAM Test: Check for errors and processing

• Camera: Check camera port image acquisition

• Camera Trigger: Send trigger signals to camera

• GPIO: Monitor the GPIs and set the GPOs

• Event test: Generate a sofware callback event

• Monitoring: FPGA Temperature, Power, PoCL, ... (See BoardStatus)

The following diagram shows the functional blocks of the applet.

Processing Examples 465

VisualApplets User Documentation Release 3

Camera 0

Switch
Camera

Overflow
BRAM
Buffer

ROI

Pattern
Generator

RAM
Test

Test
Statistics

Switch
Output

DMA
Transfer

Camera N

FPS
Counter

GPIO
Test

LED
Test

Camera
Trigger

Event
Test

Figure 12.52. Block Diagram of the applet Hardware Test

The VisualApplets implementation is split into two processes. Process0 includes all image processing
parts namely the DMA test, RAM test and camera acquisition. Process1 instead includes the parts which
are independent of a running acquisition. As processes without DMA operators are immediately started
when the applet is loaded, the functions here can be used independently of an acquisition. See Section
4.4.2, 'Processes without DMAs / Trigger Processes' for more information.

The following two screenshots show Process0 and Process1.

Figure 12.53. Hardware Test Process0

Processing Examples 466

VisualApplets User Documentation Release 3

Figure 12.54. Hardware Test Process1

The applet is implemented by intensively using the operators of the parameters library for easy usage
of the applet. The H-Box Implementation includes the functional parts. Parameters are listed in the
properties of the H-Box Parameters for a separated view. This becomes useful when the applet is used
in e.g. microDisplay as only easy to use parameters are listed as can be seen in the next screenshot.

Processing Examples 467

VisualApplets User Documentation Release 3

Figure 12.55. Applet Hardware Test use of Parameter Translates and References in microDisplay

The implementation of the applet is straight forward and can be easly understood by studying the
VA file. However, we will have a closer look at some of the parmeter translations and references to
understand their usage.

12.6.1.1. Implementation of Main Image Processing Part

The main image processing part contains the RAM test, DMA perfomance test and camera acquisition.
The applet only allows to output one of the modes on a DMA channel at the same time. Thus, several
SourceSelector operators are used. To avoid a parameterization specifying the correct input index we
use a EnumParamTranslator operator for easy usage.

Processing Examples 468

VisualApplets User Documentation Release 3

Figure 12.56. Applet Hardware Test Implementation for RAM Test, DMA Perfomance Test and Camera
Acquisition

In the following we describe the parameter values of TranslateOutputSelect in detail.

First, the enumeration values need to be defined.

"DMA_Performance" = 0x001;
"Camera" = 0x002;
"RAM0_Difference" = 0x000;
"RAM0_Errors" = 0x100;
"RAM1_Difference" = 0x010;
"RAM1_Errors" = 0x110;
"RAM2_Difference" = 0x020;
"RAM2_Errors" = 0x120;
"RAM3_Difference" = 0x030;
"RAM3_Errors" = 0x130;

Processing Examples 469

VisualApplets User Documentation Release 3

As you can see the values of the enumerations are defined as hexadecimal values. This allows
an easy distribution to three SourceSelector modules. The lower four bit are used for module
TestMode.SelectSource, bits 4 to 7 for RAMTest/SelectRAM.SelectSource and bits 8 to 11 for RAMTest/
SelectRAMOutputMode/EnableBitpattern.SelectSource. This facilitates a very simple implementation
for the parameters WriteAction and ReadAction.

Processing Examples 470

VisualApplets User Documentation Release 3

The translate value then can be used with the enumeration values. Changing the value will
automatically change the parameter values of the SourceSelector modules.

12.6.1.2. Implementation of DMA Performance Pattern Generator

H-Box GeneratorDMAPerformance includes the pattern generator as well as an image valve to controll
the output framerate. The pattern generation is very simple using a blank image generator as well as
pixel and image counter to generate a rolling diagonal pattern.

Processing Examples 471

VisualApplets User Documentation Release 3

The valve is controlled by a period generator operator Generate. The unit for the generator is
given in ticks. As we want to specify a framerate with a time-base, we use translate operator
FloatParamTranslator. Thus we use the operator to convert from frames per second to ticks. The
following screenshot shows the implementation.

Figure 12.57. Use of FloatParamTranslator to Convert from Frames per Second to Ticks

12.6.1.3. Setting the Width and Height in the Example HardwareTest
using operator IntParamTranslator

The same procdeure as shown in the previous sections is done for the image width and height. In this
case we can use an operator IntParamTranslator. Here we can directly forward the values to the two
modules in the design. Mind the given values for parameters DisplayName and DisplayHierarchy.

Processing Examples 472

VisualApplets User Documentation Release 3

Figure 12.58. Use of IntParamTranslator for easy Setting of the Width and Height in the Applet

12.6.2. Image Dimension Test

Brief Description
File: \examples\Processing\DebuggingAndTest
\ImageDimensionTest.va

Default Platform: mE5-MA-VCL

Short Description

The image dimension is measured and can be
used to analyze the design flow. Especially the
influence of the shared memory can be seen.

12.6.3. Image Timing Generator

Processing Examples 473

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\DebuggingAndTest
\ImageTimingGenerator.va

Default Platform: mE5-MA-VCL

Short Description

This example design uses the
ImageTimingGenerator to create a ramp test
image with user defined timing and optional
parameter jitter or parameter sequencing. Four
modes for line and frame generation can be
used. This example is preset to an external
Frame trigger and a free running line generation.

12.6.4. Manual Image Injection

Brief Description
File: \examples\Processing\DebuggingAndTest
\ImageInjector.va

Default Platform: mE5-MA-VCL

Short Description

In this example design the ImageInjector
operator allows the injection of images into the
image link. A new image can be injected from
file or through a simple register interface. In
Insertion mode the image link is blocked during
injection whereas in Replacement mode the
ImageInjector operator acts as a image sink, i.e.
consumes all incoming images at any rate.

12.6.5. Image Monitoring

Brief Description
File: \examples\Processing\DebuggingAndTest
\ImageMonitor.va

Default Platform: mE5-MA-VCL

Short Description

In this example design the ImageMonitor
operator allows the investigation of transfer state
at a defined link position.

12.6.6. Image Grayscale Scope

Processing Examples 474

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\DebuggingAndTest
\Scope.va

Default Platform: mE5-MA-VCL

Short Description

The Scope operator provides options for
analyzing gray-scale pictures. The operator
outputs a 2D waveform for each image channel
by sampling input image lines. Up to four
channels are supported. In a channel, each
incoming line is sampled once. According to the
settings you define in parameter SampleMode,
the gray scale value of the first pixel in the line,
the last pixel in the line, the smallest pixel value
in the line, or the greatest pixel value in the line
is used for sampling.

12.6.7. Image Flow Control

Brief Description
File: \examples\Processing\DebuggingAndTest
\ImageFlowControl.va

Default Platform: mE5-MA-VCL

Short Description

This example design demonstrates the
frame compensation capabilities of the
ImageFlowControl operator.

12.6.8. Trigger And Image Statistics

Processing Examples 475

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\DebuggingAndTest
\TriggerAndImageStatistics.va

Default Platform: mE5-MA-VCL

Short Description

Analysis of trigger and Camera Link
functionalities is provided. The user can analyze
the image data stream of a grayscale camera in
Camera Link base configuration. The design is
intended for the use in hardware only.

With the example design "TriggerAndImageStatistics.va" the analysis of trigger and Camera Link
functionalities like number of pulses, signal width and period is possible. Also the difference between
trigger and Camera Link signals is measured. The user can choose for the generation of the trigger
signal between a software trigger, a trigger generator or an external source. In this design the user has
furthermore the possibility to analyze the image data stream of a grayscale camera in Camera Link base
configuration. The design is intended for the use in hardware only. It is not intended for the simulation
within VisualApplets. This design is suitable to be a debugging "add-on" for image processing designs.
In the following the functionalities of "TriggerAndImageStatistics.va" are explained. Its basic design
structure is shown in Fig. 12.59.

Figure 12.59. Basic design structure of the VA design "TriggerAndImageStatistics.va"

In the HierarchicalBox ImageAnalysis the image data stream of a grayscale camera in Camera Link
base configuration is analyzed. Image properties of the current frame but also of a complete image
sequence, like image dimensions and line length deviations between single frames, are measured
there. The frames are sent to PC via DMA. Furthermore the user has the possibility to monitor the
image at a any defined point in the pipeline using the debugging operator ImageMonitor. In the
HierarchicalBox TriggerStatistics the properties of the trigger signal and also of Camera Link signals
like LVAL and FVAL are measured. Please see Fig. 12.60 for the content of box TriggerAnalysis.

Processing Examples 476

VisualApplets User Documentation Release 3

Figure 12.60. Content of HierarchicalBox TriggerAnalysis

Here in box CameraLink_LVAL_FVAL the LVAL and FVAL signals are defined. At beginning and
end of each image line and each frame a signal is generated with operators LineStartToSignal/
LineEndToSignal and FrameStartToSignal/FrameEndToSignal. The operator RsFlipFlop
combines the corresponding start/stop signals to the LVAL and FVAL signals, which the user can monitor
as events. These events are defined in the HierarchicalBox CameraLink_Events with the operator
EventToHost. In the box CameraLink_LVAl_FVAL_GPO the LVAL and FVAL signals are assigned
to the GPO and Front GPO with PinID 1. The statistics of the LVAL and FVAL start and stop pulses
are defined in the HierarchicalBox CameraLink_InputStatistics. You can see the content of this box
in Fig. 12.61.

Figure 12.61. Content of HierarchicalBox CameraLink_InputStatistics

The number of pulses is here counted with operator PulseCounter. The user can monitor this
number via the operator GetStatus_ReadPulses. The period between LVAL or FVAL start or stop

Processing Examples 477

VisualApplets User Documentation Release 3

pulses is defined with operator SignalToPeriod. The user can monitor this value via operator
GetStatus_ReadPeriod together with its maximum and minimum values via GetStatus_ReadMax
and GetStatus_ReadMin. Beside the monitoring of the statistics of the Camera Link signal, the
user can observe the statistics of the trigger signal. The trigger signal can be generated using a
trigger Generator, a SoftwareTrigger or external trigger source via GPIs, which can be selected
in GPI_InputSelect. The user can monitor the GPI input events and the input status (see boxes
GPI_InputEvents and GPI_InputStatus). The trigger signal is applied to the camera control and
GPOs in HierarchicalBoax TriggerOutput. The user can monitor the statistics of the trigger signal as
defined in the HierarchicalBox Trigger_Statistics. You can see its content in Fig. 12.62.

Figure 12.62. Content of HierarchicalBox Trigger_Statistics

Here the trigger signal width is defined (see SignalToWidth operator SignalWidth). The user can
observe this value via GetStatus operator ReadSignalWidth. The number of trigger rising edge
pulses is counted with PulseCounter. The user can have a look at this number via GetStatus operator
ReadPulses. This is also true for the period between the trigger rising edge pulses, its maximum
and minimum value (see GetStatus operators ReadPeriod, ReadMax, ReadMin). Coming back to
Fig. 12.60. In the HierarchicalBox DelayAnalysis the CameraLink signals and the trigger signal are
compared. You can see the content of DelayAnalysis in Fig. 12.63.

Processing Examples 478

VisualApplets User Documentation Release 3

Figure 12.63. Content of HierarchicalBox DelayAnalysis

Here the delay between LVAL or FVAL start or stop signal and the trigger rising edge is measured.
The user has access to this value via a GetStatus operator. Also the difference number of pulses
between between the two signal is measured. If the user observes a value of ReadDifferenceCount
greater than one, the trigger signals have been sent but the camera did not respond. If this value
is smaller than 1 the camera sent more frames or lines than trigger pulses came in. Beside the
analysis of trigger and Camera Link signals, the analysis of image data stream is implemented in
"TriggerAndImageStatistics.va" in the HierachicalBox ImageAnalysis (see Fig. 12.59). You can see
its content in Fig. 12.64.

Figure 12.64. Content of HierarchicalBox ImageAnalysis

The operator ImageAnalyzer gives you the possibility to analyze the image properties of the last
frame and the intermediate values of the current frame. These properties are image dimensions, line
length deviations and time gaps of lines. This operator gives you also information on the blocking state
of the operator input. The operator ImageStatistics analyzes complete image sequences. Deviations
in image dimensions line gaps etc. are measured. The operator StreamAnalyzer gives you information
on the data flow and blocking conditions. During the analysis the image data are not touched.

12.7. Difference Images
In this section you find two examples using the difference of two images for noise reduction and motion
detection.

12.7.1. Motion Detection

Processing Examples 479

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\DifferenceImage
\MotionDetection\MotionDetection.va

Default Platform: mE5-MA-VCL

Short Description

Calculates the differences between two
successive images. The differences are
thresholded and output via DMA channel.

12.7.2. Noise Reduction

Brief Description
File: \examples\Processing\DifferenceImage
\NoiseReduction\NoiseReduction.va

Default Platform: mE4-VD4-CL

Short Description

The average of two acquired images is calculated
to reduce noise.

12.8. Filter
The following subsections contain examples for different kinds of filters. These filters are for edge
detection, morphology, noise reduction and sharpening. Also general filter principles are introduced.

12.8.1. Edge Detection

This subsection contains examples on edge detection filters such as Sobel filter, Kirsch filter, Roberts
Cross Gradient filter and an example about edge finding by morphology.

12.8.1.1. Morphological Edge

Brief Description
File: \examples\Processing\Filter\EdgeDetection
\MorphologicalEdge\MorphologicalEdge.va

Default Platform: mE5-MA-VCL

Short Description

Edge detection. For every difference between
the image and the eroded image, an edge is
assumed.

Processing Examples 480

VisualApplets User Documentation Release 3

12.8.1.2. Kirsch Filter

Brief Description
File: \examples\Processing\Filter\EdgeDetection
\KirschFilter\KirschFilter.va

Default Platform: mE5-MA-VCL

Short Description

The Kirsch filter is a good edge detection filter for
non directional edges.

12.8.1.3. Roberts Cross Gradient

Brief Description
File: \examples\Processing\Filter
\EdgeDetection\Roberts_Cross_Gradient
\Roberts_Cross_Gradient.va

Default Platform: mE5-MA-VCL

Short Description

Roberts Cross Gradient filter example.

12.8.1.4. Sobel Gradient X

Brief Description
File: \examples\Processing\Filter\EdgeDetection
\Sobel_Gradient_X\Sobel_Gradient_X.va

Default Platform: mE5-MA-VCL

Short Description

A Sobel filter in x-direction only.

12.8.1.5. Sobel Multi Gradient

Brief Description
File: \examples\Processing\Filter\EdgeDetection
\Sobel_Multi_Gradient\Sobel_Multi_Gradient.va

Default Platform: mE5-MA-VCL

Short Description

A Sobel filter in all 4 directions.

12.8.2. Morphology

You find in this subsection example designs on opening and closing and morphology edge detection.
One example demonstrates how to find four simple patterns using the operator HitOrMiss.

Processing Examples 481

VisualApplets User Documentation Release 3

12.8.2.1. Close

Brief Description
File: \examples\Processing\Filter\Morphology
\Close\Close.va

Default Platform: mE5-MA-VCL

Short Description

Shows the implementation of a morphological
close applied to binary images.

12.8.2.2. Hit or Miss

Brief Description
File: \examples\Processing\Filter\Morphology
\HitOrMiss\HitOrMiss.va

Default Platform: mE5-MA-VCL

Short Description

The implementation can detect four simple
patterns in a binary image. For every match, the
output will be set to one.

12.8.2.3. Open

Brief Description
File: \examples\Processing\Filter\Morphology
\Open\Open.va

Default Platform: mE5-MA-VCL

Short Description

Shows the implementation of a morphological
open applied to binary images.

12.8.3. Noise Reduction

The examples in the following demonstrate how to reduce noise in an image. Three examples are
provided using an average, a Gaussian and a median filter.

12.8.3.1. Averaging 3x3

Processing Examples 482

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Filter\NoiseReduction
\Average3x3\Average3x3.va

Default Platform: mE5-MA-VCL

Short Description

A simple 3x3 box filter.

12.8.3.2. Gaussian Filter 5x5

Brief Description
File: \examples\Processing\Filter\NoiseReduction
\Gaussian5x5\Gaussian5x5.va

Default Platform: mE5-MA-VCL

Short Description

A Gauss filter using a 5x5 kernel.

12.8.3.3. Median Filter 5x5

Brief Description
File: \examples\Processing\Filter\NoiseReduction
\Median5x5\Median5x5.va

Default Platform: mE5-MA-VCL

Short Description

Applet applies a 5x5 median filter on the image.

12.8.4. Principles

General principles about filtering are introduced in this subsection. It is demonstrated how you can
implement and define a filter yourself, how to use a filter in parallel or for a line scan image.

12.8.4.1. Filter Basics

Processing Examples 483

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Filter\Principles
\FilterBasic\FilterBasic.va

Default Platform: mE5-MA-VCL

Short Description

Explains the implementation of filters. Check the
comments in the design file.

12.8.4.2. Parallel Filters

Brief Description
File: \examples\Processing\Filter\Principles
\FilterParallel\FilterParallel.va

Default Platform: mE5-MA-VCL

Short Description

An example of the use of two filters in parallel.
Check the synchronization rules in Section 3.6,
'Rules of Links', too.

12.8.4.3. Filter Sub Kernels

Brief Description
File: \examples\Processing\Filter\Principles
\FilterSubKernels\FilterSubKernels.va

Default Platform: mE5-MA-VCL

Short Description

Shows how to extract a sub kernel from a filter
to obtain the original image data. This example
performs a simple local adaptive binarization.
See also Section 12.2.1, 'Adaptive Threshold'.

12.8.4.4. Filter for Line Scan Cameras

Brief Description
File: \examples\Processing\Filter\Principles
\FilterLineScan\FilterLineScan.va

Default Platform: mE5-MA-VCL

Short Description

Explains how to implement a filter for line scan
cameras. Check the comments in the design file.

Processing Examples 484

VisualApplets User Documentation Release 3

12.8.5. Sharpening

Two examples for sharpening of an image are described in this subsections. An HighBoost filter and
a Laplace filter are implemented.

12.8.5.1. High Boost Sharpening Filter

Brief Description
File: \examples\Processing\Filter\Sharpening
\HighBoost\HighBoost.va

Default Platform: mE5-MA-VCL

Short Description

A high boost Laplace filter for sharpening.

12.8.5.2. Laplace Filter 3x3

Brief Description
File: \examples\Processing\Filter\Sharpening
\LaPlace3x3\LaPlace3x3.va

Default Platform: mE5-MA-VCL

Short Description

A 3x3 Laplace filter.

12.9. Geometry

In this section you find the description of examples on different kinds of geometry operations. These
are example designs for down sampling of an image, the split and merge of an image and the scaling
and shearing of a line scan image. Furthermore the mirroring and the calculation of the image moments
of an object are performed.

12.9.1. Downsampling

Processing Examples 485

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Geometry
\Downsampling\Downsampling.va

Default Platform: mE5-MA-VCL

Short Description

The input image is downsampled i.e. reduced in
size by 4x4.

12.9.2. Downsampling 3x3

Brief Description
File: \examples\Processing\Geometry
\Downsampling3x3\Downsampling3x3.va

Default Platform: mE5-MA-VCL

Short Description

Compared to the downsampling by 4x4 shown in
Section 12.9.1, 'Downsampling' a downsampling
by a factor of 3 by 3 is presented. The example
will not use the SampleDn operator. The
downsampling is made using discrete operators.
Using SampleDn is possible, too.

12.9.3. Geometric Transformation and Distortion Correction

We have implemented examples performing geometric transformation, geometric transformation
in combination with distortion and Keystone correction and geometric transformation with image
moments. In the following sections we first describe the mathematical background and then we
introduce the VisualApplets designs.

Example Description
“GeometricTransformation_
FrameBufferRandomRead.va"

Geometric transformation:translation,
rotation, scaling using operator
FrameBufferRandomRead

“GeometricTransformation_
ImageMoments.va"

Geometric transformation:translation,
rotation, scaling using image moments and
FrameBufferRandomRead

“GeometricTransformation_
PixelReplicator.va"

Geometric transformation:translation, rotation,
scaling using operator PixelReplicator

“GeometricTransformation_
DistortionCorrection.va"

Geometric transformation:translation, rotation,
scaling, distortion and Keystone correction using
operator PixelReplicator

Processing Examples 486

VisualApplets User Documentation Release 3

Example Description
“DistortionCorrection.va" Distortion correction using operator

PixelReplicator

Table 12.5. List of Geometric Transformation Examples

12.9.3.1. Theoretical Background

12.9.3.1.1. Geometric Transformation

A combination of image rotation and translation in 2 dimensions with coordinates x and y can be
expressed with:

0@x0

y0

0

1A =

0@cos(Á) ¡sin(Á) Tx

sin(Á) cos(Á) Ty

0 0 1

1A ¢

Ã
x
y

1

!
(12.19)

Here x' and y' are the coordinates in the target image. The rotation angle is Á and Tx; Ty are the
translation parameters in x and y direction. The inverse translation and rotation is then:

Ã
x
y

0

!
=

0@ cos(Á) sin(Á) ¡sin(Á) ¢ Ty¡ cos(Á) ¢ Tx

¡sin(Á) cos(Á) sin(Á) ¢ Tx¡ cos(Á) ¢ Ty

0 0 1

1A ¢

0@x0

y0

1

1A : (12.20)

And therefore the coordinates in the source image are calculated as:

x = cos(Á) ¢ x0 + sin(Á) ¢ y0 ¡ sin(Á) ¢ Ty¡ cos(Á) ¢ Tx

and
y = ¡sin(Á) ¢ x0 + cos(Á) ¢ y0 + sin(Á) ¢ Tx¡ cos(Á) ¢ Ty :

(12.21)

For a VA design we need the inverse transformation for coordinate calculation due to target-to-source
mapping. Scaling of the coordinates can be realized by multiplication with constants Sx; Sy for x and
y direction.

12.9.3.1.2. Distortion Correction

Optical distortion appears when the magnification of an object changes with distant to optical axis. The
image has then barrel or pincushion shape. For the VA design we use a polynomial ansatz according
to [Par09]. The distorted coordinates xd;yd are calculated from undistorted coordinates xu;yu as:

³xd
yd

´
= (1 + r2u ¢ k1 + r4u ¢ k2) ¢

³xu
yu

´
= C(ru) ¢

³xu
yu

´
:

with

ru =
p

x2u+ y2u :

(12.22)

The coordinates are relative to the optical center of distortion. The parameters k1; k2 are the distortion
coefficients. Some open source programs e.g. OpenCV give the possibility to calculate those parameters
with calibration images [Ope16a]. For all ru a lookup-table with the correction parameters C(ru)
can be calculated with a Matlab program. You can find it under \examples\Processing\Geometry
\GeometricTransformation\LUTDistortionCorrection.m. With this table all distorted coordinates can be
calculated by simple multiplication with the undistorted coordinates.

Processing Examples 487

VisualApplets User Documentation Release 3

12.9.3.1.3. Keystone Correction

This trapezoidal distortion appears when the camera is not placed perpendicular to the object to be
filmed. With a 3x3 transformation matrix M with elements m1 to m9 this effect can be corrected as
[Ope16b]:

0@t ¢ xKd

t ¢ yKd

t

1A =

Ã
m1 m2 m3
m4 m5 m6
m7 m8 m9

!
¢

Ã
xKc
yKc

1

!
: (12.23)

Please notice that we perform here inverse correction due to target-to-source mapping. The variables
xKd; yKd and xKc; yKc are the Keystone distorted and Keystone corrected coordinates respectively.
m1 to m9 can be calculated with OpenCV functions [Ope16b].

12.9.3.1.4. Image Moments

Please see section 12.9.5 for detailed theoretical description of image moments.

12.9.3.2. Implementation in VisualApplets

In VisualApplets example designs are implemented performing geometric transformation, combined
geometric transformation and distortion correction and geometric transformation controlled by image
moments. The geometric transformation is implemented with target-to-source mapping i.e. inverse.
This method is essential to guarantee, that there are no missing pixels in the target image sent to
PC [Bur06]. We have implemented inverse geometric transformation on the basis of the operator
FrameBufferRandomRead and alternative on the basis of the operator PixelReplicator. The
differences will be explained in the following subsections. In these subsections the example designs
are introduced in detail.

12.9.3.2.1. Geometric Transformation Using FrameBufferRandomRead

Brief Description
File: \examples\Processing
\Geometry\GeometricTransformation
\GeometricTransformation_
FrameBufferRandomRead.va

Default Platform: mE5-MA-VCL

Short Description

Geometric Transformation: rotation,
translation, scaling using the operator
FrameBufferRandomRead

A geometric transformation is implemented in the VA design "Geometric
Transformation_FrameBufferRandomRead.va" with target-to-source mapping. This method is essential
to guarantee, that there are no missing pixels in the target image sent to PC [Bur06]. The coordinates
of the source image x; y are calculated with inverse geometric transformation for all target coordinates
x0;y0. At the position of the coordinates x; y the pixel value in the source image are read with the
operator FrameBufferRandomRead at a parallelism of 1. The operator stores each pixel individually
in DRAM and reads one pixel after each other. Linear interpolation helps to correct pixel values in the
output image to PC when the calculated source image coordinates do not match pixel coordinates in
the source image. In Fig. 12.65 you can see the basic design structure.

Processing Examples 488

VisualApplets User Documentation Release 3

Figure 12.65. Basic design structure of the VA design
"GeometricTransformation_FrameBufferRandomRead.va"

The design consists of a camera interface in Camera Link base configuration
(BaseGrayCamera_Camera) and the HierarchicalBox Geometric Transformation in which
the scaling, rotation and translation of the acquired images is performed. The operator
ImageBuffer_Buffer gives the opportunity to store the image. Via DMA (operator
DmaToPC_DMA0) the image is transferred to PC.

In 12.66 you can see the content of the HierarchicalBox GeometricTransformation. The parameters
IntParamTranslator, FloatParamReference and IntParamReference give you the possibility to
set the relevant parameters of the geometric transformation (value of scaling, rotation, translation
and image dimensions) very comfortably. The properties are image Height and Width, the number
of pixels you want to shift the image in x and y direction (parameter: Translatex and Translatey)
and the scale factor in x and y direction Scalex and Scaley. You can set the rotation angle in degrees
with the parameter Phi. As alternative you can set these Properties via "Right-Mouse-Click" on the
HierarchicalBox GeometricTransformation. You can see the content of this box in Fig. 12.66.

Processing Examples 489

VisualApplets User Documentation Release 3

Figure 12.66. Content of HierarchicalBox"GeometricTransformation"

The SourceImage is linearly written to the buffer FrameBufferRandomRead. With each pixel
the next neighbors are saved in a 2x2 kernel (HierarchicalBox NextNeighbours). The coordinates
of the target image x0; y0 (eq. 12.21) are created with the operators CreateBlankImage,
CoordinateX and CoordinateY in the HierarchicalBox OutputImage (contained in HierarchicalBox
CoordinateTransformation) (see Fig. 12.67 and 12.68).

Figure 12.67. Content of HierarchicalBox CoordinateTransformation

Processing Examples 490

VisualApplets User Documentation Release 3

Figure 12.68. Content of HierarchicalBox OutputImage

The coordinates x0; y0 can be rotated, translated and/or scaled in inverse direction according to eq.
12.21. The rotation angle Á and the parameters Tx; Ty; Sx and Sy for translation and scaling can be
chosen by setting the corresponding constants via the transport parameters as described above. In
Fig. 12.69 you can see the VA implementation of eq. 12.21 with the possibility of additional scaling.

Figure 12.69. Content of HierarchicalBox InverseTransformation

The resulting coordinates of inverse transformation are the source coordinates x and y (eq. 12.21). In
the HierarchicalBox SplitFractionalAndIntegerBit (see Fig. 12.66) the integer and fractional bit part
of these coordinates are separated. The integer bit part, which corresponds to pixel positions in the
source image, is the coordinate input for the operator FrameBufferRandomRead in x and y direction
(see Fig. 12.66). This operator reads pixel value information (parallelism = 1) together with its next
neighbors (see above) from the source image at the corresponding coordinates. The fractional bit part
of the source coordinates x and y corresponds to interpixel positions in the source image. With these
informations and the pixel value information from the neighboring pixels in the source image the true
pixel value in the target image is bilinear interpolated in the HierarchicalBox Interpolation. Please
see for detailed description for the interpolation process [Bur06].

Processing Examples 491

VisualApplets User Documentation Release 3

In Fig. 12.70 and 12.71 you can see for an example geometric transformation the source and target
images. A translation of 100 pixels in x and y direction and a rotation around 45° is performed.

Figure 12.70. Source image [Ope16a]

Figure 12.71. Rotated and translated target image

12.9.3.2.2. Geometric Transformation Using Image Moments

Brief Description
File: \examples\Processing
\Geometry\GeometricTransformation
\GeometricTransformation_ImageMoments.va

Default Platform: mE5-MA-VCL

Short Description

Geometric Transformation: rotation and
translation of an object into the image center
using image moments

In this example design the position and rotation angle of an object in a RGB image is determined with
image moments. A rotation into a horizontal orientation and a translation into the image center is
performed. As default the input image dimension is 640x240 pixels and the output image dimension
256x128 pixels. In Fig. 12.72 you can see the basic design structure.

Processing Examples 492

VisualApplets User Documentation Release 3

Figure 12.72. Basic design structure of the VA design "GeometricTransformation_ImageMoments.va"

The design consists of an RGB camera interface in Camera Link base configuration
(BaseRgbCamera_Camera) and the HierarchicalBox Geometric Transformation in which the
rotation and translation of the acquired images is performed. With "right-mouse-click" under
"Properties" you can set the input and output image dimensions and the binarization threshold. This
threshold is relevant for the calculation of the image moments as described below. The geometric
transformation is done with target-to-source mapping (see introduction text in section 12.9.3.2). Via
DMA (operator DmaToPC_DMA0) the image is transferred to PC. In Fig. 12.73 you can see the
content of Geometric Transformation.

Figure 12.73. Content of the HierarchicalBox GeometricTransformation

The rotation angle relative to the horizontal position and the center of gravity position of the object is
determined with image moments in the HierarchicalBox ImageMoments calculated on the binarized
image (HierachicalBox Binarization). The content of ImageMoments is equivalent to the box
ImageMoments of the VA example "ImageMoments.va" (see Fig. 12.93 in section 12.9.5) but without
the calculation of the object eccentricity. The output links of the HierachicalBox ImageMoments
(from up to down) are the center of gravity position in x and y direction and the rotation angle. The
source coordinate calculation (according to eq. 12.21) based on these parameters is content of the
HierachicalBox CoordinateTransformation. In 12.74 you can see the content of this box.

Processing Examples 493

VisualApplets User Documentation Release 3

Figure 12.74. Content of HierarchicalBox CoordinateTransformation

In the HierarchicalBox Synchronization the single pixel values of center of gravity in x and y
direction and rotation are extended to output image dimension, which is defined in the HierarchicalBox
OutputImage. The output links of this box represent the target image coordinates x0;y0. In the
HierarchicalBox InverseTransformation the source coordinates x and y are calculated according to
eq. 12.21. In Fig. 12.75 you can see the content of this box.

Figure 12.75. Content of HierarchicalBox InverseTransformation

Processing Examples 494

VisualApplets User Documentation Release 3

The design structure in this box is similar to the implementation of inverse
transformation in the examples "GeometricTransformation_FrameBufferRandomRead.va" and
"GeometricTransformation_PixelReplicator.va". The difference is, that the translation parameter in x
and y direction is determined by the difference between the center of gravity and the image center
in x and y direction (see content of boxes Translation_x and Translation_y). The rotation angle
(content of box Phi) is defined by the result of the image moments calculation. Coming back to
the basic design structure in Fig. 12.72. The calculated source image coordinates x and y represent
the output links of box CoordinateTransformation. In the box GeometricTransformation
(see Fig. 12.76) the geometric transformation with the operator FrameBufferRandomRead and
the bilinear interpolation of the correct target pixel value is performed analog to the example
"GeometricTransformation_FrameBufferRandomRead.va" (see Fig. 12.66 in section 12.9.3.2.1).

Figure 12.76. Content of HierarchicalBox GeometricTransformation

For an example object in Fig. 12.77 you can see the orientation and position corrected target image
in Fig. 12.78.

Figure 12.77. Source image (dimension: 640x240 pixels)

Figure 12.78. Position and orientation corrected target image (dimension: 256x128 pixels)

12.9.3.2.3. Geometric Transformation using PixelReplicator

Processing Examples 495

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing
\Geometry\GeometricTransformation
\GeometricTransformation_PixelReplicator.va

Default Platform: mE5-MA-VCL

Short Description

Geometric Transformation: rotation, translation,
scaling using the operator PixelReplicator

The VisualApplets design example "GeometricTransformation_PixelReplicator.va" performs the same
geometric transformation as the example "GeometricTransformation_FrameBufferRandomRead.va" but
with higher performance. As explained above the operator FrameBufferRandomRead stores each
pixel individually in DRAM and reads them one after each other. In this example a block of a certain
amount of pixels is stored in a DRAM cell. The example design reads only from DRAM if the pixel to
be read is not in the same cell as the previous pixel. The example in Fig. 12.79 with 8 pixel per DRAM
cell gives an idea of the performance increasement.

Figure 12.79. Example: 8 Pixels are stored in one DRAM cell

The DRAM blocks are marked in green. To read the 9 pixels a to i you need 3 DRAM cycles instead
of 9. We achieve an effective parallelism of 3 here. The maximum amount of 8 bit pixel, which can
be stored in one RAM cell, is 32 (marathon VCL data width: 256 Bit). The shape of the ROI for RAM
cell block is defined by the rotation angle of the geometric transformation. As default a RAM cell
shape of 9x3 pixels is chosen in this example. The basic design structure is equivalent to the design
structure in Fig. 12.65 but without the operator PARALLELdn_To1. The content of the HierarchicalBox
GeometricTransformation is also equivalent to the corresponding box (Fig. 12.66) in the
example "GeometricTransformation_FrameBufferRandomRead.va". The difference is that the operator
FrameBufferRandomRead is replaced by the HierarchicalBox FrameBufferRandomRead_Par8.
You can see its content in Fig. 12.80.

Processing Examples 496

VisualApplets User Documentation Release 3

Figure 12.80. Content of HierarchicalBox FrameBufferRandomRead_Par8

In the box CollectNeighbors the source image is split into sub-ROIs, which define the size of each RAM
cell. Here a RAM cell size of 9x3 is chosen. In the HierarchicalBoxes SplitAdressX and SplitAdressY
the integer bit part of the source coordinates x and y as result of inverse geometric transformation (see
section 12.9.3.2.1) is split in two components. The upper bit part (upper output link of SplitAdressX
and SplitAdressY) represents the position of the DRAM cell, the lower bit part represents the pixel
position in the DRAM cell. A DRAM cell is read at the DRAM cell coordinates in the HierarchicalBox
Buffer (contains operator FrameBufferRandomRead) if it was not decided in the HerarchicalBox
RepeatDeciderto reuse previous DRAM cell. If it is decided to reuse the previous cell, the pixel values
of the DRAM cell need to be replicated. This is performed in the HierarchicalBox ReplicateValues
with the operator PixelReplicator. In the box ExtractSubKernel the required pixel value together
with its next neighbors is extracted from DRAM cell using pixel coordinates as output of SplitAdressX
and SplitAdressY (lower output link). The bilinear interpolation of the correct target pixel value is
performed equivalent to the example in 12.9.3.2.1.

12.9.3.2.4. Geometric Transformation and Distortion Correction

Brief Description
File: \examples\Processing
\Geometry\GeometricTransformation
\GeometricTransformation_
DistortionCorrection.va

Default Platform: mE5-MA-VCL

Short Description

Geometric Transformation: rotation, translation,
scaling, distortion and Keystone correction using
the operator PixelReplicator

The VA example "GeometricTransformation_DistortionCorrection.va" is an extension of the
design "GeometricTransformation_PixelReplicator.va". In addition distortion and Keystone correction
(according to eq. 12.22 and eq. 12.23) is implemented in this design. In the following only the different
parts in comparison to "GeometricTransformation_PixelReplicator.va" will be explained. In Fig. 12.81
you can see the basic design structure.

Processing Examples 497

VisualApplets User Documentation Release 3

Figure 12.81. Basic design structure of the VA design "GeometricTransformation_DistortionCorrection.va"

A grayscale image (maximum dimension: 4096x4096 pixels) from a camera interface
in CameraLink base configuration (BaseGrayCamera_Camera) is transformed in the
HierarchicalBox GeoTransAndDistCorr and transferred to PC via DMA (DmaToPC_DMA0). The
structure is equivalent to the design "GeometricTransformation_FrameBufferRandomRead" and
"GeometricTransformation_PixelReplicator". The structure of GeoTransAndDistCorr is equivalent to
the box GeometricTransformation of the same two designs (see Fig. 12.66). Here the inverse
transformation and in addition distortion and Keystone correction is performed. The content of box
CoordinateTransformation (in box GeometricTransformation) is shown in Fig. 12.82.

Figure 12.82. Content of HierarchicalBox CoordinateTransformation

Equivalent to the designs "GeometricTransformation_FrameBufferRandomRead" and
"GeometricTransformation_PixelReplicator" (sections 12.9.3.2.1 and 12.9.3.2.3) the target coordinates
x0;y0 are inverse transformed according to eq. 12.21 with additional scaling (see also section
12.9.3.2.1). With the resulting coordinates of inverse transformation we perform then a
inverse Keystone and distortion correction in the HierarchicalBoxes KeystoneCorrrection and
DistortionCorrection. The content of these boxes are displayed in Fig. 12.83 and Fig. 12.82.

Processing Examples 498

VisualApplets User Documentation Release 3

Figure 12.83. Content of HierarchicalBox KeystoneCorrection

Figure 12.84. Content of HierarchicalBox DistortionCorrection

In these boxes eq. 12.22 and eq. 12.23 are implemented. The matrix elements m1 to m9 in the boxes
Z_x, Z_y and N (see Fig. 12.83) can be calculated with the help of the OpenCV library [Ope16b]. For
the example image "Example.tif" (under \examples\Processing\Geometry\GeometricTransformation)
you find the example matrix values in the text file "MatrixValues.txt" at the same location. For
the distortion correction in Fig. 12.82 first the coordinates are transformed in a coordinate system
relative to the optical center (CoordinateTransformation_x and CoordinateTransformation_y),
which is in most cases the image center. In the HierarchicalBox DistortionCoefficient the distance
ru =

p
x2u+ y2u (see eq. 12.23) from optical center is calculated. For every ru then a distortion correction

parameter C(ru) exists in a lookup table (see Fig. 12.85). The lookup-table is externally created with a
Matlab module, which you can find under \examples\Processing\Geometry\GeometricTransformation
\LUTDistortionCorrection.m and the distortion parameters k1 and k2 created with the OpenCV library
[Ope16b]. In "LUTDistortionCorrection.m" you find as example the correction parameters k1 and k2 for
the example image "Example.tif" (under \examples\Processing\Geometry\GeometricTransformation)
[Ope16a]. The coefficient C(ru) is then multiplied with coordinates xu and yu (Fig. 12.82). The resulting
distorted coordinates are then transformed back to a coordinate system relative to the "left upper
image corner" (see boxes CoordinateTransformation_x and CoordinateTransformation_y).
The result are the source image coordinates xd and yd. The content of the HierarchicalBox

Processing Examples 499

VisualApplets User Documentation Release 3

LimitCoordinateValues (Fig. 12.82) sets boundary conditions for the transformed image coordinates.
After separation of integer and fractional bit parts (see box SplitFractionalAndIntegerBit in Fig.
12.66) the pixel values at the calculated corresponding integer source image coordinates are read from
source image. The fractional bit part is used for bilinear interpolation (see Interpolation) according to
[Bur06] in order to correct the pixel values in the output image due to interpixel positions in the source
image. Via DMA the signal is transferred to PC. For demonstration purpose you can see in Fig. 12.86,
12.87 and 12.88 the distorted source image, the Keystone and distortion corrected target image and
a rotated and distortion corrected target image.

Figure 12.85. Content of HierarchicalBox DistortionCoefficient

Figure 12.86. Example Source Image [Ope16a]

Processing Examples 500

VisualApplets User Documentation Release 3

Figure 12.87. Distortion and Keystone corrected target image

Figure 12.88. Rotated, distortion and Keystone corrected target image

12.9.3.2.5. Distortion Correction

Brief Description
File: \examples\Processing
\Geometry\GeometricTransformation
\DistortionCorrection.va

Default Platform: mE5-MA-VCL

Short Description

In this example design a distortion correction is
implemented.

In the design "DistortionCorrection.va" a distortion correction according to eq. 12.22 is implemented.
It is analog to the one in the design "GeometricTransformation_DistortionCorrection.va" but without
performing geometric transformation and keystone correction. You can see the basic design structure
in Fig. 12.89.

Processing Examples 501

VisualApplets User Documentation Release 3

Figure 12.89. Basic design structure of the VA design "DistortionCorrection.va"

The design consists of an interface for a grayscale camera in Camera Link base configuration, a buffer
module, the HierachicalBox DistortionCorrection and the DmaToPC. The distortion correction of the
grayscale image is performed in DistortionCorrection. You can see its content in Fig. 12.90.

Figure 12.90. Content of HierarchicalBox DistortionCorrection

The structure is analog to the content of the HierarchicalBox GeometricTransformation
(see Fig. 12.66) in the design "GeometricTransformation_PixelReplicator.va" of section
12.9.3.2.1. The operator FrameBufferRandomRead is replaced by the HierarchicalBox
FrameBufferRandomRd_Par8 as also done in "GeometricTransformation_PixelReplicator.va" and
"GeometricTransformation_DistorationCorrection.va" (see sections 12.9.3.2.3 and 12.9.3.2.4). The
source image is linearly written to the buffering element FrameBufferRandomRd_Par8. In this
module also the three next neighbors are stored together with each pixel (see box CollectNeighbors
in box FrameBufferRandomRd_Par8). In box CoordinateTransformation/ OutputImage the
target image coordinates x0; y0 are created using the operators CreateBlankImage, CoordinateX
and CoordinateY. These coordinates are transformed according to eq. 12.22 to the source image
coordinates x; y in the HierarchicalBox InverseCorrection (see box CoordinateTransformation).
You can see its content in Fig. 12.91.

Processing Examples 502

VisualApplets User Documentation Release 3

Figure 12.91. Content of HierarchicalBox InverseCorrection

It is equivalent to the implementation of box DistortionCorrection of
"GeometricTransformation_DistortionCorrection.va" (see Fig. 12.84). For each target image radius

r0 =

q
x02 + y02 relative to the image center a lookup table value C_r is selected in the

HierarchicalBox DistortionCoefficient. C_r is multiplied with the target image coordinates x0; y0

according to eq. 12.22 and transformed back to a coordinate system relative to first pixel (see
CoordinateTransformation_x_1 and CoordinateTransformation_y_1). As you can see in Fig.
12.90 the resulting source coordinates are split in an integer and fractional part in the box
SplitFractionalAndIntegerBit. The integer part is used to read the pixels of the source image at the
corresponding source image coordinates and the fractional part is used for bilinear interpolation of the
final result. The distortion corrected image is the transferred via DMA to PC.

12.9.4. ImageSplitAndMerge

Brief Description
File: \examples\Processing\Geometry
\ImageSplitAndMerge\ImageSplitAndMerge.va

Default Platform: mE5-MA-VCL

Short Description

Shows how to split an merge image streams.
Appends a trailer to the image.

12.9.5. Moments in Image Processing

Brief Description
File: \examples\Processing\Geometry
\ImageMoments\ImageMoments.va

Default Platform: mE5-MA-VCL

Short Description

Calculates the image moments orientation and
eccentricity for the incoming images.

Moments in image processing are average values from the single pixels` intensities of an image. With
this moments physical properties like orientation, eccentricity, the area or the centroid of an object
in the image can be identified.

Processing Examples 503

VisualApplets User Documentation Release 3

12.9.5.1. Orientation £

The orientation £ of an object is defined as [Bur06]:

£ =
1

2
¢ tan¡1

µ
2¹11

¹20¡ ¹02

¶
; (12.24)

with the central moments of second order:

¹20 =
M20

M00
¡ ¹x2;

¹02 =
M02

M00
¡ ¹y2;

¹11 =
M11

M00
¡ ¹x¹y;

(12.25)

with definition

¹ij =
X
x

X
y

(x¡ ¹x)i ¢ (y¡ ¹y)j ¢ g(x;y) : (12.26)

The centroid is

(¹x; ¹y) = (
M10

M00
;
M01

M00
) (12.27)

and the raw moments

Mij =
X
x

X
y

xi ¢ yj ¢ g(x;y) : (12.28)

M00 corresponds to the area of an object. Here g(x,y) is the greyscale function for digital greyscale
images.

12.9.5.2. Eccentricity

The eccentricity e of an object can be calculated with [Bur06]

e =
[¹20 ¡ ¹02]

2 + 4 ¢ ¹211
[¹20 + ¹02]2

(12.29)

The results of the eccentricity are in a range between 0 (round object) and 1 (elongated object).

12.9.5.3. Design in VisualApplets

In VisualApplets a design is implemented with the original image and geometric properties like the
area, the center of gravity, the orientation and the eccentricity of an object as output. You can find
the example under \examples\Processing\Geometry\ImageMoments\ImageMoments.va. A parallelism
of 4 was chosen for calculation. In Figure 12.92, 'Basic design structure' the structure of the design
with comments is shown.

Processing Examples 504

VisualApplets User Documentation Release 3

Figure 12.92. Basic design structure

Geometric properties area, center of gravity, orientation and eccentricity of a greyscale image are
calculated via moments (HierarchicalBox: ImageMoments). These properties are appended to the
original camera image (AppendMomentsToImage). In Figure 12.93, 'Content of ImageMoments'
the content of the HierarchicalBox ImageMoments is shown. The raw moments M00 (which
corresponds to the area of an object), M11; M20; M02; M10 and M01, as well as the center of gravity
(¹x; ¹y) and the central moments ¹20; ¹02 and ¹11 are implemented according to the formulas given above.
Finally the geometric properties orientation £ of the main axis and eccentricity e of an image object
are calculated from these results.

Figure 12.93. Content of ImageMoments

In Figure 12.94, 'Content of the HierarchicalBox orientation_theta' and Figure 12.95, 'Content
of the HierarchicalBox eccentricity' the contents of the HierarchicalBoxes orientation_theta and
eccentricity together with inserted comments on the single operation steps are shown. The orientation
£ and eccentricity e are calculated by using the values of ¹11; ¹20; ¹02 according to Equation 12.24 and
Equation 12.29. A resolution of R=7 is chosen for the input signal to the ARCTAN operator.

Processing Examples 505

VisualApplets User Documentation Release 3

Figure 12.94. Content of the HierarchicalBox orientation_theta

Figure 12.95. Content of the HierarchicalBox eccentricity

Comment: During implementation of the orientation of Θ it showed, that limitation to 12 bits maximum
input signal of the ARCTAN function can be a problem for calculation of accuracy and resolution: for
example the image of an ellipse with orientation Θ= 44.07° (result of moment implementation with
MATLAB) was analyzed. The 25 bit input signal for the ARCTAN function has to be limited to 12 bits.
With resolution of R= 8 bits the implementation in VisualApplets has result 41.43°; with R=7 bits the
result is 43.21° (with resolution for small angles of 0.2°) and with R= 6 it is 44.07° (with resolution
for small angles of 0.45°). As an result we found that with high resolution (R= 8 bit) the maximum
angle of calculation is smaller than the true angle of orientation, due to bit depth limitation. With
smaller resolution R the result of calculation improves for big angles but has as an consequence smaller
accuracy in the range of small angles. The problem can be solved by using a Lookup table instead
of ARC TAN operator.

12.9.6. Line Mirror

Processing Examples 506

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Geometry\LineMirror
\LineMirror.va

Default Platform: mE5-MA-VCL

Short Description

Shows how to vertically mirror an image. Note
the mirroring of the parallel words and the pixel.

12.9.7. Shear of an Image

Brief Description
File: \examples\Processing\Geometry\ShearLine
\LineShear_V02.va

Default Platform: mE5-MA-VCL

Short Description

Line shear example with linear interpolation.

In this example (under \examples\Processing\Geometry\ShearLine\LineShear_V02.va) a line shear for
a line scan camera is implemented. If the camera is not mounted along the intended scanning direction
of an object, this design can compensate the resulting shift (see Fig. 12.96) in the scanned object.
A line shift of 10 pixel in y direction over the complete image width (here 1024 pixel) is chosen here
for example.

Figure 12.96. Skew of a scanned object resulting from camera misalignment

In Fig. 12.97 you can see the basic design structure: Every pixel of the 1D image from the camera
operator is sheared in y direction in dependence on its x coordinate in the HierarchicalBox LineShear.
The single lines are assembled to a 2D image with the operator SplitImage:2DImage. The corrected
image is sent to PC via the operator DmaToPC .

Processing Examples 507

VisualApplets User Documentation Release 3

Figure 12.97. Basic design structure

In Fig. 12.98 you can see the content of HierarchicalBox LineShear. Here for every pixel the precedent
N-1 line neighbors (here 31) are written in a Nx1 kernel.

Figure 12.98. Content of HierarchicalBox LineShear

Each 8 bit pixel of this column is merged together with its preceding next neighbor (found with
the operator KernelRemap:ShiftedKernel) into one 16 bit pixel. See therefore the content of
HierarchicalBox ExtractInteger in Fig. 12.99. In the HierarchicalBox Select (see Fig. 12.100) the new
pixel value for each pixel is selected with the operator CASE in dependence on the shifted (corrected)
integer y position.

Figure 12.99. Content of HierarchicalBox ExtractInteger

Processing Examples 508

VisualApplets User Documentation Release 3

Figure 12.100. Content of HierarchicalBox Select

The corrected y position for each pixel is calculated in the HierarchicalBox TransformedYCoordinate
(see Fig. 12.97). The content of this box is displayed in Fig. 12.101.

Processing Examples 509

VisualApplets User Documentation Release 3

Figure 12.101. Content of HierarchicalBox TransformedYCoordinate

With the operator Coordinate_X the x position for each pixel is obtained.The possibility to "invert"
the x position for negative skew slopes exist (selected with the operators Const: NegativeSlope and
IF). With the operator CONST: DeltaX the misalignment of the camera is defined: This constant
determines after how many pixels a one pixel shift in y direction is performed. With the operators
SelectBitField: Integer and SelectBitField: Fractional the integer and fractional parts of the
corrected y coordinate for every pixel are separated. In this example 6 fractional bits (see operator
ShiftLeft:Mult64) are determined. The fractional part of each y coordinate is necessary for the linear
interpolation performed in the HierachicalBox Interpolation, contained in the box ExtractFractional
(see Fig. 12.98). You can find closer information on the interpolation algorithm in the comment in the
HierarchicalBox Interpolation in the example. In Fig. 12.102 you can see as a result of the described
operations the corrected image.

Figure 12.102. Shift corrected image

12.9.8. Scaling a Line Scan Image

Processing Examples 510

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Geometry
\ScalingLine\ScalingLineP16.va
\examples\Processing\Geometry\ScalingLine
\ScalingLineP8.va

Default Platform: mE5-MA-VCL

Short Description

Scaling and transformation of a line scan image

The VisualApplets designs "ScalingLineP8.va“ and “ScalingLineP16.va” scale an image of a grayscale
line scan camera in CameraLink Full configuration by an arbitrary factor to transform the width of an
image between the input and the output. „ScalingLineP8.va“ is designed for a parallelism of 8 and
“ScalingLineP16.va” for a parallelism of 16 for a marathon VCL platform. This document describes the
algorithm and implementation in VisualApplets. For usage of the design, a number of lookup table
values need to be calculated. An included C++ and Matlab program provide these calculations to
simplify the usage.

12.9.8.1. Basic Idea for Scaling/Transformation in a Line

The scaling/transformation/distortion correction of a line image is performed on the basis of source
and target image coordinates. In the following the basic principle of the algorithm is explained with
example coordinate pairs and parallelism 4.

Target coordinates: 0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15
Source coordinates: 0.3 0.5 1.4 1.5 | 2.2 3.4 3.6 4.2| 5.4 5.5 7.8 8.5 | 9.1 11.4 13.3 14.1

We use the Target-To-Source procedure. For every pixel in the target image (= output image to PC)
we select the corresponding (rounded off) integer coordinate and the corresponding pixel value in the
source image. Positions between pixels are considered by selecting also the preceding pixel neighbor
of the current pixel coordinate in the source image. With linear interpolation the correct pixel value in
the output image is calculated. Due to parallelism single pixels can not be read from source image.
Therefore “words” (unities of pixels read at the same time) have to be read in a useful sequence. It
may happen that words have to be read more than once or never. Within these words, which have
been read from the source image, the correct pixel positions for the creation of the output word have
to be selected. Pixels not needed from the words read are deleted. The following example illustrates
the read access from source image coordinates:

Memory Read Count
cycles

Requested
Target
Coordinates

Respective
Source
Coordinates

Read Word/
incl. Pixel

Use Pixel in Word

1 0, 1 2, 3 0.3, 0.5,
1.4, 1.5

0/ 0, 1, 2, 3 1, 1, 2, 2

2 4 2.2 0/ 0, 1, 2, 3 3, x, x, x

3 5, 6, 7, 8 3.4, 3.6,
4.2, 5.4

1/ 4, 5, 6, 7 4, 4, 5, 6

4 9 5.5 1/ 4, 5, 6, 7 6, x, x, x

5 10, 11, 12 7.8, 8.5, 9.1 2/ 8, 9, 10, 11 9, 8, 10, x

6 13, 14, 15 11.4, 13.3,
14.1

3 / 12, 13, 14,
15

12, 14, 15, x

Table 12.6. Reading Cycles

While “x” indicates that the pixel is deleted.

Processing Examples 511

VisualApplets User Documentation Release 3

12.9.8.2. Implementation in VisualApplets

The main components of the design are (Fig. 12.103):

1. Interface to line scan camera including trigger system and buffer;
2. Scaling of camera image (in Transformation);
3. DMA data transfer to PC;

Figure 12.103. Basic design structure for scaling a line camera image

In the following we will describe the main component Transformation in detail.

12.9.8.2.1. Transformation

You can see the components of Transformation in Fig. 12.104.

Figure 12.104. Components of Transformation

The scaling of a camera line scan image is operated in Target-To-Source procedure. In WordToRead
we select in which useful order the unities of 8 parallelism 8 in „ScalingLineP8.va“) or 16 (parallelism
16 in „ScalingLineP16.va“) pixels (= ”word”) are read from input camera image. In PixelPicker we
decide which pixels we need from the words read. Interpolation considers for the calculation of the
pixel values in the output image the interpixel position in the source image.

12.9.8.2.1.1. WordToRead

The components of the module WordToRead are shown in Fig. 12.105.

Processing Examples 512

VisualApplets User Documentation Release 3

Figure 12.105. Components of WordToRead

The order and frequency of the words to be read from the source image is defined
in LUT: WordsToRead. The content of this table is created with the external C++
program „ScalingLUTS.cpp” or alternative with the MATLAB modules “LUTS_Scaling.m” and
“ScalingTablelLine.m”. See therefor section 12.9.8.3 in this document. The input link for this lookup
table is defined with CreateBlankImage and Coordinate_X. The value of parameter ImageWidth
of CreateBlankImage has to be exactly the same as the number of elements in LUT: WordsToRead.
The parameter ImageHeight has to match the image dimensions of the source image in y-
direction. The words from the source image are read from buffers LineMemoryRandomRd_1 and
LineMemoryRandomRd_2 in an order defined by LUT: WordsToRead. The source image is linearly
written to these buffers. Here two buffers are necessary due to a maximum bit depth of 64 bit and
parallelism 1. For every word the last pixel of the preceding word is selected and read (upper operation
line before SYNC). This value is added to the corresponding word with the operator Merge.

12.9.8.2.1.2. PixelPicker

In the module PixelPicker (see Fig. 12.106) the pixels for the scaled output words are selected with
the components Pick_0 to Pick_15 (or to Pick_7 with parallelism 8) from the words read. If pixels of
a word read are not needed (see section 12.9.8.1) the lookup table RemovePixel deletes them. The
content of the tables named above (Pick_0 to Pick_15 and RemovePixel) can be created with the
external C++ program „ScalingLUTS.cpp” or alternative with the MATLAB modules “LUTS_Scaling.m”
and “ScalingTablelLine.m”. See therefor also section 12.9.8.3 in this document.

Processing Examples 513

VisualApplets User Documentation Release 3

Figure 12.106. Components of PixelPicker

In Fig. 12.107 the content of the HierarchicalBox Pick_0 is shown. The lookup table PickComponent0
defines which pixel of a word read (SelectFromParallel: Word and Coordinate_X: Number) is the
0. component of the current output word. With the operator CASE the corresponding pixel is selected.
Together with its predecessor it is written to the current pixel (MergePixel). Analog to this procedure
described, the pixels 1 to 15 (or 7 with parallelism 8) of the current output word are selected with
the modules Pick_1 to Pick_15 (or to Pick_7). Die single pixels Pick_0 to Pick_15 (or to Pick_7)
are combined to the current transformed/scaled word with parallelism 16 or 8 (MergeParallel in Fig.
12.106).

Processing Examples 514

VisualApplets User Documentation Release 3

Figure 12.107. Content of Pick_0

12.9.8.2.1.3. Interpolation

In order to obtain the correct value on the pixel positions in the output image sent to PC, the interpixel
position in the source image has to be considered. In the module Interpolation (Fig. 12.104) a linear
interpolation is performed [Bur06]:

fc = f(x) = (1¡ dx) ¢ f(x1) + dx ¢ f(x2) : (12.30)

Here fc is the pixel value in the output image, which corresponds to value f(x) in the source image at
position x. Furthermore f(x1) and f(x2) are the values at pixel coordinates x1 and x2 in the source image.
The interpixel position is dx. More information on linear interpolation you can find e.g. in [Bur06].

The content of the module Interpolation is shown in Fig. 12.108. The values of current pixels
f(x1) and their predecessors f(x2) are separated with the operators SelectBitField: Current
and SelectBitField: Previous. The values of f(x1) and f(x2) are multiplied with (1¡ dx) and
dx according to eq. 12.30. The information for the interpixel position dx is contained in four
lookup tables Fractional_Part0 to Fractional_Part3 in the design “ScalingLineP16.va”. Every
table contains for 4 pixels of the current output word the interpixel position dx. Every interpixel
position has 6 bit depth. The content of the LUTs Fractional_Part0 to Fractional_Part3 can be
created with the external C++ program „ScalingLUTS.cpp” or alternative with the MATLAB modules
“LUTS_Scaling.m” and “ScalingTablelLine.m”. See therefor also section 12.9.8.3 in this document. The
design “ScalingLineP8.va” has one table Fractional containing the interpixel position. Its content can
also be created with the external C++ and Matlab program modules. Finally the transformed/scaled
line image is sent via DMA transfer to PC (see Fig. 12.104).

Processing Examples 515

VisualApplets User Documentation Release 3

Figure 12.108. Components of Interpolation

12.9.8.3. Lookup Tables for The VisualApplets Design

The lookup tables necessary for the design “ScalingLineP16.va” and “ScalingLineP8.va” (see section
12.9.8.2) can be created either with the C++ program “ScalingLUTs.cpp” (in folder “LUTS_Cpp”) or with
the MATLAB program modules “LUTS_Scaling.m” and “ScalingTableLine.m”(in folder “LUTS_MATLAB”).

12.9.8.3.1. ScalingLUTs.cpp

1. Please define following parameters in the program (or in the command prompt):

//////////////////////Parameter////////////////////

/ Please specify these parameters!//////////

uint64_t parallelism = 8; // =8 for "ScalingLineP8.va" and =16 for "ScalingLineP16.va"

uint64_t fractionalBits = 6; // = 6: default value in "ScalingLineP8.va" and "ScalingLineP16.va"

uint64_t noOfFractionalLUTs = parallelism == 8 ? 1 : 4; // number of fractional tables = 1 in
"ScalingLineP8.va" and = 4 in "ScalingLineP16.va"

int InputWidth; // width of input image

int OutputWidth; // width of image sent to PC

For the VisualApplets design “ScalingLineP16.va” set the parallelism parameter to 16 and
for“ScalingLineP8.va” to 8. The number of fractionalBits of 6 is a default value in both designs. The
design “ScalingLineP16.va”has four tables (const int noOfFractionalLUTs = 4) containing the interpixel
positions for the interpolation (see Fig. 12.108). The design “ScalingLineP8.va” has one table (const
int noOfFractionalLUTs = 1) instead. The scaling of your line image is defined by the relation between
InputWidth and OutputWidth.

2. Run the program!

3. Following files are created which can be loaded to the lookup tables in the VisualApplets designs:

File VA LUT
FractionalTable_0.txt to FractionalTable_3.txt Fractional_Part0 (or

Fractional for parallelism 8) to
FractionalPart_3

Processing Examples 516

VisualApplets User Documentation Release 3

File VA LUT
PickerTable_0.txt to PickerTable_15.txt (or to
PickerTable_7.txt)

PickComponent0 to
PickComponent15 (or to
PickComponent7)

TableWordsToRead.txt WordsToRead
RemoveTable.txt RemovePixel

Table 12.7. Files and their corresponding lookup tables in Visual Applets

In addition the text file ScalingTable.txt is created. It contains for every output image pixel the
corresponding coordinates in the source image (see also section 12.9.8.1).

12.9.8.3.2. ScalingTableLine.m and LUTS_Scaling.m

Please open the module “ScalingTableLine.m” and define the parameters

InputWidth=…;

OutputWidth=…;

1. Run the program!

2.The text file ScalingTableLine.txt is created. It contains for every output image pixel the
corresponding coordinates in the source image.

3. Please open the module “LUTS_Scaling.m” and define the parameters

parallelism = ...;

NoOfFractionalBits=...;

NoOfFractionalTables=...;

Run the program! The files created correspond to the files in Tab. 12.7 which can be loaded to the
lookup tables in the VisualApplets designs.

12.9.9. Tap Geometry Sorting

Brief Description
File: \examples\Processing\Geometry
\TapGeometrySorting\TapSorting_2X_1Y.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_2XE_1Y.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_1X_2Y.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_2X_2Y.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_2X_2YE.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_8X_1Y.va
\examples\Processing\Geometry
\TapGeometrySorting\TapSorting_10X_1Y.va

Default Platform: mE5-MA-VCL

Short Description

Sorting of Camera Link Taps

Processing Examples 517

VisualApplets User Documentation Release 3

12.9.9.1. Small Theory on Camera Link Tap Geometry

Taps are geometric zones on a camera sensor. The pixels of a frame are transmitted pixel by pixel to
the frame grabber in sequential order from the taps. The pixels can be transferred in parallel from
these taps. In Camera Link base configuration the number of taps transferred at the same clock cycle
are 1 to 3, in medium configuration 3 or 4 and in full configuration 8 or 10. The geometric arrangement
of the taps depends on the sensor model. Depending on this order, the pixels in the acquired image
need to be resorted in order to achieve an image, which mirrors reality. To describe tap geometry
configuration of a camera a naming convention

< RegionX > X(< TapX >)(< ExtX >)- < RegionY > Y(< TapY >)(< ExtY >) (12.31)

is used. Hereby < RegionX > and < RegionY > are the number of taps in horizontal and vertical direction.
The number of consecutive pixels in X and Y direction, which are transferred simultaneously from a tap
are < TapX > and < TapY >. < ExtX > and < ExtY > can be named "E", "M" or "R". "E" indicates, that
the readout per taps starts from both ends of pixel lines/columns. "M" means, that the pixel extraction
starts from the middle of line. "R" shows, that pixel extraction starts at the right side of each tap.
In table 12.8 the pixel positions in horizontal and vertical direction for an image with width "w" and
"height" h for specific tap geometries are listed.

Tap
Geometry

X
Start

X End X Step Y Start Y End Y Step

2X-1Y Tap 1 1 w/2 1 1 h 1

 Tap 2 w/2+1 w 1 1 h 1

2XE-1Y Tap 1 1 w/2 1 1 h 1

 Tap 2 w w/2+1 1 1 h 1

1X-2Y Tap 1 1 w 1 1 h/2 1

 Tap 2 1 w 1 h/2+1 h 1

2X-2Y Tap 1 1 w/2 1 1 h/2 1

 Tap 2 w/2+1 w 1 1 h/2 1

 Tap 3 1 w/2 1 h/2+1 h 1

 Tap 4 w/2+1 w 1 h/2+1 h 1

2X-2YE Tap 1 1 w/2 1 1 h/2 1

 Tap 2 w/2+1 w 1 1 h/2 1

 Tap 3 1 w/2 1 h h/2+1 1

 Tap 4 w/2+1 w 1 h h/2+1 1

8X-1Y Tap 1 1 w/8 1 1 h 1

 Tap 2 w/8+1 1/4 w 1 1 h 1

 Tap 3 1/4 w
+1

3/8 w 1 1 h 1

 Tap 4 3/8 w
+1

1/2 w 1 1 h 1

 Tap 5 1/2 w
+1

5/8 w 1 1 h 1

 Tap 6 5/8 w
+1

3/4 w 1 1 h 1

 Tap 7 3/4 w
+1

7/8 w 1 1 h 1

 Tap 8 7/8 w
+1

w 1 1 h 1

10X-1Y Tap 1 1 w/10 1 1 h 1

 Tap 2 w/10+11/5 w 1 1 h 1

Processing Examples 518

VisualApplets User Documentation Release 3

Tap
Geometry

X
Start

X End X Step Y Start Y End Y Step

 Tap 3 1/5 w
+1

3/10 w 1 1 h 1

 Tap 4 3/10 w
+1

2/5 w 1 1 h 1

 Tap 5 2/5 w
+1

1/2 w 1 1 h 1

 Tap 6 1/2 w
+1

3/5 w 1 1 h 1

 Tap 7 3/5 w
+1

7/10 w 1 1 h 1

 Tap 8 7/10 w
+1

4/5 1 1 h 1

 Tap 9 4/5 w
+1

9/10 1 1 h 1

 Tap 10 9/10 w
+1

w 1 1 h 1

Table 12.8. Examples of tap geometries

12.9.9.2. Implementation in VisualApplets

The sorting of the tap geometry modi described above is implemented in seven seperate Visual
Applets designs. The designs can be used as part of image processing designs. For the simulation
and test of the tap geometry sorting you find example images under \examples\Processing\Geometry
\TapGeometrySorting\TestImages. The implementation algorithm differs from design to design to find
the best balance between complexity and resource efficiency of the implementation. The simplest way
to realize tap geometry sorting in horizontal direction is realized in the designs "TapSorting_2X_1Y.va"
and "TapSorting_2XE_1Y.va". You can see the basic design structure of "TapSorting_2XE_1Y.va" in Fig.
12.109.

Figure 12.109. Basic design structure for "TapSorting_2XE_1Y.va"

The pixels of the two taps "2X" in horizontal direction coming from a grayscale camera in Camera
Link base configuration are split in two branches. The pixels of tap 2 are mirrored in horizontal
direction in the HierachicalBox MirroredLine using operator LineMemory. The pixels of the two

Processing Examples 519

VisualApplets User Documentation Release 3

taps are then inserted line by line to a new image. Two sequential lines are then combined to one
bigger line. This image is the output image with the correct tap geometry: The pixels of tap 1 are
in the left half of the result image, whereas the pixels of tap 2 are in the right half in reverse
order due to mirroring. The design structure and algorithm of "TapSorting_2X_1Y.va" is analog to
the one of "TapSorting_2XE_1Y.va" but without the mirroring of the pixels of tap 2. The designs
"TapSorting_1X_2Y.va", "TapSorting_2X_2Y.va" and "TapSorting_2X_2YE.va" have one or two taps in
horizontal ("1X" or "2X") and two taps in vertical direction ("2Y" and "2YE") . The most efficient
way of tap sorting is here using operator FrameBufferRandomRead. You can see the basic design
structure of "TapSorting_2X_2Y.va" in Fig. 12.110. The design structures of "TapSorting_1X_2Y.va"
and "TapSorting_2X_2YE.va" are equivalent.

Figure 12.110. Basic design structure of "TapSorting_2X_2Y.va"

The pixels transferred from a camera in camera link base configuration are rearranged in their order
in the HierarchicalBox Resort. Here four pixels of the same tap are merged to one pixel. Tap 1 to
Tap 2 ("TapSorting_1X_2Y.va") or to Tap 4 ("TapSorting_2X_2Y.va" and "TapSorting_2X_2YE.va") are
merged in parallel. Via the operator FrameBufferRandomRead with subsequent reinterpretation
of the pixel depth (operator CastParallel) the pixels of the camera taps are positioned correctly in
the result image. The correct address input for FrameBufferRandomRead is implemented in box
Address. Here the designs differ in detail in dependence on the tap geometry used but follow the same
principle. In Fig. 12.111 you can see the address generation for the design "TapSorting_2X_2Y.va".

Figure 12.111. Content of the HierarchicalBox Address in "TapSorting_2X_2Y.va"

With operators CoordinateX, CoordinateY, ModuloCount and IS_GreaterThan the corresponding
positions in the input image for each pixel in the output image are evaluated.

For the sorting of the tap geometry of "8X-1Y" and "10X-1Y" in the designs "TapSorting_8X_1Y.va"
and "TapSorting_10X_1Y.va" operator LineMemory is used. You can see the basic design structure of
"TapSorting_8X_1Y.va" in Fig. 12.112. The design structure of "TapSorting_10X_1Y.va" is equivalent.

Processing Examples 520

VisualApplets User Documentation Release 3

Figure 12.112. Basic design structure of "TapSorting_8X_1Y.va"

The pixels of the eight or ten horizontal taps are rearranged in the HierarchicalBox Resort. Eight
pixels of the same tap each are merged to one pixel with bit depth 64 bit. The eight or ten taps are
merged in parallel. The correct address in the input image for each output pixel is then calculated in
the HierachicalBox Sorting8X1Y (see Fig. 12.113).

Figure 12.113. Content of the HierarchicalBox Sorting_8X_1Y

You can see the the address generation of box Address in Fig. 12.114.

Figure 12.114. Content of the HierarchicalBox Address in "TapSorting_8X_1Y.va"

12.10. High Dynamic Range and Image Composition

In this section two example algorithms for the creation of a High Dynamic Range image from a sequence
of three Standard Dynamic Range (HDR) images with different exposure times are described. One
algorithm is a linear approach and the second an algorithm developed by Debevec et. al. [Deb97]. In

Processing Examples 521

VisualApplets User Documentation Release 3

addition the tone mapping algorithms for the output of the HDR image on a PC display are described
and implemented in the examples. In this section also the example design "ExposureFusion.va" for
the image composition according to the method of exposure fusion is introduced. It can be seen as
simpler and less resource alternative to High Dynamic Range imaging.

12.10.1. High Dynamic Range and Low Dynamic Range Example Using
Camera Response Function

Brief Description
Files: \examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_CRC_Bayer.va
\examples\Processing\HDR_ImageComposition
\HighDynamicRange\HDR_CRC_Color.va
\examples\Processing\HDR_ImageComposition
\HighDynamicRange\HDR_CRC_Gray.va

Default Platform: mE5-MA-VCL

Short Description

HDR Algorithm According to Debevec and Malik
and LDR Algorithm according to Reinhard et al.
and Fattal et al..

High Dynamic Range (HDR) images reproduce a high range of luminosity. So both very dark and very
bright details are combined in one image. With most photography techniques it is not possible to
achieve this high range of luminosity with one single exposure time. So a HDR image is created from
images with different exposure times. The HDR image can not be displayed directly on most displays.
So a scaled reduction in brightness contrast to a Low Dynamic Range (LDR) image is necessary for
displaying the HDR image. This procedure is also called tone mapping. In this VisualApplet example an
HDR algorithm according to Debevec and Malik [Deb97] is implemented. The LDR algorithm is according
to Reinhard [Rei02] and Fattal [Fat02]. In the following both algorithms will shortly be explained.

12.10.1.1. High Dynamic Range Imaging

The pixel value Zx;y in an image i with pixel coordinates x and y can be expressed as a function of the
irradiance value Exy and exposure time dti:

Zxy;i = f(Exy ¢ dti) : (12.32)

When we define g = lnf¡1 it follows:

g(Zxy;i) = ln(Exy) + ln(dti) ; (12.33)

where we call g(Zxy; i) the response curve. It relates the pixel value Zxy;i for exposure time dti to the
scene irradiance Exy. Exy is assumed to be constant for every pixel. Knowing dti and Zxy;i, g(Zxy; i) can
be calculated with singular value decomposition method [Deb97]. An HDR image can now be created
using the following expression [Deb97]:

ln(Exy) =

PP
i=1 w(Zxy;i) ¢ [g(Zxy;i)¡ ln(dti)]PP

i=1 w(Zxy;i) ;
(12.34)

where ln(Exy) are the logarithmic irradiance values (base e) on pixel x,y in the resulting HDR image.
For color images Exy are the red, green and blue values (RHDR, GHDR and BHDR). That is, Equation
12.34 has to be separately calculated for red, green and blue values. P is the number of exposures.
In Equation 12.34 w(Zxy;i) is a weighting function:

Processing Examples 522

VisualApplets User Documentation Release 3

w(Zxy;i) =

8>><>>:
Zxy;i¡ Zmin for z ·

1

2
(Zmin+ Zmax)

Zmax¡ Zxy;i for z >
1

2
(Zmin+ Zmax)

: (12.35)

12.10.1.2. Low Dynamic Range Imaging

12.10.1.2.1. Bayer and Color Images

To display the HDR image a reduction in brightness contrast is necessary. According to Reinhard et al.
[Rei02] the LDR luminance LLDR can be calculated as:

LLDR =
Ls

1 + Ls
: (12.36)

Here Ls is the scaled HDR luminance:

Ls = a ¢ Lw

¹Lw
: (12.37)

The parameter a adjusts the brightness of displayed LDR image. Typical values are between 0.09 and
0.72 [Rei02]. The so called relative "world" luminance Lw is calculated from HDR colors: RHDR, GHDR

and BHDR:

Lw = 0:2125 ¢RHDR+ 0:7154 ¢GHDR+ 0:0721 ¢BHDR : (12.38)

The mean value ¹Lw is in this example calculated as

¹Lw =
1

N

NX
1

Lw : (12.39)

According to Fattal et al. [Fat02] the LDR color components RLDR, GLDR and BLDR can now be
reconstructed as

RLDR=GLDR=BLDR =

µ
RHDR=GHDR=BHDR

Lw

¶0:5
¢ LLDR : (12.40)

12.10.1.2.2. Grayscale Images

The LDR image values GrayLDR for grayscale images for output on display can be calculated as:

GrayLDR =

p
Ex;yp

Ex;y + C
: (12.41)

Here Ex;y is a result of HDR processing according to Equation 12.34. C is a parameter constant which
can be used for adaption of brightness in the output image.

12.10.1.3. VisualApplets Design

The HDR/LDR algorithm for filming scenes with very wide luminosity scale with very dark and
very bright objects is implemented in VisualApplets for grayscale ("HDR_CRC_Gray.va"), Bayer

Processing Examples 523

VisualApplets User Documentation Release 3

("HDR_CRC_Bayer.va") and color ("HDR_CRC_Color.va") camera images. An image is transferred
to PC in which every object of the scene is displayed properly. The basic structure of the design
"HDR_CRC_Bayer.va" is shown in Fig. 12.115. All examples follow the same principle. For a Bayer
pattern raw image the red, green and blue values for every image pixel are calculated in the
HierarchicalBox Bayer with a Bayer5x5Linear operator. This box is only content of the example
"HDR_CRC_Bayer.va". In the box ImageSequence a sequence of three images is buffered. The three
images should have three different exposure times for HDR-LDR processing. The exposure times should
be chosen that way that every image pixel is at least in one image of the exposure sequence neither
under nor over exposed. You can set these times with the operators SignalWidth width1 to width3
in the HierarchicalBox Trigger (see Fig. 12.116). Please note that the time scale is system clock ticks
of 8 ns. The operator Generate-Period has to be set at least to a value greater than the longest
time of the operators SignalWidth width1 to width3. Please read in addition the minimum period
length for operator Generate-Period in your camera manual. The three images are combined using
the HDR algorithm according to Debevec and Malik [Deb97] described above. It is implemented in the
HierarchicalBox HDR (Fig. 12.115). For the grayscale, Bayer and color images the implementation is
equivalent. The LDR algorithm is implemented in LDR. The implementation for color/Bayer images and
grayscale images is different (see sections 12.10.1.2.1 and 12.10.1.2.2). The colors of the resulting
RGB image are merged in the HierarchicalBox OutputToPC. This box does not exist in the example
"HDR_CRC_Gray.va". The operator SourceSelector gives the opportunity to select the DMA transport
of either the processed HDR-LDR image or the (Bayer demosaiced) camera image.

Figure 12.115. Basic design structure

Processing Examples 524

VisualApplets User Documentation Release 3

Figure 12.116. Content of box Trigger

In Fig. 12.117 you can see the content of the HierarchicalBox HDR. For the three images of the buffered
image sequence the summands of the nominator w(Zxy;i) ¢ [g(Zxy;i)¡ ln(dti)] and denominator w(Zxy;i) of
Equation 12.34 are calculated for images one to three (HierarchicalBox Image1 to Image3) for the
colors red, green and blue separately.

Processing Examples 525

VisualApplets User Documentation Release 3

Figure 12.117. Content of box HDR

In Fig. 12.118 you can see this calculation for the color red for image 1 (in the HierarchicalBox Red in
the box Image1) as an example. All colors for all images are processed the same way. The logarithmic
values of the camera response curve (CRC) are assigned to the (red/green/blue) pixel values with a
lookup table in the HierarchicalBox over127 if pixel value is higher than 127 or in box underequal127
if the pixel value is less equal than 127. The content of these lookup tables gO127 and g_ueq_127
for the colors red, green and blue can be calculated with the Matlab program modules "HDR_CRC.m",
"sample.m" and "gsolve.m" (under \examples\Processing\Advanced\HighDynamicRange\), which are
based on the code of Debevec and Malik [Deb97] and partially on the example of M. Eitz [Eit07].
Please read the short manual in "HDR_CRC.m" for further instructions how to use the code. With the
CONST operator LNdt1 (and analog LNdt2 and LNdt3 for images 2 and 3) the logarithmic (base: e)
value of the exposure time can be set. Please note, that this value has to be multiplied by 216 because
of 16 fractional bits. The corresponding time base can be chosen by the parameter LNTimeBase.
Values of ln(1) ¢ 216(= 0 !), ln(1000) ¢ 216 or ln(1000000) ¢ 216 set the time scale to seconds, milliseconds or
microseconds. In the lookup table weight in Fig. 12.118 the weighting function of Equation 12.35
is implemented. With the Matlab program modules "HDR_CRC.m", "sample.m" and "Weight.m" the
weighting table "Weights.txt" can be created. Please read also the short manual in "HDR_CRC.m" (or
"HDR_CRC_Gray.m" for grayscale images) for further instructions. Final outputs of the HierarchicalBox
Red (and analog Green and Blue) in box Image1 (and analog Image2 and Image3) are then
w(Zxy;i) ¢ [g(Zxy;i)¡ ln(dti)] and w(Zxy;i).

Processing Examples 526

VisualApplets User Documentation Release 3

Figure 12.118. Content of component Red in Image1

Coming back to Fig. 12.117 as content of box HDR. The calculation of the logarithmic values of
the HDR color components ln(RedHDR), ln(GreenHDR) and ln(BlueHDR) according to Equation 12.34 is
performed in the boxes Red, Green and Blue. A summation over all components of nominator
w(Zxy;i) ¢ [g(Zxy;i)¡ ln(dti)] and denominator w(Zxy;i) values and final division is implemented here (see
color red in Fig. 12.119 for example).

Figure 12.119. Content of box Red under HDR

The box Lw in Fig. 12.117 contains the calculation of the HDR color values RedHDR, GreenHDR and
BlueHDR from their logarithmic values. The exponential function is implemented with lookup tables.
The relative "world" luminance "Lw" is then calculated from the HDR color components according to
Equation 12.38. Its mean value according to Equation 12.39 is calculated in box Lw_d in the module
LDR (see basic design structure Fig. 12.115). The whole content of LDR is shown in Fig. 12.120.

Processing Examples 527

VisualApplets User Documentation Release 3

Figure 12.120. Content of box LDR in the designs "HDR_CRC_Bayer.va" and "HDR_CRC_Color.va"

The module Ls contains the calculation of the scaled luminance according to Equation 12.37 as
division of relative "world" luminance and its mean value multiplied by a "brightness parameter" a. By
changing this parameter value you can change the brightness of the final processed image. You can find
appropriate values for this parameter in the comment box in the VA design or in case of deeper interest
in [Rei02]. LDR_Luminance calculates the LDR luminance according to Equation 12.36. This value
is finally multiplied with the outputs of the HierarchicalBox HDRColor (RedHDR=Lw)

0:5, (GreenHDR=Lw)
0:5

and (BlueHDR=Lw)
0:5 for color components red, green and blue separately. The results are then the

LDR color components red, green and blue [Fat02] of the processed output image. The content of
HierarchicalBox LDR for grayscale images is shown in Fig. 12.121.

Figure 12.121. Content of box LDR in the design "HDR_CRC_Gray.va"

In the HierarchicalBox Exp_Ln Ex;y is calculated from its logarithmic value Ex;y as result of HDR
processing (Equation 12.34). In the box SQRT the square root is extracted according to the algorithm
in section 12.10.1.2.2. The result is divided by itself plus 1 ¢ 2n. The value of n and with it the brightness
of the output image can be set with the operator ShiftLeft_Brightness.

12.10.2. High Dynamic Range and Low Dynamic Range Example with a
Weighted Linear Ansatz

Processing Examples 528

VisualApplets User Documentation Release 3

Brief Description
Files: \examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_linearW_Bayer_3_Base.va
\examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_linearW_Color_3_Base.va
\examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_linearW_Gray_3_Base.va
\examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_linearW_Bayer_3_Full.va
\examples\Processing
\HDR_ImageComposition\HighDynamicRange
\HDR_linearW_Color_3_Full.va

Default Platform: mE5-MA-VCL

Short Description

Weighted Linear HDR Algorithm and LDR
Algorithm according to Reinhard et al. and Fattal
et al..

This High Dynamic Range (HDR) and Low Dynamic Range (LDR) VisualApplets (VA) design is similar to
the one described in Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using
Camera Response Function'. The difference is the HDR algorithm. This will be described in the following
subsection. There exist several variations of this example: They are designed for a marathon VCL board
in base and full configuration for a RGB, a Bayer pattern or a grayscale camera.

12.10.2.1. High Dynamic Range Imaging With Weighted Linear Ansatz

The exposure X can be written as inverse function of Equation 12.32

X = f¡1(Zxy;i) = Exy ¢ dti : (12.42)

If you can suppose the exposure to be a linear function you can construct the HDR color components
with:

RHDR=GHDR=BHDR =

PP
i=1 w(Zxy;i) ¢ [Zxy;i=dti]PP

i=1 w(Zxy;i)
(12.43)

instead of with Equation 12.34. Here w(Zxy;i) is analog to Equation 12.35 a weighting function with
which under and over exposed pixel values are less emphasized. The LDR components in this example
are calculated analog to the LDR algorithms in 12.10.1.2.1 and 12.10.1.2.2.

12.10.2.2. VisualApplets Design

The example is suitable for filming scenes with very wide luminosity scale with very dark and very bright
objects. An image is transferred to PC in which every object of the scene is displayed properly. The basic
structure of the design is shown in Fig. 12.122 (here for a Bayer pattern camera in base configuration).
The red, green and blue values for every image pixel are calculated in the HierarchicalBox Bayer with
a Bayer5x5Linear operator. In the box ImageSequence a sequence of three images is buffered.
The three images should have three different exposure times for HDR-LDR processing. The exposure
times should be chosen that way that every image pixel is at least in one image of the exposure
sequence neither under nor over exposed. You can set these times with the operators SignalWidth
width1 to width3 in the HierarchicalBox Trigger (see Fig. 12.116). Please note that the time scale
is system clock ticks of 8 ns. The operator Generate-Period has to be set at least to a value greater

Processing Examples 529

VisualApplets User Documentation Release 3

than the longest time of the operators SignalWidth width1 to width3. Please read in addition the
minimum period length for operator Generate-Period in your camera manual. The three images are
combined using the weighted linear HDR algorithm described in Equation 12.43. It is implemented in
the HierarchicalBox HDR (Fig. 12.122). The LDR algorithm according to Reinhard et al. [Rei02] and
Fattal et al.[Fat02] is implemented in LDR. The colors of the resulting RGB image are merged in the
HierarchicalBox OutputToPC. In the design "HDR_linearW_Gray_3_Base.va" this box does not exist.
The operator SourceSelector gives the opportunity to select the DMA transport of either the processed
HDR-LDR image or the (Bayer demosaiced) camera image. Since the design structure and calculations
are analog to the ones of the example in section 12.10.1 we will just concentrate on the explanation of
the content of HDR in the following. But please note that in some details like fractional bits the designs
might also differ. You find the corresponding hints in the comment boxes in the examples.

Figure 12.122. Basic design structure

In Fig. 12.123 you can see the content of the HierarchicalBox HDR. For the three images of the buffered
image sequence the summands of the nominator w(Zxy;i) ¢ [Zxy;i=dti] and denominator w(Zxy;i) of Equation
12.43 are calculated for images one to three (HierarchicalBox Image1 to Image3) for the colors red,
green and blue separately. For grayscale images in the design "HDR_linearW_Gray_3_Base.va" the
calculation is done for the grayscale component only .

Processing Examples 530

VisualApplets User Documentation Release 3

Figure 12.123. Content of box HDR

The calculation of these summands is shown in Fig. 12.124 for color red in Image1 as example.
The calculation for the colors green and blue and images 2 and 3 are analog. The pixel value
in Fig. 12.124 is divided by the exposure time which can be set by the value of the parameter
Const_dt1 (or analog Const_dt2 and Const_dt3). The time base can be seconds, milli- or
microseconds and can be set by the parameter TimeBase in the boxes Red, Green and Blue
in the box HDR (see Fig. 12.123 and Fig. 12.125). The result of Zxy;i=dti is multiplied with a
weighting function implemented as lookup table LUT_weight. The table "WeightsLinear.txt" can be
created using the Matlab program modules "WeightLinear.m", "sample.m" (or "sample_gray.m" for
grayscale images) and "HDR_CRC_m" (or "HDR_CRC_Gray.m" for grayscale images) (under \examples
\Processing\Advanced\HighDynamicRange\). Please read also the short manual in "HDR_CRC.m" (or
"HDR_CRC_Gray.m" for grayscale images) for further instructions. The outputs of the component
shown in Fig. 12.124 are then the summands of Equation 12.43: w(Zxy;i) ¢ [Zxy;i=dti] and w(Zxy;i).

Figure 12.124. Content of Red in box Image1

Processing Examples 531

VisualApplets User Documentation Release 3

Figure 12.125. Content of Red in box HDR

These summands are summed up and divided according to Equation 12.43 in the HierarchicalBoxes
Red, Green and Blue. See for example box Red in Fig. 12.125.

The calculation of the luminance Lw in the module Luminance, of the scaled luminance Ls, of the LDR
luminance LLDR and the final calculation of the LDR color components RLDR, GLDR and BLDR or GrayLDR

is analog to the implementation in section Section 12.10.1, 'High Dynamic Range and Low Dynamic
Range Example Using Camera Response Function'. Please refer for further reading the corresponding
parts in section 12.10.1 or the comment boxes in the VA design.

12.10.3. Image Composition Using Exposure Fusion

Brief Description
Files: \examples\Processing
\HDR_ImageComposition\ExposureFusion
\ExposureFusion.va

Default Platform: mE5-MA-VCL

Short Description

An image composition from up to 16 images with
different exposure times to one image showing
details and contrasts over complete image
without over- and under exposed pixels. This
example is a simple alternative to High Dynamic
Range Imaging.

Exposure fusion combines images with different exposure times to one image. In this resulting image
under- and over exposed pixels are prevented and details are fully conserved. The aim of exposure
fusion is similar to High Dynamic Range Imaging (see section 12.10.1 and 12.10.2), but in contrast to
this method, the dynamic range of luminosity of the acquired images is not extended. Exposure fusion
simply takes the best parts of the images of the sequence and combines them in one result image.
Exposure fusion is easier to handle for the user, as he does not need to know the exposure times of
the images acquired. The quality of the resulting image is slightly worse than with the algorithms of
HDRI. In the following the exposure fusion algorithm, which is implemented in "ExposureFusion.va"
is introduced.

Processing Examples 532

VisualApplets User Documentation Release 3

12.10.3.1. Theory of Exposure Fusion

The exposure fusion algorithm according to [Mer07] combines images of a sequence with length N
with a weighted blending to a result image R(x;y):

R(x;y) =

NX
k=1

Ŵk(x;y) ¢ Ik(x;y)_ (12.44)

Here Ŵk(x;y) is the weighting for each color component red, green and blue I(x;y) of a pixel at position
x;y in the k-th image of the sequence with

Ŵk(x;y) =
3 ¢Wk(x;y)PN

k

P
red;green;blue Wk(x;y)

:

(12.45)

Wk(x;y) is a weighting function, which is dependent on the pixel value at position x;y and is a measure
for the well-exposedness of this pixel. In "ExposureFusion.va" Wk(x;y) is a linear function up to the
pixel value of 127. For pixel values from 128 to 255, Wk(x;y) is set to 127. In dependence on his
requirements the user easily can change this weighting function, as described in section 12.10.3.2 e.g.
according to [Mer07]. Quality measures like contrast or saturation (see [Mer07]) are not implemented
in this reference design. In eq. 12.45 the sum over the color components red, green and blue in the
denominator prevents, that a pixel R(x;y) in the result image looses the color information of the original
images.

12.10.3.2. Implementation in VisualApplets

In Fig. 12.126 the basic design structure of "ExposureFusion.va" is shown.

Figure 12.126. Basic design structure of "ExposureFusion.va"

The images of a sequence from an rgb camera in Camera link base configuration are combined to
one result image according to the algorithm in eq. 12.44 in the HierachicalBox ExposureFusion. For
simulation purpose please load up to 16 images of maximum dimensions of 1024x1024 pixels to the
simulation source TestImages. The order of the images with respect to their exposure times is not
of importance! With "right-mouse-click" on box ExposureFusion you can set the image sequence
length and the image dimensions of the input images. The maximum number of images is 16 and the

Processing Examples 533

VisualApplets User Documentation Release 3

maximum image dimensions are 1024x1024 pixels. The output image is sent via DMA to PC. In Fig.
12.127 the content of the HierarchicalBox ExposureFusion is shown.

Figure 12.127. Content of HierarchicalBox ExposureFusion

In the box ImageSequence the images from the sequence are combined to one large image. The
pixels at position x;y from the images are positioned as neighbors. In the box ImageComposition
the exposure fusion algorithm according to eq. 12.44 is implemented. You can see its content in Fig.
12.128.

Figure 12.128. Content of HierarchicalBox ImageComposition

In box Weight the weighting function Wk(x;y) (see. eq. 12.45) in dependence of the pixel value is
implemented for each color component. You can see the content of box Weight in Fig. 12.129.

Processing Examples 534

VisualApplets User Documentation Release 3

Figure 12.129. Content of HierarchicalBox Weight

The weighting functions for each color component from boxes Red, Green and Blue are summed up,
according to eq. 12.45. In Fig. 12.130 you can see the weighting function Wk(x;y) for the color red.

Figure 12.130. Content of HierarchicalBox Red in box Weight

Up to a pixel value of 127 the function is linear. From pixels values 128 to 255, Wk(x;y) is set to 127.
The lookup table operator LUT_Weights allows the user to adapt the weighting function easily to his
requirements. Also changing the parameters for the ClipHigh and CastBitWidth operators (or even
deleting them) gives the user this possibility. Coming back to the content of box ImageComposition.
Here according to eq.12.44 the pixel values I(x;y) for the color components red, green and blue are
multiplied with the weighting function Wk(x;y) and with a constant Const of value 3 in the boxes Red,
Green and Blue. You can see the content of box Red in Fig. 12.131.

Processing Examples 535

VisualApplets User Documentation Release 3

Figure 12.131. Content of HierarchicalBox Red in box ImageComposition

Here
X

red;green;blue

Wk(x;y) is summed up for all images. 3 ¢ Ik(x;y) ¢Wk(x;y) is then divided by

NX
k

X
red;green;blue

Wk(x;y) according to eq. 12.45. Finally the color components are merged together (see

Fig. 12.128) and the output image is sent to PC. In Fig. 12.132 you can see 5 example input images
with the result image in Fig. 12.133. The result image has no under- and over exposed pixels and
details are conserved.

Figure 12.132. Example input images with different exposure times

Processing Examples 536

VisualApplets User Documentation Release 3

Figure 12.133. Result image of the 5 example input images after exposure fusion

12.11. Lookup Tables

The VisualApplets examples in the following subsections introduce the usage of the lookup-table
operators LUT and KneeLUT. Four examples are provided for different input bit depths for a grayscale
image and also one example for using a LUT for a RGB image.

12.11.1. Lookup Table 8 Bit

Brief Description
File: \examples\Processing\LookupTable
\LUT_BaseAreaGray8\LUT_BaseAreaGray8.va

Default Platform: mE5-MA-VCL

Short Description

Shows the use of a 8 Bit to 8 Bit lookup table.

12.11.2. Lookup Table 10 to 16 Bit

Processing Examples 537

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\LookupTable
\LUT_BaseAreaGray10to16\LUT_BaseAreaGray10to16.va

Default Platform: mE5-MA-VCL

Short Description

Shows the use of a lookup table with 10 bit input
and 16 bit output.

12.11.3. Knee-Lookup Table 16 Bit

Brief Description
File: \examples\Processing\LookupTable
\LUT_BaseAreaGray16\LUT_BaseAreaGray16.va

Default Platform: mE5-MA-VCL

Short Description

Shows the use of a lookup table for 16 Bit input
and output data. For 16 bit a Knee LUT has to be
used due to the limited block RAM resources.

12.11.4. Knee-Lookup Table 24 Bit Color

Brief Description
File: \examples\Processing\LookupTable
\LUT_BaseAreaRGB24\LUT_BaseAreaRGB24.va

Default Platform: mE5-MA-VCL

Short Description

In this example three lookup tables are used for
RGB color correction.

12.12. Loop

This section contains two examples using loops. One calculates a rolling average, the second restores
the three dimensional information of an object from a sequence of partially focused 2 D images and
creates a completely focused image.

12.12.1. A rolling average is applied on a dynamic number of images

Processing Examples 538

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Loop\RollingAverage
\rollingAverage_Loop.va

Default Platform: mE5-MA-VCL

Short Description

Implementation of a rolling average on a running
image stream without introducing a frame delay.
The average value of the last N monochrome
images is calculated and used to visualize the
resulting difference to the current one in color.
The number of images being used for building
the average value is set to 128, but can be
modified.

This design will show how a rolling average will work. But the central element is a loop that will enable
much more applications and machine vision operations. In order to understand how a loop works and
how it can become implemented, this example is a perfect starting point.

12.12.1.1. Algorithm

A mean value for each single pixel is calculated and normalized to the incoming value range of 8 bit. For
this each received frame is summed up with its predecessors and divided by the number of received
frames. If the length of the rolling average sequence is reached the sum is reduced by the stored and
delayed frame. By this an output image is already generated starting from the first image.

In the design two conditions define the length of the rolling average sequence. Both values are called
N_rolling and need to be set to the same value. One is handling the delay store process of substraction
images, the other the pixel value normalization.

12.12.1.2. Used Loop

The operators RxImageLink and TxImageLink are used to enable a loop handling. The not normalized
average sum of the incoming image sequence is handled in one loop. A second loop handling is
required for storing the incoming frames for the later substraction of it values. Each loop needs to be
synchronous to the incoming camera frames. This induces a SYNC operator where a start condition
needs to be met. The start condition itself is handled by InsertImage where the first run introduces a
single minimum frame. The used SYNC maximizes the frame dimensions to the needed value.

Since the average handling needs a certain number of frames being stored the ImageBufferMultiRoiDyn
operator is used. The first images are simply stored beside the synchronization purposes are met by
minimum frames being generated.

Using the VA simulation will help to understand how this works around SYNC in detail. In general a
sequence of artificial minimum frames do the synchronization.

12.12.1.3. Visualization

Two different ways of visualization are implemented. The first will generate a 24 bit RGB image where :

• Plane - Content

• RED - current image

• GREEN - average image

• BLUE - difference image

Processing Examples 539

VisualApplets User Documentation Release 3

The second approach is based on a HSL color space that in later converted into 24bit RGB :

• Plane - Content

• HUE / color angle - difference image, where minimum is green

• SATURATION - set to maximum

• LIGHTNESS - current image

The second approach is switched on by EffectEnable = 1. A dynamic gain factor can be used for
difference scaling to all Hue color angles.

12.12.1.4. VisualApplets Design

The example "rollingAverage_Loop.va" is designed for a monochrome CameraLink camera in base
configuration with a resolution of 1024x1024 at 8bit per pixel.

12.12.1.5. Simulation Data

The example "rollingAverage_Loop.va" folder %VASINSTALLDIR%\examples\Processing\Advanced
\RollingAverage\street_sequence*.jpg includes a useful series of images for simulation. A lossy
compression format was used in order to reduce amount of data.

12.12.2. Depth From Focus Using Loops

Brief Description
Files: \examples\Processing\Loop
\DepthFromFocus\DepthFromFocus.va
\examples\Processing\Loop\DepthFromFocus
\DepthFromFocus_NoiseReduction.va

Default Platform: mE5-MA-VCL

Short Description

Calculation of a focused image, a index depth
map and the image contrast from an image
sequence using loops.

The VisualApplets design "DepthFromFocus.va" calculates a completely focused image from a sequence
of partially defocused images. The design "DepthFromFocus_NoiseReduction.va" gives in addition the
possibility to reduce noise in the focused image. For every image of the sequence the focal setting
of the camera, the image plane position or the object position (in axial direction) is changed. When
doing so, a part of the object observed should always be in focus, whereas all other parts of the image
are defocused. In addition in this design the highest local contrast of the image sequence is calculated
with the corresponding image index map. This map gives information on the image from which the
current pixel in the focused output image is taken. This provides the possibility to calculate the shape
of the object observed. The focused image, the image index map and the contrast are sent to PC as
red, green and blue color values. The design is implemented for a grayscale camera in CameraLink
Base configuration for a marathonVCL board.

12.12.2.1. Theoretical Background

To calculate a completely focused image out of a sequence of partially defocused images, the local
contrast for every single image is calculated. This contrast is determined with a high-pass filter:

Processing Examples 540

VisualApplets User Documentation Release 3

hp =

2641 1 1 1 1
1 1 1 1 1
1 1 ¡24 1 1
1 1 1 1 1

375 (12.46)

Is the local contrast in the current image higher than the local contrast in the previous image at this
position, the pixel value from the current image is used. Otherwise the pixel value from the previous
image is used. This procedure is repeated for the complete sequence of images. For every pixel in
the completely focused image the index of the corresponding image with the highest local contrast is
saved. This information gives the user the possibility (e.g for a thin lens, if the focal length and the
image distance is known) to restore the shape of the object observed.

12.12.2.2. Implementation in Visual Applets

In Fig. 12.134 the basic design structure is shown. For a sequence of partially defocused images from
a grayscale camera a completely focused image, the local contrast and an index map of the images
with the highest local contrast are sent as RGB color components via DmaToPC to PC. The calculation
is performed in the HierarchicalBox DepthFromFocus.

Figure 12.134. Basic design structure

In Fig. 12.135 you can see the content of the HierarchicalBox DepthfromFocus.
With the transport parameters IntParamTranslator_TranslateSequenceLength,
IntParamReference_ReferenceImageWidth and
IntParamReference_ReferenceImageHeight you have the possibility to set the image sequence
length, the image width and height in all operators necessary in the box DepthFromFocus. For
this just perform a right mouse click on the box DepthFromFocus, select "properties" and set the
corresponding parameters.

In the HierarchicalBox HighpassFilter the local contrast is calculated using a filter on a 5£ 5 kernel
according to Equation 12.46. The upper output link of this box is the current pixel value. The lower
output link of this box is the current local contrast. The operators RxImageLink_Rx2_LoopContrast/
TxImageLink_Tx2_LoopContrast represent the beginning and end of the loop calculating the
highest local contrast from the sequence of images. As initial condition for the loop when starting
the calculation on an image sequence, a blank image is inserted for synchronization and calculation
reasons in the HierarchicalBox InitAndResetContrast.

Processing Examples 541

VisualApplets User Documentation Release 3

Figure 12.135. Content of HierarchicalBox DepthFromFocus

In the HierarchicalBox CompareContrast the current local contrast is compared to the local contrast
at this position in the previous image of the sequence. Fig. 12.136 shows the content of this box.
If the current local contrast is higher than the one in the previous image, the current local contrast
is forwarded to the lower output link of this HierarchicalBox. In the opposite case the value of the
previous local contrast is forwarded. The upper output link of the box CompareContrast is a index 0
(current contrast is stronger) or 1 (previous contrast is stronger).

Figure 12.136. Content of HierarchicalBox CompareContrast

In the HierarchicalBox SelectDepthIndex (content see Fig. 12.137) in the loop
RxImageLink_Rx1_LoopIndexOfBest/TxImageLink_Tx1_LoopDepthIndex the current image
index (operator ModuloCount_SequenceIndexCount) is selected, if the current image has the
highest local contrast. Otherwise the image index of the previous image is forwarded to the output link
of this box. This procedure is repeated for the complete image sequence. As result the image indices
with the highest local contrasts of the sequence are calculated. The initial condition with an insert of
a blank image is performed in the box InitAndResetDepth.

Processing Examples 542

VisualApplets User Documentation Release 3

Figure 12.137. Content of HierarchicalBox SelectDepthIndex

The completely focused image out of the image sequence is calculated in the loop
RxImageLink_Rx0_LoopPixelValue/ TxImageLink_Tx0_LoopPixelValue with the calculation
performed in the box SelectPixelValue. In Fig. 12.138 its content is shown. The current pixel
value is forwarded to the output of the IF operator if the current local contrast is higher than the
local contrast in the previous image. This procedure is repeated for the complete image sequence.
At the end of the sequence a completely focused image is forwarded to the input of the box
LastImageOfSequenceOnly.

Figure 12.138. Content of HierarchicalBox SelectPixelValue

In Fig. 12.139 the content of this box is shown. The pixel values with the currently highest local
contrasts, the corresponding image depth index and the currently highest local contrast are combined
as RGB color components. Only the last RGB image with the completely focused image, the highest
local contrast and the corresponding image depth index is forwarded to the output of the box and via
DMA transport to PC.

Figure 12.139. Content of HierarchicalBox LastImageOfSequenceOnly

Processing Examples 543

VisualApplets User Documentation Release 3

In the VA design "DepthFromFocus_NoiseReduction" there is the possibility to reduce with an adaptive
Median filter the local noise in the resulting focused image. You find this filter in the HierarchicalBox
AdaptiveMedian. If you have a local noise at the current pixel the local Median is selected. If there
is no local noise at the current position the current pixel value is selected. A local noise is determined
with a lowpass filter and an adaptive threshold IS_GreaterThan_Threshold. With this method it can
be prevented that contrasts of local structures are lost but noise is reduced.

12.13. Object Features

The examples in the following perform calculation of object features such as Histogram of Oriented
Gradients (HOG). Also a print inspection example is provided in this section. In this design an object
is position and orientation corrected and defects are detected.

12.13.1. Histogram of Oriented Gradients (HOG)

Brief Description
File: \examples\Processing
\Geometry\ObjectFeatures\HOG
\HOG_4Bins_HistogramMax.va
\examples\Processing\Geometry\ObjectFeatures
\HOG\HOG_9Bins_HistogramMax.va
\examples\Processing\Geometry\ObjectFeatures
\HOG\HOG_9Bins_Histogram.va

Default Platform: mE5-MA-VCL

Short Description

Calculation of Histogram of Oriented Gradients
(HOG)

The VisualApplets design examples "HOG_4Bins_HistogramMax.va", "HOG_9Bins_HistogramMax.va"
and "HOG_9Bins_Histogram.va"calculate the Histogram of Oriented Gradients (HOG) for a grayscale
image with maximum dimensions of 1024x1024 pixels.The algorithm is mainly based on the publication
of [Dal05]. The HOG is a feature descriptor and can be used for object recognition. In the following
subsections first the theory is described before the applet design is introduced.

12.13.1.1. Theory

The image gradient orientation and magnitude is calculated for each pixel in the image. The gradient
filter kernels sx;sy in x- and y-direction are:

sx = [¡1 0 1] and

sy =

"¡1
0
1

#
:

(12.47)

The gradient magnitude mG and orientation µG is then calculated as:

mG =
q

s2x+ s2y ;

µG = arctan
sy
sx
:

(12.48)

In dependence on their orientation the calculated gradients are then assigned to a certain number of
orientation bins. The vote for the bin is a function of the gradient magnitude. As Dalal and Triggs found

Processing Examples 544

VisualApplets User Documentation Release 3

out, a splitting of the orientation into 9 bins over 180± give the best results when using the HOG features
for human detection methods [Dal05]. In the VA example designs "HOG_9Bins_HistogramMax.va"
and "HOG_9Bins_Histogram.va" we have implemented such binning. In addition in the example
"HOG_4Bins_HistogramMax.va" we perform a splitting into 4 bins over 180±. The assignment or
weighting wBin of a certain orientation £G to a bin (with orientation XBin) is done via interpolation:

wBin =
jj£G¡XBinj ¡ ©Binj

©
if jj£G¡XBinj ¡ ©Binj < ©

else wBin = 0:

(12.49)

Here ©Bin is the size of angle steps between the bins. A single bin column cH of the Histogram of
Oriented Gradients (each for a region of 8x8 pixels) is then calculated as:

cH =

64X
i=1

wBin ¢mG: (12.50)

The histograms for each cell of 8x8 pixels are then grouped in blocks of 2x2 cells size to cover
local variances in luminance or contrast. The blocks have an overlap of 50%. Using the HOG
descriptor for object recognition purposes, block normalization (algorithm see [Dal05]) improves the
performance by a factor of 27 %. Block normalization is omitted in the current design examples. In the
designs "HOG_4Bins_HistogramMax.va" and "HOG_9Bins_HistogramMax.va", the maximum histogram
orientation is forwarded to DMA, whereas in "HOG_9Bins_Histogram.va" the complete Histogram of
Oriented Gradients is sent to PC. The designs introduced in the following can easily be adapted to the
special purpose of the user. That is, a certain amount and step size of the orientation binning or a block
normalization according to [Dal05] can be implemented in addition.

12.13.1.2. Implementation in VisualApplets

In Fig. 12.140 you can see the basic design structure of the VA design for the calculation of the
HOG feature. For a grayscale image from a camera in CameraLink base configuration the Histogram
of Oriented Gradients is calculated in the HierarchicalBox HOG. This histogram is sent to PC via
DMA in the design "HOG_9Bins_Histogram.va". In the VA designs "HOG_4Bins_HistogramMax.va"
and "HOG_9Bins_HistogramMax.va" the maximum component is forwarded to PC. In the following
we explain the design structure of "HOG_4Bins_HistogramMax.va". It is analog for the other two
designs. We explain possible differences in the designs for the corresponding issues. The default
platform is marathon VCL. The design implementations can easily adapted to other platforms or camera
configurations.

Figure 12.140. Basic Design structure of the VA designs
"HOG_9Bins_Histogram.va","HOG_9Bins_HistogramMax.va" and "HOG_4Bins_HistogramMax.va"

You can see the content of the HierarchicalBox HOG in Fig. 12.141.

Processing Examples 545

VisualApplets User Documentation Release 3

Figure 12.141. Content of HierarchicalBiox HOG

For the original input image the gradients in x- and y- direction are calculated in the
HierarchicalBox GradientFilter. The implementation is shown in Fig. 12.47. The operator
FIRkernelNxM generates a 3x3 kernel. The operators FIRoperatorNxM_VerticalEdges and
FIRoperatorNxM_HorizontalEdges select according to eq. 12.47 the gradients in x- and y-direction.

Figure 12.142. Content of HierarchicalBox GradientFilter

For this gradients the magnitude and orientation according to eq. 12.48 is implemented in the box
MagnitudeOrientation (content and structure see Fig. 12.143).Detailed comments in the box help
to understand the implemented formula.

Figure 12.143. Content of HierarchicalBox MagnitudeOrientation

The grouping of the pixels in cells of 8x8 pixels is performed in the HierarchicalBox ExtractBlocks.
The output links of this box forward the gradient magnitude and orientation of the cells in form of lines
of size 64 pixels. This information is input for the calculation of the Histogram of Oriented Gradients,
which is performed in the HierarchicalBox Histogram. You can see its content in Fig. 12.144.

Processing Examples 546

VisualApplets User Documentation Release 3

Figure 12.144. Content of HierarchicalBox Histogram

Here an assignment of the gradient orientations, which can be in a region of 0± to 180±, to four
bins is performed in the box SplitOrientations. The bins are 0±, 45±, 90± and 135±. For the designs
"HOG_9Bins_Histogram.va" and "HOG_9Bins_HistogramMax.va" nine bins (0± to 160± in steps of 20±)
exist. The assignment of the gradient orientation to a certain bin is done the way, that a weight of this
orientation for the bin is calculated. As an example the weighting and therefor assignment to bin 1,
which is 45±, is shown in Fig. 12.145.

Figure 12.145. Content of HierarchicalBox Bin1

Here the weight wBin1 according to eq. 12.49 is calculated for bin 1. The angle distance ©Bin between the
bins is in this example 45± (operator CONST_Phi_45Deg in box Sub45Deg). The angle bin orientation
for bin 1 XBin is also 45± (operator CONST_Chi_45Deg). The weighting factor for each bin is then
multiplied with the gradient magnitudes (see Fig. 12.144). In the boxes HistogramColumn_0 to
HistogramColumn_3 the content of each histogram column (for each bin) according to eq. 12.50
is calculated as the sum of the weighted gradient magnitudes over all image pixels. The Histogram
of Oriented Gradients is then generated with merging the histogram columns with the operator
MergeKernel_Histogram. Only the last pixel of each kernel component is the true value of the
histogram columns, so it is selected in the box LastPixelOnly. To account for local gradient changes
the Histogram of Oriented Gradients for each cell is combined to blocks of size 2x2 cells per block with

Processing Examples 547

VisualApplets User Documentation Release 3

an overlap of 50 % (see theory part of this section). The combination of the cells to blocks is performed
in the box ConcatenateWithNeighbors. See its content in Fig. 12.146.

Figure 12.146. Content of HierarchicalBox ConcatenateWithNeighbors

For each cell (represented by a single pixel) with information about the Histogram of Oriented
Gradients, the histogram columns for each bin are separated with the operator SplitKernel. For
each kernel component the next cell neighbors in x and y- direction are calculated with the
operators PixelNeighbours1xM and LineNeighboursNx1.The operator FIRoperatorNxM sums the
information of the 2x2 cells up. No normalization is performed here. As an alternative implementation
the grouping of the cells to blocks can be omitted by setting the operator Const_Enable to zero. The
maximum of the calculated Histogram of Oriented Gradients is selected in box GetHistogramMax
(see Fig. 12.141). Its content is shown in Fig. 12.147. In the design "HOG_9Bins_Histogram.va" the
selection of the histogram maximum is omitted.

Figure 12.147. Content of HierarchicalBox GetHistogramMax

Finally the maximum of the histogram or the histogram itself is visualized in box Visualize (see Fig
12.141) as red lines. In this box (path: box Draw, EnableOriginal) you have the possibility to visualize

Processing Examples 548

VisualApplets User Documentation Release 3

the original image for a number of frames together with the HOG feature by setting the parameters
ModuloCount_Period (counts frames), Is_InRange (set frame range) and Const_Enable or always
(setting Const_Enable to one). As last step the HOG feature is transferred to PC via the operator
DmaToPC_DMA0. Here the HOG feature can be used as descriptor for object detection in Support
Vector Machines (SVP) or also Convolutional Neural Networks (CNN).

12.13.2. Print Inspection Example- Position Correction and Defect
Detection Using Blob Based Template Matching

Brief Description
Files: \examples\Processing\ObjectFeatures
\PrintInspection\PrintInspection_Blob.va

Default Platform: mE5-MA-VCL

Short Description

Blob based position correction and defect
detection

A position and orientation correction of an object and subsequent defect detection in an image is
performed in the design "PrintInspection_Blob.va". The example is suitable for objects with at least two
imprints, which maybe used as templates. A special imprint should only occur once on the object. In the
example image "TestImage.tif" the letters "K" and "g" are selected as template 1 and 2 with a size of
29x38 pixels. In the comment box on the top layer of the design the single steps to adapt the design to
your example image are described. In the design the position and orientation of an object is determined
with the blob detection based recognition of two templates on the object. From the coordinates of
the two templates the center of gravity of the object is calculated. From the relative position of
template 1 and 2 the rotation angle Phi of the object is calculated. With these informations a geometric
transformation as described under 12.9.3 is performed. The implementation of this transformation
is equivalent to the design example "Geometric Transformation_ImageMoments.va" described under
12.9.3.2.2. Defects on the position and orientation corrected object are found in subtracting a "golden
master" template of the object from the calculated corrected object. What remains are possible defects.
Via blob detection the positions of these defects are determined and attached to the image of the
position and orientation corrected object. The user can choose whether he/she wants to transfer the
image with defects or the image with the position corrected object and the attached defect positions to
PC. In the following the basic design structure and the functionality of the single modules are explained.
In Fig. 12.148 you can see the basic design structure.

Figure 12.148. Basic design structure of the VA design "PrintInspection_Blob.va"

In the HierarchicalBox FindPatterns (see Fig. 12.149) the acquired image (from box
ImageAcquisition) is binarized in the HierarchicalBox Binarization with a simple threshold. When
you change the example image you may adjust this threshold to your image. In the HierarchicalBox

Processing Examples 549

VisualApplets User Documentation Release 3

BlobDetection objects in the binarized image are detected with the operator Blob_Analysis_2D.
Output of this operator are the x and y coordinates and the area of a bounding box around each object
found. In the comment box in the design you find more detailed information on these parameters.
The objects found are then selected in the box BlobSelection with respect to their size and position.
Only the coordinate and size informations for the template relevant objects remain. Please adjust the
parameters IS_InRange for the valid size and position of the objects to your templates (right-mouse-
click on box FindPatterns). The coordinate and size informations are input for the HierarchicalBox
ExtractCandidates. See its content in Fig. 12.150.

Figure 12.149. Content of the HierarchicalBox FindPatterns

Figure 12.150. Content of the HierarchicalBox ExtractCandidates

Here each object (detected with blob analysis) is cut from the original image as region of interest
with the operator ImageBufferMultiROIDyn_CutROIs and is forwarded as single frame. In the
HierarchicalBox DeterminingCOGTemplates (see Fig. 12.151) the template matching and the
subsequent determination of their coordinates in the image is performed.

Processing Examples 550

VisualApplets User Documentation Release 3

Figure 12.151. Content of the HierarchicalBox DetermingCOGTemplates

In the box TemplateMatching (see its content in Fig. 12.152) the matching of the selected objects
with template 1 and 2 (letters "K" and "g" with a size of 29x38 pixels) is performed. In Templates
template 1 and 2 are written as 16 bit values (8 bit for each template) to the lookup table LUT_Values.
The matching of the objects found in the image with template 1 and 2 is the performed as simple
3x3 kernel subtraction in the box Match. In TemplateMatch the kernel component which gives
the best match is selected. Going back to the content of DeterminingCOGTemplates, the best
template match is selected with the operators RowMin_Template1 and RowMin_Template2 and
the corresponding coordinates of template 1 and 2 with the registers Register_COG_Template1,
Register_COG_Template2 and the selection of the last pixel in box SelectLastPixel. The output of
the box DeterminingCOGTemplates are the coordinates of template 1 and 2.

Figure 12.152. Content of the HierarchicalBox TemplateMatching

Going back to the basic design structure we will now have a look in the HierarchicalBox COG_Angle,
in which the coordinates of the center of gravity of the object and its rotation angle is determined from
the coordinates of template 1 and 2. See the content of COG_Angle in Fig. 12.153.

Processing Examples 551

VisualApplets User Documentation Release 3

Figure 12.153. Content of the HierarchicalBox COG_Angle

The rotation angle © of the object is calculated in box RotationAngle according to

© = arctan(
dy

dx
) ; (12.51)

where dx and dy are the differences of the coordinates of template 1 and 2 in x and y direction.

The coordinates of the center of gravity of the object xCOG and yCOG are calculated according to to

xCOG = cos(© + ®+X) ¢ z ;

yCOG = sin(© + ®+X) ¢ z :
(12.52)

Here ® is the angle between the center of gravity of the object, template 1 and template2, X is the angle
between template2, template 1 and a horizontal line, when the object is not rotated and z is the distance
between the center of gravity of the object and template 1. When you change the example image you
have to adapt these values with right-mouse-click on the box COG_Angle under "properties".

With these information about ©, xCOG and yCOG the geometric transformation is performed in box
GeometricTransformation" (see basic design structure in Fig. 12.148) equivalent to the VA example
"GeometricTransformation_ImageMoments.va" described in section 12.9.3.2.2.

Possible defects in the position and orientation corrected image as output of box
GeometricTransformation are found in box FindDefects, where a "golden master" template
of the image is subtracted from the processed image. After elimination of remains (a result
of bilinear interpolation after geometric transformation) the output of the box FindDefects
are the pure defects found on the object. Via blob analysis in box FindDefectPosition with
the operator Blob_Analysis_2D the coordinates of these defects are determined. In the box
AppendDefectPositionsToImage these coordinates are appended to the position and orientation
corrected image. The user can choose whether he/she wants to send the image with pure defects or
the corrected image with defect coordinates via DMA to PC in setting the parameter "SelectSource"
of the operator SourceSelector to 0 or 1.

12.13.3. Print Inspection Example- Position Correction and Defect
Detection Using Image Moments and Blob Based Template Matching

Processing Examples 552

VisualApplets User Documentation Release 3

Brief Description
Files: \examples\Processing
\ObjectFeatures\PrintInspection
\PrintInspection_ImageMoments.va

Default Platform: mE5-MA-VCL

Short Description

Image moments based position correction and
defect detection via blob detection

A position and orientation correction of an object and subsequent defect detection is performed in
the design "PrintInspection_ImageMoments.va". The example is suitable for objects with no imprints.
You can see the basic design structure in Fig. 12.154. The acquired image object is binarized in the
HierarchicalBox Binarization and via image moments (see theory in section 12.9.5) the orientation
and position of the object is determined (content of box ImageMoments). The parameter for the
binarization threshold is suitable for the example image "testImage.tif". If you use your example
image please adapt the binarization threshold. A geometric transformation is performed to correct
position and orientation equivalent to the example "GeometricTransformation_ImageMoments" (see
section 12.9.3.2.2). The detection of defects and their coordinates (in boxes FindDefects and
FindDefectPosition) is equivalent to the defect detection in the print inspection example
"PrintInspection_Blob.va" (see section 12.13.2). The user can choose whether he/she wants to send an
image with the pure defects or the combined image (position and orientation corrected image together
with the defects coordinates as output from box AppendDefectPositionToImage) to PC in setting
the parameter "SelectSource" of the operator SourceSelector to 0 or 1.

Figure 12.154. Basic design structure of the VA design "PrintInspection_ImageMoments.va"

12.13.4. Normalized Cross Correlation

Brief Description
Files: \examples\Processing\ObjectFeatures
\NormalizedCrossCorrelation.va

Default Platform: mE5-MA-VCL

Short Description

A reference object is identified in an image.
The output image is a binary image with " 1" at
object position.

Processing Examples 553

VisualApplets User Documentation Release 3

12.13.4.1. Theory

Template matching based on normalized-cross-correlation (NCC) algorithm uses the minimization of
squared Euclidean distance d2E at position x; y

d2E(x;y) =
X
u;v

(I(x+ u;y+ v)¡R(u;v))2; (12.53)

to find best matching between a reference object R(u;v) (with dimension uxv) and a region I(x+ u;y+ v)
in an image at position x; y. The Euclidean distance is minimized, when the linear cross correlation
coefficient CL(x;y)

CL(x;y) =
X
u;v

I(x+ u;y+ v) ¢R(u;v) (12.54)

between the reference object R(u;v) and image region I(x+ u;y+ v) is maximized. To account for
intensity variations in the image and make the correlation coefficient invariant to pixel intensities,
the correlation between the difference of object R(u;v) to the mean value ¹R(u;v) and image region
I(x+ u;y+ v) to the mean value ¹I(x+ u;y+ v) is calculated. According to [Bur06] the so called
normalized-cross correlation coefficient can then be expressed as:

CL(x;y) =

P
u;v (I(x+ u;y+ v) ¢R(u;v))¡K ¢ ¹I(x;y) ¢ ¹RqP

u;v (I(x+ u;y+ v)2 ¡K ¢ (¹I(x;y)2 ¢ ¾R

(12.55)

with

¾R =

sX
u;v

(R(u;v)2 ¡K ¢ ¹R2 (12.56)

The result of CL(x;y) is between -1 and 1. The higher the accordance between reference image R(u;v)
and image region I(x+ u;y+ v) is, the higher is result of CL(x;y). The position x; y in image I with highest
value of CL(x;y), is the location where the reference object R(u;v) is found.

12.13.4.2. Implementation in VisualApplets

In "NormalizedcrossCorreslation.va" an object is identified in an image using the NCC
algorithm according to eq. 12.55. In Fig. 12.155 you can see the basic design structure of
"NormalizedCrossCorrelation.va".

Processing Examples 554

VisualApplets User Documentation Release 3

Figure 12.155. Basic design structure of "NormalizedCrossCorrelation.va"

In an image I(x;y) from an RGB camera in Camera Link base configuration an image kernel of
12x12 pixels is defined with FIRkernelNxM operator 12x12. The kernel size depends on the object
to be identified. The object is identical to the reference image R(u;v) in eq. 12.55. One color
component (here: red) is selected with operator SelectComponent for identifying an object with
the NCC algorithm according to eq. 12.55 in the HierarchicalBox NCC. As result a binary image with
image size of original input image with value "1" at the identified object position and "0" at any
other position is sent via DMA to PC. The example is configured for the RGB testimage "PCB.tif"
which you find in the VisualApplets installation directory under examples\Processing\ObjectFeatures
\NormalizedCrossCorrelation. This image has dimensions of 1024x712 pixels. In Fig. 12.156 the test
image is shown.

Processing Examples 555

VisualApplets User Documentation Release 3

Figure 12.156. Test image "PCB.tif"

The six small holes on the lower left side of the PCB board are the objects to be identified in this
example. The object dimensions are here 12x12 pixels. In the design in box NCC (see Fig. 12.155) the
algorithm according to eq. 12.55 for locating these objects is implemented. Please see the comment
boxes beside the links and HierarchicalbBoxes for further information on the corresponding equation
part. In Fig. 12.157 you can see the content of HierarchicalBox NCC.

Figure 12.157. Content of HierarchicalBox NCC

You can adapt the design example to your image and objects of choice as explained in the following.
If you want to use grayscale images instead of RGB images just replace operator BaseRgbCamera
with operator BaseGrayCamera and delete operator SelectComponent.

1. Adapt the size of operator FIRkernelNXM_12x12 to the dimensions of the objects you want to
identify in the image.

2. With "right-mouse-click" on HierarchicalBox NCC under "Properties" you can set the number "K"
of pixels of the object to be found. With object size of 12x12, K is 144. Under "Properties" you

Processing Examples 556

VisualApplets User Documentation Release 3

can also adapt the binarization threshold. This threshold is used to visualize the objects position
with "1" in the result image.

3. Adapt the number of kernel columns and rows to the object dimension at the output of CONST
operator One in HierarchicalBox NCC.

4. Load pixel value file of the object to be identified (which is R(u;v)) to FIRoperatorNxM IxR in
HierarchicalBox NCC. You can use program "NCC.m" to create this file ("R.txt").

5. Load the same file to the FIRoperatornxM Rmean_Mult_K in HierarchicalBox Sigma_R in
HierarchicalBox NCC.

6. Load the file "Rpower2.txt" (created with Matlab program "NCC.m") to the FIRoperatorNxM
Sum_R_R in HierarchicalBox Sigma_R. The content of this file are the pixel values of the object
(divided by 2) to the power of two (R=2)2.

In the HierarchicalBox Division (see Fig. 12.157) the final result CL(x;y) of eq. 12.55 is calculated with
the division operation DIV. You can see the content of box Division in Fig. 12.158.

Figure 12.158. Content of HierarchicalBox Division

The division is performed with six fractional bits i.e. the result of CL(x;y) is between -64 and 64
instead of - 1 and 1. To visualize the position of the identified object the result image is binarized with
IS_GreaterEqual operator Threshold. The threshold value is set to 50 in this example. You can vary
this value directly in the operator or as explained above with "right-mouse-click" on box NCC. The
result image which is sent to PC is shown in Fig. 12.159. The pixels at position of the small holes on the
lower left side of the PCB board (see Fig. 12.156) obtain value "1" and all other pixels "0". The result
image is sent via DMA to PC. Instead of this it can also be input for further image processing steps.

Processing Examples 557

VisualApplets User Documentation Release 3

Figure 12.159. result image with "1" at object positions (zoomed view)

12.14. Shading Correction

Find in the following subsections examples on shading correction. We provide examples for shading
correction in one and two dimensions. Also one VisualApplets design demonstrating the fading of one
coordinate grid into the current image is implemented. A dead pixel replacement example is presented
using a median filter.

12.14.1. Dead Pixel Replacement

Brief Description
File: \examples\Processing\Shading
\DeadPixelReplace\DeadPixelReplace.va

Default Platform: mE5-MA-VCL

Short Description

The examples shows an automatic dead pixel
detection and replacement.

Processing Examples 558

VisualApplets User Documentation Release 3

12.14.2. Grid Overlay Fading

Brief Description
File: \examples\Processing\Shading\Fading
\Fading.va

Default Platform: mE5-MA-VCL

Short Description

A grid is overlayed to the input images. The grid
pixel value is determined from the input pixel
value.

12.14.3. 2D Shading Correction / Flat Field Correction

Brief Description
File: \examples\Processing\Shading\Shading2D
\Shading2D.va

Default Platform: mE4VD4-CL

Short Description

The example shows the implementation of a 2D
shading correction. Correction values are stored
in frame grabber RAM. The applet performs a
high precision offset and gain correction.

12.14.4. 2D Shading Correction / Flat Field Correction Using Operator
RamLUT

Brief Description
File: \examples\Processing\Shading\Shading2D
\imaFlex_Shading2D_RAMLUT.va

Default Platform: iF-CXP12-Q

Short Description

The example shows the implementation of a 2D
shading correction. Correction values are stored
in frame grabber RAM. The applet performs
a high precision offset and gain correction.
The design is implemented for the imaFlex
CXP12 platform but can easily be tranferred and
adapted to the microEnable5 frame grabbers.

12.14.5. 1D Shading Correction Using Block RAM

Processing Examples 559

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Shading
\Shading1D_BRAM\Shading1D_BRAM.va

Default Platform: mE5-MA-VCL

Short Description

The example shows an 1D shading correction.
The correction values are stored in block RAM
memory.

12.14.6. 1D Shading Correction Using Frame Grabber RAM

Brief Description
File: \examples\Processing\Shading
\Shading1D_DRAM\Shading1D_DRAM.va

Default Platform: mE5-MA-VCL

Short Description

The example shows an 1D shading correction.
The correction values are stored in Frame
Grabber RAM.

12.15. Trigger
Examples for area and line scan application. Usage of the signal processing operators.

12.15.1. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform

In the following subsections three example implementations for an area scan trigger for microEnable
IV VD4-CL/-PoCL platform are presented.

12.15.1.1. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform
Using Signal Operators and Operator CameraControl

Brief Description
File: \examples\Processing\Trigger\mE4VD4-CL
\Area\AreaScanTrigger_mE4VD4CL.va

Default Platform: mE4VD4-CL/-PoCL

Short Description

An area scan trigger is presented. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation. The operator CameraControl
provides the interface to the connected camera.

Processing Examples 560

VisualApplets User Documentation Release 3

12.15.1.2. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform
Using Operator TrgPortArea

Brief Description
File: \examples\Processing\Trigger\mE4VD4-CL
\Area\TriggerPortArea_mE4VD4CL.va

Default Platform: mE4VD4-CL/-PoCL

Short Description

An area scan trigger using the operator
TrgPortArea is presented. Please read for
information on this operator Section 29.49,
'TrgPortArea'.

12.15.2. Area Scan Trigger for microEnable IV VQ4-GE/-GPoE

Brief Description
File: \examples\Processing\Trigger\mE4VQ4-GE
\Area\AreaScanTrigger_mE4VQ4GE.va

Default Platform: mE4VQ4-GE/-PoGE

Short Description

An area scan trigger is presented. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation. The camera can be triggered via
cable connection to the trigger ports or directly
with ActionCommands. See here especially the
documentation Section 29.3, 'ActionCommand'.
See also the Action Command SDK example
under SDK_Examples\gbe\ActionCommands in
your Framegrabber SDK installation folder.

12.15.3. Area Scan Trigger for microEnable 5 marathon/LightBridge VCL

Brief Description
File: \examples\Processing\Trigger\mE5-MA-VCL
\Area\AreaScanTrigger_mE5MAVCL.va

Default Platform: mE5-MA-VCL

Short Description

An area scan trigger is presented. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

12.15.4. Area Scan Trigger for microEnable 5 VD8-CL/-PoCL

Processing Examples 561

VisualApplets User Documentation Release 3

Brief Description
File: \examples\Processing\Trigger\mE5VD8-CL
\Area\AreaScanTrigger_mE5VD8PoCL.va

Default Platform: mE5VD8-CL/-PoCL

Short Description

An area scan trigger is presented. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

12.15.5. Area Scan Trigger for microEnable 5 marathon VCX QP

Brief Description
File: \examples\Processing\Trigger\mE5-MA-
VCX-QP\Area\AreaScanTrigger_mE5VCXQP.va

Default Platform: mE5-MA-VCX-QP

Short Description

An area scan trigger for CoaXPress is presented.
External sources, an internal frequency generator
or software trigger pulses can be used for trigger
generation.

12.15.6. Area Scan Trigger for imaFlex CXP-12 Quad

Brief Description
File: \examples\Processing\Trigger\iF-CXP12-Q
\Area\AreaScanTrigger_iFCXP12Q.va

Default Platform: iF-CXP12-Q

Short Description

An area scan trigger for CoaXPress12 is
presented. External sources, an internal
frequency generator or software trigger pulses
can be used for trigger generation.

Processing Examples 562

VisualApplets User Documentation Release 3

12.15.7. Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D

Brief Description
File: \examples\Processing\Trigger\mE5VQ8-CXP
\Area\AreaScanTrigger_mE5VQ8CXP6B.va
\examples\Processing\Trigger\mE5VQ8-CXP\Area
\AreaScanTrigger_mE5VQ8CXP6D.va

Default Platform: mE5VQ8-CXP6D/mE5VQ8-
CXP6B

Short Description

An area scan trigger for CoaXPress is presented.
External sources, an internal frequency generator
or software trigger pulses can be used for trigger
generation.

12.15.8. Line Scan Trigger for microEnable IV VD4-CL/-PoCL

In the following three example implementations for line scan trigger for microEnable IV VD4-CL/-PoCL
platform are presented.

12.15.8.1. Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using
Signal Operators and Operator CameraControl

Brief Description
File: \examples\Processing\Trigger\mE4VD4-CL
\Line\LineScanTrigger_mE4VD4CL.va

Default Platform: mE4VD4-CL/-PoCL

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

Processing Examples 563

VisualApplets User Documentation Release 3

12.15.8.2. Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using
Operator TrgBoxLine

Brief Description
File: \examples\Processing\Trigger\mE4VD4-CL
\Line\TrgBoxLine_mE4VD4CL.va

Default Platform: mE4VD4-CL/-PoCL

Short Description

VisualApplets prototype operator TrgBoxLine can
be used for microEnable 5 and microEnable IV
platforms for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file for microEnable IV
VD4-CL/PoCL. For parameters of "TrgBoxLine"
on microEnable IV VD4-CL/PoCL platform please
read corresponding operator documentation
under Section 30.5, 'TrgBoxLine'. Note that in
comparison to operator TrgPortLine the operator
does not directly control the IOs. Therefore, it is
required to connect to the IOs respectively.

The operator is in prototype library and might be
replaced in future releases.

12.15.8.3. Rebuild of Operator TrgPortLine with VisualApplets Signal
Processing Operators

Brief Description
File: \examples\Processing\Trigger\mE4VD4-CL
\Line\TrgPortLineRebuild_mE4VD4CL.va

Default Platform: mE4VD4-CL

Short Description

VisualApplets operator TrgPortLine is rebuild
with other signal processing operators from the
VisualApplets operator libraries. The rebuild
allows you custom trigger functionalities and
shows the usage of many signal processing
operators in VisualApplets.

Operator TrgPortLine is a complex VisualApplets operator which offers a wide range of line scan trigger
functionalities. In some applications it is required to have a modified functionality of this operator for
custom signal processing.

In this example, we present a rebuild of the TrgPortLine operator with other VisualApplets signal
processing operators. This enables you to adapt and modify the functionality to your custom
requirements. The implementation is advanced but easy to understand. To simply the complex
parameterization of the implementation, the following translation table helps you to calculate the
parameters of the new design based on the parameternames of the TrgPortLine parameters.

Processing Examples 564

VisualApplets User Documentation Release 3

Name YOffset
Default 0

Device1_Process0_ImageTrigger_ImageHeight_Width = YHeight - YOffset
 Device1_Process0_ImageTrigger_ImageTriggerDelay_Delay_Delay = YHeight + YOffset

Name YHeight
Default 1024

Device1_Process0_ImageTrigger_ImageHeight_Width = YHeight - YOffset
 Device1_Process0_ImageTrigger_ImageTriggerDelay_Delay_Delay = YHeight + YOffset

Name LineTriggerMode
Default GrabberControlled

Device1_Process1_LineTrigger_LineTriggerMode_Select = 3 if GrabberController 0,1 or 2 if Extern_Trigger
 For Extern_Trigger, the correct value is defined by the shaft encoder settings.
 The other modes available by TrgPortLine are not supported.

Name ExsyncEnable
Default OFF

Device1_Process1_LineTrigger_Exsync_ExsyncEnable_Select = 1 if ON 0 if OFF

Name LineTrgInSourceA
Default 0

Device1_Process1_LineTrigger_TraceA_Input_Select = LineTrgInSourceA

Name LineTrgInSourceB
Default 1

Device1_Process1_LineTrigger_TraceB_Input_Select = LineTrgInSourceB

Name EncoderABMode
Default Signal_A_Only

Device1_Process1_LineTrigger_LineTriggerMode_Select = 3 if LineTriggermode == GrabberControlled
 0 if EncoderABMode == Signal_A_Only 1 else Device1_Process1_LineTrigger_ShaftEncoder_Mode =
 Mode1X if EncoderABMode == Signal_AB_Filter
 Mode2X if EncoderABMode == Signal_ABx2_Filter
 Mode4X if EncoderABMode == Signal_ABx4_Filter

Name EncoderABLead
Default Signal_AB

Device1_Process1_LineTrigger_ShaftEncoder_LeadingTrace =
 A if EncoderABLead == Signal_AB
 B else

Name LineTrgInPolarity
Default LowActive

Device1_Process1_LineTrigger_TraceA_Polarity_Invert =
 Invert if LineTrgInPolarity = LowActive
 NotInvert else

Processing Examples 565

VisualApplets User Documentation Release 3

Name LineTrgInPolarity
Default LowActive

Device1_Process1_LineTrigger_TraceA_Polarity_Invert =
 Invert if LineTrgInPolarity = LowActive
 NotInvert else
 Device1_Process1_LineTrigger_TraceB_Polarity_Invert =
 Invert if LineTrgInPolarity = LowActive
 NotInvert else

Name LineTrgDownscaler
Default 1

Device1_Process1_LineTrigger_Downscale_Donwscale = LineTrgDownscaler

Name LineTrgPhase
Default 1

Device1_Process1_LineTrigger_Downscale_SelectecPulse = LineTrgPhase

Name ExsyncPeriod
Default 100µs

Device1_Process1_LineTrigger_Generate_Period = ExsyncPeriod / TClk

Name Exsync2Delay
Default 0µs

Device1_Process1_LineTrigger_Exsync_Exsync2_Delay = Exsync2Delay / TClk

VisualApplets Version 2.1 or Higher Only

The delay has to be set to 0 for VisualApplets version 2.0.

Name ExsyncPolarity
Default LowActive

Device1_Process1_LineTrigger_Exsync_OutputPolarity_Polarity =
 Invert if ExsyncPolarity = LiwActive
 NotInvert else

Name ImgTriggerMode
Default FreeRun

Device1_Process0_ImageTrigger_SelectGatedImageTrigger_Select =
 1 if ImgTriggerMode == FreeRun
 0 else
 Device1_Process0_ImageTrigger_SelectFreeRun_Select =
 1 if ImgTriggerMode == FreeRun
 0 else

Processing Examples 566

VisualApplets User Documentation Release 3

Name ImgTriggerInSource
Default InSignal0

Device1_Process0_ImageTrigger_EnableSoftwareTrigger =
 1 if ImgTriggerInSource == SoftwareTrigger
 0 else
 Device1_Process0_ImageTrigger_ImageTriggerInput_Input_Select =
 0 if ImgTriggerInSource == InSignal0
 1 if ImgTriggerInSource == InSignal1
 2 if ImgTriggerInSource == InSignal2
 3 if ImgTriggerInSource == InSignal3
 4 if ImgTriggerInSource == InSignal4
 5 if ImgTriggerInSource == InSignal5
 6 if ImgTriggerInSource == InSignal6
 7 if ImgTriggerInSource == InSignal7

Name ImgTrgInPolarity
Default LowActive

Device1_Process0_ImageTrigger_ImageTriggerInput_Polarity_Polarity =
 Invert if ImgTrgInPolarity == LowActive
 NotInvert else

Name ImgTrgDelay
Default 0 lines

Device1_Process0_ImageTrigger_ImageTriggerDelay_Delay_Delay = ImgTrgDelay

VisualApplets Version 2.1 or Higher Only

The delay has to be set to 0 for VisualApplets version 2.0.

Name FlashEnable
Default OFF

Device1_Process0_ImageTrigger_FlashOutput_Enable_Select =
 1 if FlashEnable == ON
 0 else

Name FlashPolarity
Default LowActive

Device1_Process0_ImageTrigger_FlashOutput_Polarity_Polarity =
 Invert if FlashPolarity == LowActive
 NotInvert else

Name FlashDelay
Default 0 lines

Device1_Process0_ImageTrigger_FlashDelay_Delay_Delay = FlashDelay

VisualApplets Version 2.1 or Higher Only

The delay has to be set to 0 for VisualApplets version 2.0.

Name SoftwareTrgPulse
Device1_Process0_ImageTrigger_SoftwareTrigger_Mode =
 Pulse if SoftwareTrgPulse == 1 && ImgTrgMode == ExternSw_Trigger
 not write access else

Processing Examples 567

VisualApplets User Documentation Release 3

Name SoftwareTrgInput
Device1_Process0_ImageTrigger_SoftwareTrigger_Mode =
 High if SoftwareTrgInput == 1 && ImgTrgMode == ExternSw_Gate
 Low else

Name ImgTrgIsBusy (read only parameter)
ImgTrgIsBusy = Device1_Process0_ImageTrigger_ImgTrgIsBusy_Status

Name CC1output
Default Exsync

Device1_Process1_LineTrigger_Exsync_CC1_Select_Select =
 0 if Exsync
 1 if ExsyncInvert
 2 if Exsync2
 3 if Exsync2Invert
 4 if Flash
 5 if FlashInvert
 6 if Gnd
 7 if Vcc

Name CC2output
Default Exsync

Device1_Process1_LineTrigger_Exsync_CC2_Select_Select =
 0 if Exsync
 1 if ExsyncInvert
 2 if Exsync2
 3 if Exsync2Invert
 4 if Flash
 5 if FlashInvert
 6 if Gnd
 7 if Vcc

Name CC3output
Default Exsync

Device1_Process1_LineTrigger_Exsync_CC3_Select_Select =
 0 if Exsync
 1 if ExsyncInvert
 2 if Exsync2
 3 if Exsync2Invert
 4 if Flash
 5 if FlashInvert
 6 if Gnd
 7 if Vcc

Name CC4output
Default Exsync

Device1_Process1_LineTrigger_Exsync_CC4_Select_Select =
 0 if Exsync
 1 if ExsyncInvert
 2 if Exsync2
 3 if Exsync2Invert
 4 if Flash
 5 if FlashInvert
 6 if Gnd
 7 if Vcc

Name ImgTrgDebounceMaxTime
Not Required in this implementation.

Processing Examples 568

VisualApplets User Documentation Release 3

Name ImgTrgDebouncingTime
Default 65.520µs

Device1_Process0_ImageTrigger_ImageTriggerInput_Debounce_Debounce = ImgTrgDebouncingTime / TClk

Name LineTrgDebouncingTime
Default 0.112µs

Device1_Process1_LineTrigger_TraceA_Debounce_Debounce = LineTrgDebouncingTime / TClk
 Device1_Process1_LineTrigger_TraceB_Debounce_Debounce = LineTrgDebouncingTime / TClk

The variable TClk depends on the frame grabber used. For the microEnable IV VD4-CL, the period is
16ns. Check Appendix A, 'Device Resources' for a complete list.

12.15.8.3.1. Implementation

The implementation is divided into the two parts ImageTrigger and LineTrigger. The LineTrigger
implementation is located in Process1. As this process has no DMA channel, it will be immediately
started after loading the applet to the frame grabber even when the acquisition is not started, yet.
This has the advantage, that the camera can already be triggered before the acquisition is started.
See Section 4.4.2, 'Processes without DMAs / Trigger Processes' for more information on processes
without DMA channels.

The next two sections will outline the implementations of the image trigger and line trigger.

12.15.8.3.2. Image Trigger Implementation

The image trigger part is responsible to assemble the image i.e. to form 2D images from the 1D input
line stream. In accordance to operator TrgPortLine the image height can be defined by either a fixed
height and usage of all input lines (free run), a fixed height but external controller image start (external
or software trigger) or the height can be defined by the pulse length of an external or software trigger
signal (gated mode).

The main part of the image trigger implementation is the SignalGate operator. The image height is
defined by the time the gate is open. Module ImageHeight (operator SignalWidth) defines the height
in the free run or edge controlled trigger modes. In these cases, the operator value is increases with
every new input line. This is a good example where the Tick input is used for controlling the counting
speed. In the free run mode, a new image is started immediately after the previous one is finished i.e.
the SignalWidth operator is finished with the output of its period. In the external or software trigger
mode, a new image is started with a rising edge at the input of the SignalWidth. The RS-FF is required
to ensure a sufficiently long enough pulse.

With SelectGatedImageTrigger the implementation can be switched to the gated mode, where the
pulse length controls the image height.

The hierarchical box NOP_DelayChain includes some NOP operators. These operators are required to
delay the input signal a few clock cycles. This is required as the calculation weather the gate has to
be opened or closes requires some clock cycles. VisualApplets cannot perform an automated pipeline
adjustment in this case. Therefore the delay is required.

Processing Examples 569

VisualApplets User Documentation Release 3

Figure 12.160. Hierarchical Box ImageTrigger of the TrgPortLine Rebuild Example

Other parst of the implementation comprise the input output output signal generation. The
implementation of these parts is simple and straight forward. The flash output signal is transfered to
Process1 using a TxSignalLine operator in h-box FlashOutput. This is required as the flash signal has
to be output to the CC signals as well.

12.15.8.3.3. Line Trigger Implementation

The LineTrigger hierarchical box mainly consists of the input and output signal generation as well as
the shaft encoder analysis and frequency generator. For the shaft encoder signal analysis operators
ShaftEncoder, ShaftEncoderCompensate are used. The Select switch LineTriggerMode allows for an
individual selection if the compensation or two trance analysis is enabled or disabled. Moreover, an
internal frequency generator represented by a Generate operator is implemented to trigger the camera.

Figure 12.161. Hierarchical Box LineTrigger of the TrgPortLine Rebuild Example

12.15.9. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE

Processing Examples 570

VisualApplets User Documentation Release 3

In the following two example implementations for a line scan trigger on a microEnable IV VQ4-GE/-
GPoE platform are presented.

12.15.9.1. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using
Signal Operators and Operator ActionCommand

Brief Description
File: \examples\Processing\Trigger\mE4VQ4GE
\Line\LineScanTrigger_mE4VQ4GE.va

Default Platform: mE4VQ4-GE/-GPoE

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation. The camera can be triggered via
cable connection to the trigger ports or directly
with ActionCommands. See here especially the
documentation Section 29.3, 'ActionCommand'.
See also the Action Command SDK example
under SDK_Examples\gbe\ActionCommands in
your Framegrabber SDK installation folder.

Processing Examples 571

VisualApplets User Documentation Release 3

12.15.9.2. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using
Operator TrgBoxLine

Brief Description
File: \examples\Processing\Trigger\mE4VQ4-GE
\Line\TrgBoxLine_mE4VQ4GE.va

Default Platform: mE4VQ4-GE/-GPoE

Short Description

VisualApplets prototype operator TrgBoxLine can
be used for microEnable 5 and microEnable IV
platforms for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file for microEnable IV
VQ4-GE/GPoE. For parameters of "TrgBoxLine"
on microEnable IV VQ4-GE/GPoE platform please
read corresponding operator documentation
under Section 30.5, 'TrgBoxLine'. Note that in
comparison to operator TrgPortLine the operator
does not directly control the IOs. Therefore, it is
required to connect to the IOs respectively.

The operator is in prototype library and might be
replaced in future releases.

12.15.10. Line Scan Trigger for microEnable 5 marathon/LightBridge VCL

In the following two example implementations for a line scan trigger on a microEnable 5 marathon/
LightBridge VCL platform are presented.

Processing Examples 572

VisualApplets User Documentation Release 3

12.15.10.1. Line Scan Trigger for microEnable 5 marathon/LightBridge
VCL Using Signal Operators and Operator CameraControl

Brief Description
File: \examples\Processing\Trigger\mE5-MA-VCL
\Line\LineScanTrigger_mE5MAVCL.va

Default Platform: mE5-MA-VCL

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

12.15.10.2. Line Scan Trigger for microEnable 5 marathon/LightBridge
VCL with TrgBoxLine Operator Usage

Brief Description
File: \examples\Processing\Trigger\mE5-MA-VCL
\Line\TrgBoxLine_mE5MAVCL.va

Default Platform: mE5-MA-VCL

Short Description

VisualApplets prototype operator TrgBoxLine can
be used for microEnable 5 and microEnable IV
platforms for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file. Note that in
comparison to operator TrgPortLine the operator
does not directly control the IOs. Therefore, it is
required to connect to the IOs respectively.

The operator is in prototype library and might be
replaced in future releases.

12.15.11. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL

Processing Examples 573

VisualApplets User Documentation Release 3

In the following two example implementations for a line scan trigger on a microEnable 5 VD8-CL/-
PoCL platform are presented.

12.15.11.1. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using
Signal Operators and Operator CameraControl

Brief Description
File: \examples\Processing\Trigger\mE5VD8-CL
\Line\LineScanTrigger_mE5VD8CL.va

Default Platform: mE5VD8-CL/-PoCL

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

Processing Examples 574

VisualApplets User Documentation Release 3

12.15.11.2. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL with
TrgBoxLine Operator Usage

Brief Description
File: \examples\Processing\Trigger\mE5VD8-CL
\Line\TrgBoxLine_mE5VD8CL.va

Default Platform: mE5VD8-CL/-PoCL

Short Description

VisualApplets prototype operator TrgBoxLine can
be used for microEnable 5 and microEnable IV
platforms for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file for mE5VD8-CL/-
PoCL platform. For parameters of "TrgBoxLine"
on this platform please read corresponding
operator documentation under Section 30.5,
'TrgBoxLine' Note that in comparison to operator
TrgPortLine on mE4VD4-CL/PoCL the operator
does not directly control the IOs. Therefore, it is
required to connect to the IOs respectively.

The operator is in prototype library and might be
replaced in future releases.

12.15.12. Line Scan Trigger for microEnable 5 marathon VCX QP

In the following two example implementations for a line scan trigger on a microEnable 5 marathon
VCX QP platform are presented.

Processing Examples 575

VisualApplets User Documentation Release 3

12.15.12.1. Line Scan Trigger for microEnable 5 marathon VCX QP Using
Signal Operators

Brief Description
File: \examples\Processing\Trigger\mE5-MA-
VCX-QP\Line\LineScanTrigger_mE5MAVCXQP.va

Default Platform: mE5-MA-VCX-QP

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

12.15.12.2. Line Scan Trigger for microEnable 5 marathon VCX QP with
TrgBoxLine Operator Usage

Brief Description
File: \examples\Processing\Trigger\mE5-MA-
VCX-QP\Line\TrgBoxLine_mE5MAVCXQP.va

Default Platform: mE5-MA-VCX-QP

Short Description

VisualApplets prototype operator TrgBoxLine can
be used for for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file for mE5-MA-VCX-
QP platform. For parameters of "TrgBoxLine" on
this platform please read corresponding operator
documentation under Section 30.5, 'TrgBoxLine'
Note that in comparison to operator TrgPortLine
on mE4VD4-CL/PoCL the operator does not
directly control the IOs. Therefore, it is required
to connect to the IOs respectively.

12.15.13. Line Scan Trigger for imaFlex CXP-12 Quad

In the following two example implementations for a line scan trigger on an imaFlex CXP-12 Quad
platform are presented.

Processing Examples 576

VisualApplets User Documentation Release 3

12.15.13.1. Line Scan Trigger for imaFlex CXP-12 Quad Using Signal
Operators

Brief Description
File: \examples\Processing\Trigger\iF-CXP12-Q
\Line\LineScanTrigger_iFCXP12Q.va

Default Platform: iF-CXP12-Q

Short Description

A line scan trigger for CoaXPress12 is presented.
The trigger includes an image trigger using a
capture gate as well as a multi functional line
trigger. External sources, an internal frequency
generator or software trigger pulses can be used
for trigger generation.

12.15.13.2. Line Scan Trigger for imaFlex CXP-12 Quad with TrgBoxLine
Operator Usage

Brief Description
File: \examples\Processing\Trigger\iF-CXP12-Q
\Line\TrgBoxLine_iFCXP12Q.va

Default Platform: iF-CXP12-Q

Short Description

VisualApplets operator TrgBoxLine can be
used for for line scan triggering. The operator
includes multiple triggering features. The
example demonstrates the usage of the operator
in a VisualApplets design file for imaFlex
CXP-12 Quad platform. For parameters of
"TrgBoxLine" please read corresponding operator
documentation under Section 30.5, 'TrgBoxLine'

12.15.14. Line Scan Trigger for microEnable 5 VQ8-CXP6

In the following two example implementations for a line scan trigger on microEnable 5 VQ8-CXP6B
and microEnable 5 VQ8-CXP6D platforms are presented.

Processing Examples 577

VisualApplets User Documentation Release 3

12.15.14.1. Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal
Operators

Brief Description
File: \examples\Processing\Trigger\mE5VQ8-
CXP6D\Line\LineScanTrigger_mE5VQ8CXP6D.va
\examples\Processing\Trigger\mE5VQ8-CXP6B
\Line\LineScanTrigger_mE5VQ8CXP6D.va

Default Platform: mE5VQ8-CXP6D/mE5VQ8-
CXP6B

Short Description

A line scan trigger is presented. The trigger
includes an image trigger using a capture gate
as well as a multi functional line trigger. External
sources, an internal frequency generator or
software trigger pulses can be used for trigger
generation.

12.15.14.2. Line Scan Trigger for microEnable 5 VQ8-CXP6 with
TrgBoxLine Operator Usage

Brief Description
File: \examples\Processing\Trigger\mE5-VQ8-
CXP6D\Line\TrgBoxLine_mE5VQ8CXP6D.va
\examples\Processing\Trigger\mE5-VQ8-CXP6B
\Line\TrgBoxLine_mE5VQ8CXP6B.va

Default Platform: mE5-VQ8-CXP6D/mE5-VQ8-
CXP6B

Short Description

VisualApplets prototype operator TrgBoxLine
can be used for microEnable 5 and microEnable
IV platforms for line scan triggering. The
operator includes multiple triggering features.
The example demonstrates the usage of the
operator in a VisualApplets design file for
mE5-VQ8-CXP6D/mE5-VQ8-CXP6B platform.
For parameters of "TrgBoxLine" on this
platform please read corresponding operator
documentation under Section 30.5, 'TrgBoxLine'
Note that in comparison to operator TrgPortLine
on mE4VD4-CL/PoCL the operator does not
directly control the IOs. Therefore, it is required
to connect to the IOs respectively.

The operator is in prototype library and might be
replaced in future releases.

Operator Examples 578

VisualApplets User Documentation Release 3

13. Operator Examples
The VisualApplets example designs in this chapter demonstrate how to use and parameterize specific
operators. All examples can be found in the VisualApplets installation directory in sub-directory
examples i.e. “%VASINSTALLDIR%/examples/Examples/OperatorExamples”.

A detailed introduction into the libraries you find in the Operator Reference.

The following sections show an overview on all examples. A brief introduction is presented as well
as the folder and filename. All examples use a default hardware platform. Nearly most of them can
easily be converted to other hardware platforms. See Section 4.5, 'Target Hardware Porting' for more
information on how to switch the hardware platform.

13.1. Functional Example for Specific Operators of Library
Accumulator and Library Logic

Brief Description
Files: examples\OperatorExamples
\AccumulatorLibrary_LogicalLibrary_Thresholding.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. FrameMin (library:accumulator)

• 2. FrameMax (library:accumulator)

• 3. RowMin (library:accumulator)

• 4. RowMax (library:accumulator)

• 5. CMP_AgtB (library:logic)

• 6. CMP_AltB (library:logic)

• 7. CMP_AgeB (library:logic)

• 8. CMP_AleB (library:logic)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the accumulator and signal library in the Operator Reference, section
18. Library Accumulator [593] and 26. Library Logic [911].

13.2. Functional Example for Specific Operators of Library
Synchronization: Dynamic Append and Cut

Operator Examples 579

VisualApplets User Documentation Release 3

Brief Description
Files: examples\OperatorExamples
\SynchronizationLibrary_DynamicAppendAndCut.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. AppendImageDyn (library:synchronization)

• 2. AppendLineDyn (library:synchronization)

• 3. CutImage (library:synchronization)

• 4. CutLine (library:synchronization)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the arithmetics library in the Operator Reference, section 32. Library
Synchronization [1495].

13.3. Functional Example for Specific Operators of Library
Memory and Library Signal

Brief Description
Files: examples\OperatorExamples
\MemoryLibrary_Frame_LatencyMeasurement.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. CastKernel (library: base)

• 2. FrameMemoryRandomRd (library: memory)

• 3. FrameMemory (library: memory)

• 4. ImageBufferSC (library: memory)

• 5. FrameStartToSignal (library: signal)

• 6. SignalToDelay (library: signal)

• 7. TxSignalLink (library: signal)

• 8. RxSignalLink (library: signal)

• 8. PixelToImage (library: synchronization)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the specific library in the Operator Reference, section 27. Library
Memory [953], 31. Library Signal [1400] and 32. Library Synchronization [1495].

13.4. Functional Example for Specific Operators of Library
Memory and Library Signal

Operator Examples 580

VisualApplets User Documentation Release 3

Brief Description
Files: examples\OperatorExamples
\MemoryLibrary_Line_LatencyMeasurement.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. CastKernel (library: base)

• 2. LineMemoryRandomRd (library: memory)

• 3. LineMemory (library: memory)

• 4. LineStartToSignal (library: signal)

• 5. LineEndToSignal (library: signal)

• 6. TxSignalLink (library: signal)

• 7. RxSignalLink (library: signal)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the memory and signal library in the Operator Reference, section
27. Library Memory [953] and 31. Library Signal [1400].

13.5. Functional Example for Specific Operators of Library
Signal

Brief Description
Files: examples\OperatorExamples
\SignalLibrary_SignalProcessing.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. SignalDebounce (library:signal)

• 2. SignalEdge (library:signal)

• 3. SignalDelay (library:signal)

• 4. SignalWidth (library:signal)

• 5. WidthToSignal (library:signal)

• 6. SignalToPeriod (library:signal)

• 7. SignalToWidth (library:signal)

• 8. Select (library:signal)

• 9. LimitSignalWidth (library:signal)

• 10. GetSignalStatus (library:signal)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the signal library in the Operator Reference, section 31. Library
Signal [1400].

Operator Examples 581

VisualApplets User Documentation Release 3

13.6. Functional Example for Specific Operators of Library
Synchronization, Base and Filter

Brief Description
Files: examples\OperatorExamples
\SynchronizationLibrary_LocalAndGlobalImageProcessing.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. Overflow (library:synchronization)

• 2. PseudoRandomNumberGen (library: base)

• 3. ExpandToParallel (library:base)

• 4. MIN (library:filter)

• 5. ReSyncToLine (library:synchronization)

• 6. ExpandLine (library:synchronization)

• 7. IsLastPixel (library:synchronization)

• 8. IsFirstPixel (library:synchronization)

• 9. InsertPixel (library:synchronization)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the operators of the specific library in the Operator Reference, section
32. Library Synchronization [1495], 20. Library Base [675], 25. Library Filter [884] .

13.7. Functional Example for Specific Operators of Library
Arithmentics: Trigonometric Functions

Brief Description
Files: examples\OperatorExamples
\ArithmeticsLibrary_TrigonometricFunctions.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. SIN (library:arithmetics)

• 2. ARCSIN (library:arithmetics)

• 3. COS (library:arithmetics)

• 4. ARCCOS (library:arithmetics)

• 5. TAN (library:arithmetics)

• 6. ARCTAN (library:arithmetics)

• 7. COT (library:arithmetics)

• 8. ARCCOT (library:arithmetics)

Operator Examples 582

VisualApplets User Documentation Release 3

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the arithmetics library in the Operator Reference, section 19. Library
Arithmetics [624].

13.8. Functional Example for Specific Operators of Library
Color, Base and Memory

Brief Description
Files: examples\OperatorExamples
\ColorLibrary_ColorTransformation.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. RGB2YUV (library:color)

• 2. ColorTransform (library:color)

• 3. CastColorSpace (library:base)

• 4. RamLUT (library:memory)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the operators of the specific library in the Operator Reference, section
22. Library Color [801], 20. Library Base [675] and 27. Library Memory [953].

13.9. Functional Example for Specific Operators of Library
Signal, Logic, Filter and Parameters

Brief Description
Files: examples\OperatorExamples
\SignalLibrary_ImageStreamToSignal.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration of how to use the operators:

• 1. NumberOfHits (library:filter)

• 2. StringParamReference (library:parameters)

• 3. ResourceReference (library:parameters)

• 4. CMP_Equal (library:logic)

• 5. CMP_NotEqual (library:logic)

• 6. XNOR (library:logic)

• 7. EventToSignal (library:signal)

• 8. PixelToSignal (library:signal)

• 9. PeriodToSignal (library:signal)

• 10. DelayToSignal (library:signal)

Operator Examples 583

VisualApplets User Documentation Release 3

Brief Description
• 11. Downscale (library:signal)

• 12. SyncSignal (library:signal)

This example demonstrates how the specific operators listed above can be used in a functional design.
You find a detailed introduction to the operators of the specific library in the Operator Reference,
section 31. Library Signal [1400], 26. Library Logic [911], 25. Library Filter [884] and 28. Library
Parameters [1053].

Parameter Library Examples 584

VisualApplets User Documentation Release 3

14. Parameter Library Examples
The VisualApplets example designs in this chapter demonstrate how to use and manipulate parameters.
All examples can be found in the VisualApplets installation directory in sub-directory examples i.e.
“%VASINSTALLDIR%/examples/AdvancedVAFunctions/Parameters Library”.

A detailed introduction into library Parameters you find in the Operator Reference, section Library
Parameters.

The following sections show an overview on all examples. A brief introduction is presented as well
as the folder and filename. All examples use a default hardware platform. Nearly most of them can
easily be converted to other hardware platforms. See Section 4.5, 'Target Hardware Porting' for more
information on how to switch the hardware platform.

14.1. Parameter Redirection

Brief Description
Files: \examples\AdvancedVAFunctions
\Parameters Library\ParameterRedirection.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration how to use the parameter
reference operators.

This example demonstrates how the parameter reference operators may be used to redirect
parameters. In this case two integer parameters for image width and height are generated which control
size parameters of the above pipeline. A floating-point parameter is used for manipulating the color of
the output. An enumeration parameter is used for enabling image output. An integer field parameters
is used to configure a LUT. A floating point field parameter is used to configure a color transformation
matrix. At runtime all parameters are displayed in the hierarchy level Process0/Parameters.

You find a detailed introduction to the Parameters Library in the Operator Reference, section 28. Library
Parameters [1053].

14.2. Parameter Translation

Parameter Library Examples 585

VisualApplets User Documentation Release 3

Brief Description
Files: \examples\AdavancedVAFunctions
\Parameters Library\ParameterTranslation.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration how to use the parameter
translation operators for manipulation of
parameters.

This example demonstrates how the parameter translation operators may be used to manipulate
parameters. In this case a single interger parameter is used for controlling several operator parameters
in the design for adjusting a grid overlay. A floating-point parameter is used for setting a derived integer
scale factor so the brightness of the generated pattern can be adusted by a parameter the range of
0.0 to 1.0. An enum parameter is used to control two operator parameters for pattern generation. At
runtime all parameters are displayed in the hierarchy level Process0/Parameters.

You find a detailed introduction to the Parameters Library in the Operator Reference, section 28. Library
Parameters [1053].

14.3. User Library Parameter

Brief Description
Files: \examples\AdavancedVAFunctions
\Parameters Library\UserLibParameter.va

Default Platform: mE5-MA-VCL

Short Description

Demonstration how user library elements can be
provided with parameters.

This example demonstrates how user library elements can be provided with parameters. The
library element uses a IntParamReference operator for moving the internal parameter Process0/
UserLibElement/DoInvert/Value to the parameter Invert of the box UserLibElement. This parameter can
be changed by calling the context menu of UserLibElement selecting 'Properties'. Note: MyLibElement
can be openend using the password 'abcabc'.

You find a detailed introduction to the Parameters Library in the Operator Reference, section 28. Library
Parameters [1053].

14.4. Parameter Selection

Parameter Library Examples 586

VisualApplets User Documentation Release 3

Brief Description
Files: \examples\AdavancedVAFunctions
\Parameters Library\ParameterSelection.va

Default Platform: mE5-MA-VCL

Short Description

A demonstration of how to use the parameter
translation operators IntParamSelector and
FloatParamSelector.

This example demonstrates how the operators IntParamSelector and FloatParamSelector may be
applied for redirecting parameter access to different module parameters depending on a selector.

You find a detailed introduction to the Parameters Library in the Operator Reference, section 28. Library
Parameters [1053].

14.5. Link Parameter Translation

Brief Description
Files: \examples\AdavancedVAFunctions
\Parameters Library\LinkParamTranslator.va

Default Platform: mE5-MA-VCL

Short Description

A demonstration of how to use the parameter
translation operator LinkParamTranslator.

This example demonstrates how the operator LinkParamTranslator may be applied for different use
cases:

• Fixing input and output link properties for a hierarchical box

• Defining additional constraints on link properties

• Translating link properties to module parameters

• Translating module parameters to link properties

You find a detailed introduction to the Parameters Library in the Operator Reference, section 28. Library
Parameters [1053].

Using Applets During Runtime 587

VisualApplets User Documentation Release 3

15. Using Applets During Runtime
In this chapter you find examples for using applets during runtime.

15.1. Filling LUT with Content With the Basler Framegrabber
API
In this section you find an example how you can easily fill a LUT with
content during runtime. The method is based on the struct FieldParameterAccess.
Documentation for the struct FieldParameterAccess [https://docs.baslerweb.com/frame-grabbers/
sdk/struct_field_parameter_access.html] and the function Fg_setParameterWithType() [https://
docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html] is available in the Basler Framegrabber
API documentation.

Example Implementation:

This struct FieldParameterAccess allows access to array parameters of any type in a flexible way. Range
accesses as well as single value accesses are both possible.

Example:

include <fgrab_struct.h>

struct FieldParameterAccess singleaccess;

struct FieldParameterAccess rangeaccess;

To fill the LUT with content with the Basler Framegrabber API:

1. Define the values of the LUT content

Example:

uint64_t primes[7] = { 1, 2, 3, 5, 7, 11, 13 };

uint32_t answer = 42;

2. Set up single value access or range access:

1. FieldParameterAccess:: vtype: set the type of the included data

2. FieldParameterAccess:: index: set the first index in the range

3. FieldParameterAccess:: count: set the value count of the range

4. A range of values according to the type of the included data: FieldParameterAccess::
p_double, p_int32_t, p_int64_t, p_uint32_t, or puint64_t

Example:

// set up single value access

singleaccess.vtype = FG_PARAM_TYPE_UINT32_T;

singleaccess.index = 17;

singleaccess.count = 1;

https://docs.baslerweb.com/frame-grabbers/sdk/struct_field_parameter_access.html
https://docs.baslerweb.com/frame-grabbers/sdk/struct_field_parameter_access.html
https://docs.baslerweb.com/frame-grabbers/sdk/struct_field_parameter_access.html
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.html

Using Applets During Runtime 588

VisualApplets User Documentation Release 3

singleaccess.p_uint32_t = &answer;

// set up range access

rangeaccess.vtype = FG_PARAM_TYPE_UINT64_T// every data value is an uint64_t

rangeaccess.index = 0;

rangeaccess.count = 7;

rangeaccess.p_uint64_t = primes;

3. Write the content into the applet operator LUT

Write the content into the applet Operator LUT [https://docs.baslerweb.com/visualapplets/files/
manuals/content/Memory.LUT.html] using the function Fg_setParameterWithType() [https://
docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.htm].

Example:

4. Write the LUT Content to the Corresponding LUT Operators in the Compiled Hardware
Applet

For a VisualApplets design structure with two LUT operators as shown in screenshot above, you
can write the LUT content to the corresponding LUT operators in the compiled hardware applet
as:

retCode += Fg_setParameterWithType(fg, Fg_getParameterIdByName(fg, "Device1_Process0_LUT0 _LUTcontent"),
&singleaccess, 0, FG_PARAM_TYPE_STRUCT_FIELDPARAMACCESS);

retCode += Fg_setParameterWithType(fg, Fg_getParameterIdByName(fg, "Device1_Process0_LUT1 _LUTcontent"),
&rangeaccess, 0, FG_PARAM_TYPE_STRUCT_FIELDPARAMACCESS);

https://docs.baslerweb.com/visualapplets/files/manuals/content/Memory.LUT.html
https://docs.baslerweb.com/visualapplets/files/manuals/content/Memory.LUT.html
https://docs.baslerweb.com/visualapplets/files/manuals/content/Memory.LUT.html
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.htm
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.htm
https://docs.baslerweb.com/frame-grabbers/sdk/basler__fg_8h.htm

Part III
Operator Reference

Introduction 590

VisualApplets User Documentation Release 3

16. Introduction
VisualApplets comprises numerous operators which represent processing functionalities. This part
explains the functionality of all available operators in detail. The operator reference is structured as
explained in the following:

• Description

In the description the main functionality and behavior of the operator is explained. It is the main
part of the operator reference.

For operators of the library Hardware Platform, a table is included which shows on which hardware
platforms the respective operator is available.

• Operator Restrictions

If the operator has restrictions in input format or simulation, these issues are listed here.

• I/O Properties

Shows a table where

• The operator type is given. The type can either be O-, M- or P-type. (see Section 3.6.1, 'Operator
Types')

• The input links are listed.

• The output links are listed.
If the operator is of type M and has more than one input, synchronous and asynchronous input
groups are listed. See Section 3.6.4, 'M-type Operators with Multiple Inputs' for more information
on input groups.

• Supported Link Formats

The supported link formats for all input and output ports are listed. See Section 3.7.2, 'Link Properties'
for an explanation of all link properties.

• Parameters

If the operator has parameters, they are listed in this section. For each parameter besides its
description, the name, the value range and the default value is given. To learn more about
parameterization, check Section 3.7.1, 'Module Properties'.

• Examples of Use

The examples of use section is a very helpful part. It shows a list of examples where the operator
is used. You can directly click on a link to get redirected to the example. The example of use can be
anywhere in the user manual or tutorial and examples parts.

• More Information

Some operators have more detailed information at the end of the operator reference.

The operator reference can directly be accessed from VisualApplets. See Section 3.3.1.6, 'Help' for
more information. Moreover, the Index is a good resource to quickly access the required operator
references. Finally, in 17. Library Overview a list of all available libraries is provided.

Library Overview 591

VisualApplets User Documentation Release 3

17. Library Overview

Library Name Short Description

Accumulator Accumulation operators such as counters.

Arithmetics Arithmetic operators such as ADD, SUB, COS, ShiftLeft, ...

Base Basic operators for common functions.

Blob Blob Analysis operators.

Color Includes operators for color space transformations and color
processing.

Compression Compression operators such as JPEG.

Debugging Debugging operators.

Filter Includes filter operators for any kind of image filters and kernel
operations.

Logic Includes operators for logic operations such as comparisons and
Boolean operations.

Memory Operators which can store data in memory.

Parameters Contains Operators for translating parameter values.

Hardware Platform This library contains operators which are only available on certain
platforms.

Prototype Prototype operators.

Signal Operators for signal data processing such as trigger signals.

Library Overview 592

VisualApplets User Documentation Release 3

Library Name Short Description

Synchronization Includes operators for image synchronizations such as removing,
appending, splitting, inserting, ... of images, lines and pixels.

Transformation Transformation operators.

Table 17.1. Available Libraries

Library Accumulator 593

VisualApplets User Documentation Release 3

18. Library Accumulator

Operators of library Accumulator include accumulating operators such as counters.

The following list summarizes all Operators of Library Accumulator

Operator Name Short Description available
since

ColMax Returns the maximum pixel value for each image
column. Version 1.2

ColMin Returns the minimum pixel value for each image
column. Version 1.2

ColSum Computes the sum of all pixel values for each
image column. Version 1.2

Count Up and down counter with reset. Version 1.2

FrameMax Returns the maximum pixel value for each frame. Version 1.2

FrameMin Returns the minimum pixel value for each frame. Version 1.2

FrameSum Computes the sum of all pixel values for each
frame. Version 1.2

Histogram Computes an intensity histogram of the input
image. Version 1.3

ModuloCount Counts the number of pixels, lines or frames at the
input link. Version 1.3

Register A register with data and capture input. Version 1.3

RowMax Returns the maximum pixel value for each image
row. Version 1.2

RowMin Returns the minimum pixel value for each image
row. Version 1.2

Library Accumulator 594

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

RowSum Computes the sum of the pixel values for each
image row. Version 1.2

Table 18.1. Operators of Library Accumulator

Library Accumulator 595

VisualApplets User Documentation Release 3

18.1. Operator ColMax
Operator Library: Accumulator

This operator returns the maximum pixel value found inside each image column. The operator replaces
each pixel value by the maximum value found in the very same column so far. Only if a current pixel
is a new maximum, the output IsMaxO is set to 1. Otherwise, it is 0.

It is possible to clear the current maximum manually by setting the ClrI link to 1. When a manual clear
is not required, a constant 0 must be applied to ClrI.

With every new input frame, the detection of the maximum value restarts for each column.

Often, this operator is used in conjunction with the RemoveLine operator to remove all but the last line
of a frame. This last line of a frame contains the results of the ColMax operator.

The following example shows the relation of input values to output values:

Operator Restrictions:

• Image Size

All lines of an input image must have the same length. Images with varying line lengths are not
allowed.

• Empty Images

Empty Images, i.e., images with no pixels, are allowed. The operator will output an empty image.

• Image Protocols

Only VALT_IMAGE2D and VALT_LINE1D image protocols are supported.

18.1.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMaxO, Binary output to indicate a new
maximum

18.1.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I

Library Accumulator 596

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,VALT_LINE1D} as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMaxO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.1.3. Parameters

None

18.1.4. Examples of Use

The use of operator ColMax is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Accumulator 597

VisualApplets User Documentation Release 3

18.2. Operator ColMin
Operator Library: Accumulator

This operator returns the minimum pixel value found for each image column. The operator replaces
each pixel value by the minimum value found in the very same column so far. If a current pixel is a
new minimum, the output link IsMinO is set to 1, otherwise it is 0.

It is possible to clear the current minimum manually by setting the ClrI link to 1. When a manual clear
is not required, a constant 0 must be applied to ClrI.

With every new input frame, the detection of the minimum value restarts for each column.

Often, this operator is used in conjunction with the RemoveLine operator to remove all but the last line
of a frame. This last line of a frame contains the results of the ColMin operator.

The following example shows the relation of input values to output values:

Image Restrictions:

• Image Size

All lines of an input image must have the same length. Images with varying line lengths are not
allowed.

• Empty Images

Empty Images, i.e., images with no pixels, are allowed. The operator will output an empty image.

• Image Protocols

Only VALT_IMAGE2D and VALT_LINE1D image protocols are supported.

18.2.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMinO, Binary output to indicate a new
minimum

18.2.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I

Library Accumulator 598

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,VALT_LINE1D} as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMinO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.2.3. Parameters

None

18.2.4. Examples of Use

The use of operator ColMin is shown in the following examples:

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Accumulator 599

VisualApplets User Documentation Release 3

18.3. Operator ColSum
Operator Library: Accumulator

This operator calculates the sum of all pixel values for each image column. Each pixel value at the
output represents the current sum of the respective column. Thus, each pixel is replaced by the sum
determined so far.

It is possible to clear the current column sum manually by setting the ClrI link to 1. When a manual
clear is not required, a constant 0 must be applied to ClrI.

With every new input frame, the sum for all columns is set to zero.

Often, this operator is used in conjunction with operator RemoveLine to use only the last image line
containing the results for the full frame.

The following example shows the relation of input values to output values:

Image Restrictions:

• Image Size

All lines of an input image must have the same length. Images with varying line lengths are not
allowed.

• Empty Images

Empty Images, i.e,. images with no pixels, are allowed. The operator will output an empty image.

• Image Protocols

Only VALT_IMAGE2D and VALT_LINE1D image protocols are supported.

18.3.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Link O, Data Output

18.3.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
1 auto/manual

Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I

Library Accumulator 600

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI Output Link O
Kernel Columns 1 as I as I
Kernel Rows 1 as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I as I

Color Format VAF_GRAY as I as I
Color Flavor FL_NONE as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

For the image protocol VALT_IMAGE2D, the output bit width is automatically calculated from the
input bit width and the maximum image height. The output bit width is determined by

OutputBitWidth = InputBitWidth£ dlog2 (Max:ImgHeight+ 1)e

The output bit width must not exceed 64 Bit.
For the image protocol VALT_LINE1D, the output bit width must be set manually on the output link.

The output bit width must be greater than 2 and must not exceed 64 bit.

18.3.3. Parameters

None

18.3.4. Examples of Use

The use of operator ColSum is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Accumulator 601

VisualApplets User Documentation Release 3

18.4. Operator Count
Operator Library: Accumulator

This up and down counter counts all pixels with value "1" at input I. It accepts only 1-bit pixel input.
It is possible to define an initialization value, a direction (count up/count down), and an automatic
clear strategy (end-of-line/end-of-frame reset) as parameters. Additionally, it is possible to reset the
counter manually through the ClrI input link.

Depending on the AutoClear strategy, the output bit width is determined by the image width or image
size.

The output frame has the same size as the input frame. For every input pixel, the operator will output
the current counter value. The counter wraps around if the counter reaches maximum in count-up
mode or zero in count-down mode.

The following example shows the relation of input values to output values. In this example the AutoClear
strategy is set to EoL (end-of-line). The initialization value Init is "0".

This operator is commonly used with Logic operators.

Operator Restrictions

• Empty Images

Empty Images, i.e. images with no pixels are allowed. The operator will output an empty image.

• Image Size

All lines of each input image may have varying lengths but must not be empty.

18.4.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Link O, Data Output

18.4.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI Output Link O
Bit Width 1 1 auto
Arithmetic unsigned as I unsigned
Parallelism any as I as I
Kernel Columns 1 as I as I
Kernel Rows 1 as I as I

Library Accumulator 602

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI Output Link O
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I as I

Color Format VAF_GRAY as I as I
Color Flavor FL_NONE as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The output bit width is automatically determined from the input image dimensions and the
parameter settings. Output bit width for image protocol VALT_IMAGE2D and parameter AutoClear
= EoL or image protocol VALT_LINE1D:

OutputBitWidth = dlog2 (Max:ImgWidth+ 1)e

Output bit width for image protocol VALT_IMAGE2D and parameter AutoClear = EoF or image
protocol VALT_PIXEL0D:

OutputBitWidth = dlog2 (Max:ImgWidth£Max:ImgHeight+ 1)e

When image protocol VALT_PIXEL0D is used or AutoClear is set to None, the output bit width can
be adjusted directly at the output link O.

The output bit width must not exceed 64 Bit.

18.4.3. Parameters

AutoClear
Type static parameter
Default EoL
Range {EoL, EoF, None}

This parameter defines when to reset the counter to its initial value define by parameter Init.

The parameter cannot be set to EoF if image protocol VALT_LINE1D is used. It is disabled for image
protocol VALT_PIXEL0D.

Init
Type static parameter
Default 0
Range [0, 2^OutputBitWidth - 1]

This parameter defines the initial value. The counter is set to its initial value at

• start-up

• CltI = 1

• AutoClear condition

Direction
Type static parameter
Default UP
Range {UP, DOWN}

This parameter defines whether the counter is incremented (UP) or decremented (DOWN) for each
value '1' at the input link I.

Library Accumulator 603

VisualApplets User Documentation Release 3

18.4.4. Examples of Use

The use of operator Count is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

Library Accumulator 604

VisualApplets User Documentation Release 3

18.5. Operator FrameMax
Operator Library: Accumulator

This operator returns the maximum pixel value found inside each input frame. The output frame has
the same size as the input frame, where each pixel is replaced by the maximum value found in the
image so far. If the current pixel is a new maximum the output Link IsMaxO is 1, otherwise it is 0.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced selecting the max
parallel component prior to this operator. Use SplitParallel, MergeKernel and MAX for this
operation.

With every new input frame the maximum detection starts again. Additionally, it is possible to clear
the current maximum manually when the ClrI link is set to 1. When a manual clear is not necessary,
you must ensure a constant 0 at ClrI, to enable normal operation.

The following example shows the relation of the input pixel to the output values.

Often, this operator is used in conjunction with operators RemoveLine and RemovePixel to use only
the last image pixel containing the results of all frame pixels.

Image Restrictions

• Empty Images

Empty images, i.e., images with no pixels, are allowed. The operator will output an empty image.

18.5.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMaxO, binary output to indicate a new
maximum

18.5.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I

Library Accumulator 605

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D,

VALT_IMAGE1D, VALT_IMAGE0D
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMaxO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.5.3. Parameters

None

18.5.4. Examples of Use

The use of operator FrameMax is shown in the following examples:

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Accumulator 606

VisualApplets User Documentation Release 3

18.6. Operator FrameMin
Operator Library: Accumulator

This operator returns the minimum pixel value found for each input frame. The output frame has the
same size as the input frame, where each pixel is replaced by the minimum value found in the image
so far. If the current pixel is a new minimum the output Link IsMinO, otherwise it is 0.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced selecting the min
parallel component prior to this operator. Use SplitParallel, MergeKernel and MIN for this
operation.

With every new input frame the minimum detection starts again. Additionally, it is possible to clear the
current minimum manually when the ClrI link is set to 1. When a manual clear is not necessary, you
must ensure a constant 0 at ClrI, to enable normal operation.

The following example shows the relation of input values to output values.

Often, this operator is used in conjunction with operators RemoveLine and RemovePixel to use only
the last image pixel containing the results of all frame pixels.

Image Restrictions

• Empty Images

Empty images, i.e., images with no pixels, are allowed. The operator will output an empty image.

18.6.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMinO, binary output to indicate a new minimum

18.6.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I

Library Accumulator 607

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D,

VALT_IMAGE1D, VALT_IMAGE0D
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMinO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.6.3. Parameters

None

18.6.4. Examples of Use

The use of operator FrameMin is shown in the following examples:

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Accumulator 608

VisualApplets User Documentation Release 3

18.7. Operator FrameSum
Operator Library: Accumulator

This operator computes the sum of all pixel values for each input frame. The output frame has the
same size as the input frame, where each pixel is replaced by the current frame sum. Thus, each pixel
is replaced by the pixel sum determined so far.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced by adding up the
parallel components prior this operator using SplitParallel and ADD.

With every new input frame the summation starts from zero. Additionally, it is possible to clear the
current sum manually when the ClrI link is set to 1. When a manual clearing is not necessary, you
must ensure a constant 0 at ClrI, to enable normal operation.

The following example shows the relation of input values to output values.

Often, this operator is used in conjunction with operators RemoveLine and RemovePixel to use only
the last image pixel containing the results of all frame pixels.

Image Restrictions

• Image size

Varying line lengths and empty lines are allowed in non-empty images.

• Empty Images

Empty images, i.e., images with no pixels, are allowed. The operator will output an empty image.

18.7.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Link O, Data Output

18.7.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
1 auto

Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I

Library Accumulator 609

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI Output Link O
Kernel Columns 1 as I as I
Kernel Rows 1 as I as I
Img Protocol VALT_IMAGE2D as I as I
Color Format VAF_GRAY as I as I
Color Flavor FL_NONE as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The output bit width is automatically determined from the input bit width and maximum image
dimension. The output bit width is determined by

OutputBitWidth = InputBitWidth+ dlog2 (Max:ImgWidth ¤Max:ImgHeight+ 1)e

The output bit width must not exceed 64 Bit.

18.7.3. Parameters

None

18.7.4. Examples of Use

The use of operator FrameSum is shown in the following examples:

• Section 12.2.2, 'Auto Threshold Mean'

Determines the mean value of an image and used the value as threshold value for the next image
processed.

Library Accumulator 610

VisualApplets User Documentation Release 3

18.8. Operator Histogram
Operator Library: Accumulator

This operator calculates an intensity histogram from the input image at I and will output the results at
output O. Depending on the option of the AutoSync parameter, the histogram is computed for each line
or for each frame. The output is not a visualization of the results, but a list of the histogram values.

• AutoSync = EoF produces a histogram image of height 1 for the entire frame.

• AutoSync = EoL produces a histogram image of the input image height, i.e. a histogram is computed
for each input image line separately.

The histogram itself consists of 2^(InputBitWidth) elements. Each element is the number of pixels for
each tonal value. The first pixel at the histogram output is the number of pixels with tonal value zero.

Note that the input is blocked while the operator outputs its results. Therefore, small input images and
or output for each image line reduce the bandwidth significantly.

Image Restrictions

• Empty Images

Empty images, i.e., images with no pixels, are not allowed.

18.8.1. I/O Properties

Property Value
Operator Type M
Input Link I, Image Input
Output Link O, Data Output

18.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 16] auto
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any auto
Max. Img Height any auto

The output bit width depends on the max image dimension link properties and the setting of
parameter AutoSync.

For AutoSync = EoF the output bit width is

OutputBitWidth = dlog2 (Max:ImgWidth£Max:ImgHeight+ 1)e

For AutoSync = EoL the output bit width is

OutputBitWidth = dlog2 (Max:ImgWidth+ 1)e

Library Accumulator 611

VisualApplets User Documentation Release 3

The output bit width must not exceed 64 Bit.
The output image width is determined by the input bit width. Each possible pixel value of the input
image is represented by the pixels of the output image.

OutputImageWidth = 2InputBitWidth

For parameter AutoSync = EoF, the output image height is one. For parameter AutoSync = EoL,
the output image height is equal to the input image height.

18.8.3. Parameters

AutoSync
Type static parameter
Default EoL
Range {EoL, EoF}

This parameter selects whether to output a histogram every line (setting EoL) or every frame
(setting EoF). Note the parameter's influence on the output bit width. The output bit width must not
exceed 64 Bit.

18.8.4. Examples of Use

The use of operator Histogram is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

Library Accumulator 612

VisualApplets User Documentation Release 3

18.9. Operator ModuloCount
Operator Library: Accumulator

The ModuloCounter counts the number of pixels, lines or frames at the input link. Its count sequence
is restricted by the modulo divisor. The number of unique states that a counter may have before the
sequence repeats itself is defined by the modulo divisor. The modulo divisor is defined with the Divisor
parameter. For example, a modulo divisor of 4 will count "n MOD 4" i.e. 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 ...

The image dimensions of the output frames are always equal to the image dimensions of the input
frames. The pixel data at the output represent the counter result. Note that no pixel values are used.
Only the pixel, line or frame index is considered for calculation.

The counter always starts from value zero. The CountEntity parameter can be configured to either
count every pixel, line or frame of the input link. For example, if parameter CountEntity is set to PIXEL,
the operator will increment its counter with every pixel of the input.

If CountEntity is set to LINE, the counter increments at the beginning of every line and hence, counts
the lines of the input link. For example a modulo divisor of four will have the result that all pixels of
line zero have value 0. The pixels of line one will have value one, etc. However, the pixels of line 4
will have the pixel values zero again.

If CountEntity is set to FRAME, the counter increments at the beginning of every frame.

In the following examples the operator's usage is illustrated. First example shows two successive
frames which have an image width and image height of eight pixels. All pixel values are illustrated as
numbers. Frame index 0 represents the initial frame, i.e. the first frame after acquisition start.

• Configuration: Divisor = 6, CountEntity = PIXEL, AutoClear = EoF

As can be seen in this example, the counter is incremented with every pixel when parameter
CountEntity is set to PIXEL. The result values are in the range from zero to five, as the Divisor is
set to six. In the second frame the operator starts from zero again, as the counter is reset at the
end of the frame.

• Configuration: Divisor = 6, CountEntity = LINE, AutoClear = NONE

In this example, the operator counts lines instead of pixels. Thus, every pixel of the image represents
the line number. Here, parameter AutoClear is set to NONE. Therefore, the operator continues
counting lines in the second frame without a reset at the first image line.

Library Accumulator 613

VisualApplets User Documentation Release 3

• Configuration: Divisor = 6, CountEntity = FRAME, AutoClear = NONE

The last example shows the counting of frames. Here, the value of every pixel represents the frame
number.

If the parameter divisor is changed during acquisition, the new value is applied with the start of the
next frame. For 1D input, the new value is applied for the next line. If 0D data is at the input, a new
divisor value is applied immediately.

Image Restrictions

• Empty Images

Empty images, i.e., images with no pixels, are not allowed.

18.9.1. I/O Properties

Property Value
Operator Type O
Input Link I, Image Input
Output Link O, Data Output

18.9.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 63]
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Accumulator 614

VisualApplets User Documentation Release 3

18.9.3. Parameters

Divisor
Type static/dynamic write parameter
Default 1
Range [1..2^OutputBitWidth]

This parameter defines the divisor of the modul operation. The divisor value has to be less equal
than 2^OutputBitwidth.

CountEntity
Type static parameter
Default PIXEL
Range {PIXEL, LINE, FRAME}

This parameter defines whether the operator counter is enabled for every pixel, every line or it is
enabled once for each frame only.

Option FRAME is only available for image protocol VALT_IMAGE2D. LINE is only available for image
protocols VALD_IMAGE2D and VALT_LINE1D. For image protocol VALT_PIXEL0D the parameter will
always count pixel.

AutoClear
Type static parameter
Default NONE
Range {EoL, EoF, NONE}

The AutoClear option allows a reset of the counter to zero at either the end of a line, the end of a
frame or no clear at all is performed.

If CountEntity is set to PIXEL, all three options of this parameter can be selected. If CountEntity
is set to LINE options EoF and NONE are available. For CountEntity FRAME, an auto clear of the
operator is not possible.

If the VALT_LINE1D image protocol is used, no clear at the end of a frame is possible. In
VALT_PIXEL0D, no auto clear of the operator is available.

18.9.4. Examples of Use

The use of operator ModuloCount is shown in the following examples:

• Section 9.2, ' Multiple DMA Channel Designs '

Remove 9 out of 10 images.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.3, 'Color Plane Separation Option 3 - Sequential with Operator ImageBufferMultiRoI'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.6, 'Image Grayscale Scope'

Library Accumulator 615

VisualApplets User Documentation Release 3

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.14.2, 'Grid Overlay Fading'

Examples - A grid is overlayed to the input images. The grid pixel value is determined from the
input pixel value.

Library Accumulator 616

VisualApplets User Documentation Release 3

18.10. Operator Register
Operator Library: Accumulator

Register is a data storage element. Input pixels are stored and forwarded to the output while the
Capture input is set to 1. If Capture is set to 0, than the previously stored value will be held.

It is possible to reset the register to the initial value at the and of a line, the end of a frame or never.
This behavior is controlled using parameter AutoClear. An initial value can be defined using parameter
Init. This initial value is applied on start-up.

Register operators are commonly used to store intermediate results.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced by selecting the last
parallel component using operator SelectFromParallel prior to this operator.

18.10.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

Capture, binary input to control the register
Output Link O, Data Output

18.10.2. Supported Link Format

Link Parameter Input Link I Input Link Capture Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I as I

Color Format any VAF_GRAY as I
Color Flavor any FG_NONE as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

18.10.3. Parameters

AutoClear
Type static parameter

Library Accumulator 617

VisualApplets User Documentation Release 3

AutoClear
Default EoL
Range {EoL, EoF, None}

This parameter selects whether to reset the register to the initial value at end of line (EoL), end of
frame (EoF) or never (None).

If image protocol VALT_LINE1D is used, the auto clear at the end of a frame is not possible. For
VALT_PIXEL0D or VALT_SIGNAL, the parameter is disabled.

Init
Type static parameter
Default 0
Range [0, 2^InputBitWidth-1]

This parameter defines the initialization value for the register operator at design start up, after
a design reset, or after an auto clear event. The minimum value is 0. The maximum value can
be derived from the pixel bit width at the input. Currently, no signed values can be edited. To
set the parameter to a signed value enter the unsigned two's complements representation. For
color and other multi component formats, the parameter Init defines the initialization value for all
components, i.e. all components will be initialized with the same value.

18.10.4. Examples of Use

The use of operator Register is shown in the following examples:

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

Library Accumulator 618

VisualApplets User Documentation Release 3

18.11. Operator RowMax

Operator Library: Accumulator

This operator returns the maximum pixel value found inside each image row. Each input pixel value is
replaced by the maximum pixel value found in the very same row so far. If the current pixel is a new
maximum the output Link IsMaxO is 1, otherwise it is 0.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced selecting the max
parallel component prior to this operator. Use SplitParallel, MergeKernel and MAX for this
operation.

Every new row restarts the maximum detection. Additionally, it is possible to clear the current row
maximum manually when the ClrI link is set to 1. When a manual clear is not required, you must
ensure a constant 0 at ClrI.

Often, this operator is used in conjunction with operator RemovePixel to use only the last column
containing the results of the full frame. Note that the operator will require additional resources with
increased parallelism. If only the maximum of each row without intermediate results is required, it is
possible to determine the maximum of the parallel words first.

The following example shows the relation of input values to output values.

Image Restrictions

• Image Size

Varying line lengths and empty lines are allowed in non-empty images.

• Empty Images

Empty images, i.e., images with no pixels, are allowed. The operator will output an empty image.

18.11.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMaxO, Binary output to indicate a new
maximum

Library Accumulator 619

VisualApplets User Documentation Release 3

18.11.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMaxO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.11.3. Parameters

None

18.11.4. Examples of Use

The use of operator RowMax is shown in the following examples:

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Accumulator 620

VisualApplets User Documentation Release 3

18.12. Operator RowMin

Operator Library: Accumulator

This operator returns the minimum pixel value found inside each image row. The operator replaces
each pixel value by the minimum value found in the very same row so far. If a current pixel is a new
minimum, the output link IsMinO is 1, otherwise it is 0.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced selecting the min
parallel component prior to this operator. Use SplitParallel, MergeKernel and MIN for this
operation.

With every new row the minimum detection starts again. Additionally it is possible to clear the current
row minimum manually when the ClrI link is set to 1. When a manual clear is not required, you must
ensure a constant 0 at ClrI.

Often, this operator is used in conjunction with operator RemovePixel to use only the last column
containing the results of the full frame. Note that the operator will require additional resources with
increased parallelism. If only the minimum of each row without intermediate results is required, it is
possible to determine the minimum of the parallel words first.

The following example shows the relation of input values to output values.

Image Restrictions

• Image Size

Varying line lengths and empty lines are allowed in non-empty images.

• Empty Images

Empty images, i.e., images with no pixels, are allowed. The operator will output an empty image.

18.12.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Links O, Data Output

IsMinO, Binary output to indicate a new
maximum

Library Accumulator 621

VisualApplets User Documentation Release 3

18.12.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI
Bit Width [1, 64] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link IsMinO
Bit Width as I 1
Arithmetic as I unsigned
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

18.12.3. Parameters

None

18.12.4. Examples of Use

The use of operator RowMin is shown in the following examples:

• Section 12.13.2, 'Print Inspection Example- Position Correction and Defect Detection Using Blob
Based Template Matching'

Examples- Geometric Transformation and Defect Detection

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Accumulator 622

VisualApplets User Documentation Release 3

18.13. Operator RowSum
Operator Library: Accumulator

This operator calculates the sum of the pixel values for each image row. Each pixel value at the output
represents the current sum of the image row. Thus, each pixel is replaced by the sum determined so far.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. We
recommend to use low parallelism at this operator.

In many use cases of this operator, the parallelism can be reduced by adding up the
parallel components prior this operator using SplitParallel and ADD.

With every new input row the sum for summations starts from zero. Additionally, it is possible to clear
the current row sum manually when the ClrI link is set to 1. When a manual clearing is not required,
you must ensure a constant 0 at ClrI.

The following example shows the relation of input values to output values.

Often, this operator is used in conjunction with operator RemovePixel to use only the last column
containing the results of the full frame. Note that the operator will require additional resources with
increased parallelism. If only the sum of each row without intermediate results is required, it is possible
to determine the sum of the parallel words first.

Image Restrictions

• Image Size

Varying line lengths and empty lines are allowed in non-empty images.

• Empty Images

Empty images, i.e. images with no pixels, are allowed. The operator will output an empty image.

18.13.1. I/O Properties

Property Value
Operator Type O
Input Links I, Image Input

ClrI, Clear Input
Output Link O, Data Output

18.13.2. Supported Link Format

Link Parameter Input Link I Input Link ClrI Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
1 auto

Library Accumulator 623

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ClrI Output Link O
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns 1 as I as I
Kernel Rows 1 as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I as I

Color Format VAF_GRAY as I as I
Color Flavor FL_NONE as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The output bit width is automatically determined from the input bit width and maximum image
width. The output bit width is determined by

OutputBitWidth = InputBitWidth£ dlog2 (Max:ImgWidth+ 1)e

The output bit width must not exceed 64 Bit.

18.13.3. Parameters

None

18.13.4. Examples of Use

The use of operator RowSum is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.10.3, 'Image Composition Using Exposure Fusion'

Examples - ExposureFusion

Library Arithmetics 624

VisualApplets User Documentation Release 3

19. Library Arithmetics

The Arithmetics library includes arithmetic operators such as ADD, SUB, COS, ShiftLeft, etc.

The following list summarizes all Operators of Library Arithmetics

Operator Name Short Description available
since

ABS Calculates the absolute value of the input Version 1.1

ADD Calculates the sum of multiple inputs. Version 1.1

ARCCOS Calculates the arc cosine of the input. Version 1.1

ARCCOT Calculates the arccot of the input. Version 1.1

ARCSIN Calculates the arc sine of the input. Version 1.1

ARCTAN Calculates the arctan of the input. Version 1.1

ClipHigh Limits the values to a parametrizable maximum. Version 1.1

ClipLow Limits the values to a parametrizable minimum. Version 1.1

COS Calculates the cosine of the input. Version 1.1

COT Calculates the cotangent of the input. Version 1.1

DIV Divides the values at input link I1 by the values of
input link I2 Version 1.1

MULT Multiplies the values at input link I1 by the values
of input link I2 Version 1.1

Library Arithmetics 625

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

RND Performs a right shift with rounding. Version 1.1

SCALE Performs a multiplication of the input with a
parameterizable value. Version 1.1

ShiftLeft Performs an arithmetic shift of the input data to the
left. Version 1.1

ShiftRight Performs an arithmetic shift of the input data to the
right. Version 1.1

SIN Calculates the sine of the input. Version 1.1

SQRT Calculates the square root of the input. Version 1.1

SUB Calculates the difference of the two input links. Version 1.1

TAN Calculates the tangent of the input. Version 1.1

Table 19.1. Operators of Library Arithmetics

Library Arithmetics 626

VisualApplets User Documentation Release 3

19.1. Operator ABS
Operator Library: Arithmetics

The operator calculates the absolute value of the input, i.e.

O = jIj

Note that the absolute value of the smallest possible negative value will require the same number
of bits as its positive equivalent. Therefore, the output bit width is equal to the input bit width. For
example, in 8 bit representation, the smallest value will be -128 while the maximum value is 127. After
the absolute operation -128 becomes +128 what still requires 8 bit.

19.1.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [2, 64] as I
Arithmetic signed as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY, VAF_COLOR as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.1.3. Parameters

None

19.1.4. Examples of Use

The use of operator ABS is shown in the following examples:

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.3, 'Roberts Cross Gradient'

Library Arithmetics 627

VisualApplets User Documentation Release 3

Examples - Roberts Cross Gradient filter example.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Arithmetics 628

VisualApplets User Documentation Release 3

19.2. Operator ADD
Operator Library: Arithmetics

The module ADD is calculating the sum over multiple input links. The number of input links has to be
selected at the instantiation of the module.

19.2.1. I/O Properties

Property Value
Operator Type O
Input Links I[0], data input

I[n], n > 0, data input
Output Link O, data output

19.2.2. Supported Link Format

Link Parameter Input Link I[0] Input Link I[n], n > 0 Output Link O
Bit Width {[1; 63] unsigned, [2;

63] signed}
{[1; 63] unsigned, [2;
63] signed}

auto

Arithmetic {unsigned, signed} {unsigned, signed} auto
Parallelism any as I[0] as I[0]
Kernel Columns any as I[0] as I[0]
Kernel Rows any as I[0] as I[0]
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I[0] as I[0]

Color Format VAF_GRAY as I[0] as I[0]
Color Flavor FL_NONE as I[0] as I[0]
Max. Img Width any as I[0] as I[0]
Max. Img Height any as I[0] as I[0]

The output bit width is automatically determined from the maximum input link bit width. The
output bit width is determined by

OutputBitWidth = dlog2
¡
No:ofInputs£

¡
2max: InputBitWidth ¡ 1

¢¢
e

The output bit width must not exceed 64 Bit.

If you use unsigned and signed values on the input links, you might need an extra bit on the output.
The output arithmetic is unsigned if all of the inputs are unsigned. The output arithmetic is signed
if at least one of the inputs uses a signed arithmetic.

19.2.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
logic elements are used for implementing the operator.

You can select one of the following values:

Library Arithmetics 629

VisualApplets User Documentation Release 3

ImplementationType
AUTO: When the operator is instantiated, the optimal implementation strategy is selected
automatically based on the parametrization of the connected links.

EmbeddedALU: The operator uses embedded arithmetic logic elements of the FPGA that are not
LUT based.

LUT: The operator uses the LUT logic of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

19.2.4. Examples of Use

The use of operator ADD is shown in the following examples:

• Section 3.6.2, 'O-Type Networks'

Synchronization Rules - The use of the operator in an O-type Network.

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.8.1.3, 'Roberts Cross Gradient'

Examples - Roberts Cross Gradient filter example.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.8.5.1, 'High Boost Sharpening Filter'

Examples - A high boost Laplace filter for sharpening

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.14.2, 'Grid Overlay Fading'

Examples - A grid is overlayed to the input images. The grid pixel value is determined from the
input pixel value.

Library Arithmetics 630

VisualApplets User Documentation Release 3

19.3. Operator ARCCOS
Operator Library: Arithmetics

Implemented Function ist not arccos(x)

The implemented function is -1 * arccos(x). See description.

The operator ARCCOS is calculating the arc cosine of the input. Note that not arccos(x) is implemented.
Instead, the result is inverted i.e. -1 * arccos(x) is implemented.

The input range of arccos is [-1,1]. The operator maps the input interval range [-1, 1] to£
¡2wi¡2;2wi¡2

¤
where

wi

is the bit width at the input. As can be seen, not the full value range of the input is used. If an input
value is outside the allowed value range, the operator will clip the value to -1 or 1. Thus, the argument
x of the arccos is determined by

x =
InputValue

2wi¡2

The operator calculates the inverse of the arccos i.e. the output value range is not [0, - π] it is [- π,
0]. The output value range of the operator in VisualApplets is mapped to£

¡2wo¡1;0
¤

where
wo

is the bit width at the output link. Thus the output value is

OutputValue = ¡arccos(x)£ 2
wo¡1

¼

The following image shows the plot of the normal inverse arccos function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 631

VisualApplets User Documentation Release 3

19.3.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.3.3. Parameters

None

Library Arithmetics 632

VisualApplets User Documentation Release 3

19.3.4. Examples of Use

The use of operator ARCCOS is shown in the following examples:

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 633

VisualApplets User Documentation Release 3

19.4. Operator ARCCOT

Operator Library: Arithmetics

The operator calculates the arccot of the input.

The input range of arccot is [∞, ∞]. This operator includes a parameter Resolution to define the fixed
point resolution bits of the input values. The input range is given by the number of input bits =·

¡2wi¡1

2R
;
2wi¡1

2R

·
where

wi

is the bit width at the input and R the resolution bits.

The argument x of the arccot function is determined by

x =
InputValue

2R

The results of the arccot function are in the range]0, π[. The output value range of the operator in
VisualApplets is mapped to £

0;2bo¡1
¤

where
bo

is the bit width at the output link. Thus the output value is

OutputValue = arccot(x)£ 2
bo¡1

¼

The following image shows the plot of the arccot function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 634

VisualApplets User Documentation Release 3

Le't have a look at an input pixel value. For example -100. With the given resolution of four, the real
value representation of the pixel value is -100/16. The arccot result of -100/16 is arccot(-100/16) =
2.98. In pixel value representation this result becomes 122 which is the same as shown in the plot.

19.4.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Library Arithmetics 635

VisualApplets User Documentation Release 3

19.4.3. Parameters

ResolutionBits
Type static parameter
Default 8
Range [0..OutputBitWidth]

This parameter defines the accuracy of the input values as defined in the description above.

19.4.4. Examples of Use

The use of operator ARCCOT is shown in the following examples:

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 636

VisualApplets User Documentation Release 3

19.5. Operator ARCSIN

Operator Library: Arithmetics

The operator ARCSIN is calculating the arc sine of the input.

The input range of arc sine is [-1,1]. The operator maps the input interval range [-1, 1] to [¡2wi¡2;2wi¡2]
where wi is the bit width at the input. As can be seen, not the full value range of the input is used.
If an input value is outside the allowed value range, the operator will clip the value to -1 or 1. Thus,
the argument x of the arc sine is determined by

x =
InputValue

2wi¡2

The operator's output range is [-π/2, π/2]. The output value range of the operator in VisualApplets
is mapped to

[¡2wo¡1;2wo¡1]
where

wo

is the bit width at the output link. Thus the output value is

OutputValue = arcsin(x)£ 2
wo¡1

¼

The following image shows the plot of the normal inverse arc sine function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 637

VisualApplets User Documentation Release 3

19.5.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.5.3. Parameters

None

Library Arithmetics 638

VisualApplets User Documentation Release 3

19.5.4. Examples of Use

The use of operator ARCSIN is shown in the following examples:

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 639

VisualApplets User Documentation Release 3

19.6. Operator ARCTAN

Operator Library: Arithmetics

The operator calculates the arctan of the input.

The input range of arctan is [∞, ∞]. This operator includes a parameter Resolution to define the fixed
point resolution bits of the input values. The input range is given by the number of input bits =·

¡2wi¡1

2R
;
2wi¡1

2R

·
where

wi

is the bit width at the input and R the resolution bits.

The argument x of the arctan function is determined by

x =
InputValue

2R

The results of the arctan function are in the range]- π/2, π/2[. The output value range of the operator
in VisualApplets is mapped to £

¡2bo¡2;2bo¡2
¤

where
bo

is the bit width at the output link. Thus the output value is

OutputValue = arctan(x)£ 2
bo¡1

¼

The following image shows the plot of the arctan function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 640

VisualApplets User Documentation Release 3

Le't have a look at an input pixel value. For example -50. With the given resolution of four, the real
value representation of the pixel value is -50/16. The arctan result of -50/16 is arctan(-50/16) = -1.26.
In pixel value representation this result becomes -51,38 which is the same as shown in the plot.

19.6.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.6.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Library Arithmetics 641

VisualApplets User Documentation Release 3

19.6.3. Parameters

ResolutionBits
Type static parameter
Default 8
Range [0, OutputBitWidth]

This parameter defines the accuracy of the input values as defined in the description above.

19.6.4. Examples of Use

The use of operator ARCTAN is shown in the following examples:

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.13.1, 'Histogram of Oriented Gradients (HOG)'

Examples- Histogram of oriented Gradients

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 642

VisualApplets User Documentation Release 3

19.7. Operator ClipHigh
Operator Library: Arithmetics

The module ClipHigh limits the values to a parametrizable maximum. If the input exceeds the maximum
it is clipped, i.e.

O =

½
I if I < to
to else

19.7.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.7.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 63] signed as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.7.3. Parameters

to
Type static parameter
Default 127
Range range of the input link

This parameter defines the maximum value for the output link.

19.7.4. Examples of Use

The use of operator ClipHigh is shown in the following examples:

• Section 12.4.4, 'RGB White Balancing'

Examples - The applet shows an example for white balancing on RGB images.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

Library Arithmetics 643

VisualApplets User Documentation Release 3

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.10.3, 'Image Composition Using Exposure Fusion'

Examples - ExposureFusion

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Arithmetics 644

VisualApplets User Documentation Release 3

19.8. Operator ClipLow
Operator Library: Arithmetics

The module ClipLow limits the values to a parametrizable minimum. If the input falls below the
minimum it is clipped, i.e.

O =

½
I if I > from
from else

19.8.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 63] signed as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.8.3. Parameters

from
Type static parameter
Default 0
Range range of the input link

This parameter defines the minimum value for the output link.

19.8.4. Examples of Use

The use of operator ClipLow is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

Library Arithmetics 645

VisualApplets User Documentation Release 3

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Arithmetics 646

VisualApplets User Documentation Release 3

19.9. Operator COS

Operator Library: Arithmetics

The operator calculates the cosine of the input.

The input range of the cosine function is [∞, ∞]. Because of the periodicity of the cosine function the
input range of the VisualApplets operator is limited to [π, π[i.e. the minimum value at the input is -π
and the maximum value at the input plus 1 is π Thus, it it not possible to have the value +π at the input.

The argument x of the cosine function is therefore determined by

x = InputValue£ ¼

2wi¡1

where
wi

is the bit width at the input link.

The results of the cosine function are in the range [-1, 1]. The output value range of the operator in
VisualApplets is mapped to £

¡2wo¡2;2wo¡2
¤

where
wo

is the bit width at the output link. Thus the output value is

OutputValue = cos(x)£ 2wo¡2

The following image shows the plot of the cosine function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 647

VisualApplets User Documentation Release 3

Le't have a look at an input pixel value. For example -50. With the given input bit width of 8, the real
value representation of the pixel value is -50 * pi / 128. The cosine result will then be 0.33. In pixel
value representation this result becomes 43 which is the same as shown in the plot.

19.9.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.9.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8, 32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Library Arithmetics 648

VisualApplets User Documentation Release 3

19.9.3. Parameters

None

19.9.4. Examples of Use

The use of operator COS is shown in the following examples:

• Section 12.9.3.2.4, 'Geometric Transformation and Distortion Correction'

Examples- Geometric Transformation and Distortion Correction using PixelReplicator

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 649

VisualApplets User Documentation Release 3

19.10. Operator COT

Operator Library: Arithmetics

The operator COT calculates the cotangent of the input.

The input range of the cotangent function is [-∞, ∞]. Because of the periodicity of the cotangent
function the input range of the VisualApplets operator is limited to [-π, π[i.e. the minimum value at
the input is -π and the maximum value at the input plus 1 is π. Thus, it it not possible to have the
value +π at the input.

The argument x of the cotangent function is therefore determined by

x = InputValue£ ¼

2wi¡1

where
wi

is the bit width at the input link.

The results of the cotangent function are in the range [-∞, ∞]. This operator inlcudes a parameter
ResolutionBits to define the fixed point resolution bits of the output values. The output range is
therefore given by the number of output bits and the resolution bits =·

¡2wo¡2

2R
;
2wo¡2 ¡ 1
2R

·
where

wo

is the bit width at the output and R the resolution bits. Thus, the output value is

OutputValue = cot(x)£ 2R

The values -π/2 and π/2 are not defined for the tangent function. The VisualApplets operator will clip
these values to the maximum or minimum possible values at the output. Moreover, the result of the
cotangent function can be out of the output value range. In this case, the results will be clipped to the
maximum or minimum possible values, too. Thus,

OutputValue =

8><>:
2wo¡1 ¡ 1 if x = ¡¼=2 or tan(x)£ 2R > 2wo¡1 ¡ 1
¡2wo¡1 if x = ¼=2 or tan(x)£ 2R < ¡2wo¡1

cot(x)£ 2Relse

The following image shows the plot of the normal cotangent function.

Library Arithmetics 650

VisualApplets User Documentation Release 3

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

19.10.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input

Library Arithmetics 651

VisualApplets User Documentation Release 3

Property Value
Output Link O, data output

19.10.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.10.3. Parameters

None

19.10.4. Examples of Use

The use of operator COT is shown in the following examples:

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 652

VisualApplets User Documentation Release 3

19.11. Operator DIV
Operator Library: Arithmetics

The operator DIV divides the values at input link I1 by the values at input link I2. At output link O, the
integer result of the division is provided. At output link R the remainder of the division is provided.

A division by zero is undefined at both outputs.

Resources

A division requires many FPGA resources. Try to use a minimized parallelism when
performing a division. For divisions by a power of two value (2^n) use the shift operator
ShiftRight instead.

19.11.1. I/O Properties

Property Value
Operator Type O
Input Links I1, dividend / numerator input

I2, divisor / denominator input
Output Links O, integer quotient output

R, remainder output

19.11.2. Supported Link Format

Link Parameter Input Link I1 Input Link I2
Bit Width [1, 64] [1, 64]
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link R
Bit Width auto as I2
Arithmetic as I as I
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I as I
Color Flavor as I as I
Max. Img Width as I as I
Max. Img Height as I as I

Library Arithmetics 653

VisualApplets User Documentation Release 3

The bit width of the input I2 (divisor) has to be less equal than the bitwidth of the input at link
I1 (dividend).
For unsigned inputs the bit width at output O is equal to the bitwidth at I1. For signed inputs, the
bit width is equal to the bit width at I1 + 1.

19.11.3. Parameters

None

19.11.4. Examples of Use

The use of operator DIV is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.9.7, 'Shear of an Image'

Example - Line Shear example with linear interpolation.

Library Arithmetics 654

VisualApplets User Documentation Release 3

19.12. Operator MULT
Operator Library: Arithmetics

Operator MULT multiplies the values at input link I1 by the values at input link I2. At output link O,
the result of the multiplication is provided.

Operator MULT supports asymmetric arithmetic types on its inputs, i.e., SIGNED and UNSIGNED may
be mixed up so that you can multiply an unsigned multiplier with a signed multiplicand or a signed
multiplier with an unsigned multiplicand as well as a signed multiplier with a signed multiplicand or an
unsigned multiplier with an unsigned multiplicand.

Resources

A multiplication requires many FPGA resources. For scaling with a constant use operator
SCALE or ShiftLeft instead. Moreover, most frame grabbers include embedded arithmetic
logic units (embedded multipliers). Use operator HWMULT to save resources.

19.12.1. I/O Properties

Property Value
Operator Type O
Input Links I1, multiplicand 1

I2, multiplicand 2
Output Link O, multiplication result

19.12.2. Supported Link Format

Link Parameter Input Link I1 Input Link I2 Output Link O
Bit Width [1, 32] unsigned, [2,

32] signed
[1, 32] unsigned, [2,
32] signed

auto

Arithmetic {unsigned, signed} {unsigned, signed} {unsigned, signed}
Parallelism any as I1 as I1
Kernel Columns any as I1 as I1
Kernel Rows any as I1 as I1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I1 as I1

Color Format VAF_GRAY as I1 as I1
Color Flavor FL_NONE as I1 as I1
Max. Img Width any as I1 as I1
Max. Img Height any as I1 as I1

The output bit width is the sum of the input bit widths i.e. bit width at I1 + bit width at I2.
If I1 or I2 is set to signed, O must be set to signed as well.

19.12.3. Parameters

None

19.12.4. Examples of Use

The use of operator MULT is shown in the following examples:

Library Arithmetics 655

VisualApplets User Documentation Release 3

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

Library Arithmetics 656

VisualApplets User Documentation Release 3

19.13. Operator RND
Operator Library: Arithmetics

The operator RND performs a right shift with rounding and clipping to the output bit width. The number
of bits to round is specified with parameter bits2Round.

Round half away from zero is the implemented rounding method. Color components are rounded
separately.

Examples

• Input = 4 Bit unsigned, Input Value = 7, bits2Round = 2

Output = 2 Bit unsigned, Output Value = 2

• Input = 5 Bit signed, Input Value = -13, bits2Round = 2

Output = 3 Bit signed, Output Value = -3

• Input = 4 Bit unsigned, Input Value = 15, bits2Round = 2

Output = 2 Bit unsigned, Output Value = 3 Note: The output has been clipped to the maximum
possible value.

19.13.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.13.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The bit width at the output is the input bit width minus parameter value of bits2Round.

19.13.3. Parameters

bits2Round
Type static parameter
Default 0

Library Arithmetics 657

VisualApplets User Documentation Release 3

bits2Round
Range [0, BitWidth(I)-1] for unsigned

(BitWidth(I) - bits2Round > 1) for signed

This parameter defines by how many bits the input is shifted to the right.

19.13.4. Examples of Use

The use of operator RND is shown in the following examples:

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

Library Arithmetics 658

VisualApplets User Documentation Release 3

19.14. Operator SCALE

Operator Library: Arithmetics

The operator performs a multiplication of the input with a parameterizable value. The multiplicand
can be defined using parameter ScaleFactor. The range of ScaleFactor is defined by parameter
ScaleFactorMaxBits if ScaleFactor is a dynamic parameter. Only positive values are allowed for the
scale factor.

Less Resources for Static Parameter

The operator requires less FPGA resources if the parameter ScaleFactor is set to static.
Moreover, users should consider using operator HWMULT together with CONST to save
resources.

19.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.14.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 32] unsigned, [2, 32] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

The bit width at the output is the input bit width + parameter ScaleFactorMaxBits if parameter
ScaleFactor is set to dynamic. If the parameter is set to static, the output bit width is

OutputBitWidth = log2
¡
ScaleFactor ¤ 2InputBitWidth ¡ 1

¢

19.14.3. Parameters

ScaleFactorMaxBits
Type static parameter
Default 8
Range [1, 32]

Using this parameter, the range of parameter ScaleFactor is defined. If ScaleFactor is set to static,
this parameter is disabled

Library Arithmetics 659

VisualApplets User Documentation Release 3

ScaleFactor
Type static/dynamic read/write parameter
Default 1
Range [0, 2^ScaleFactorMaxBits - 1] if dynamic

This parameter defines the factor for the multiplication with the operator's input. The range of this
parameter is [0, 1^ScaleFactorMaxBits - 1], if parameter ScaleFactor is dynamic. Otherwise, the
range of this parameter is [1, 2^32 - 1].

19.14.4. Examples of Use

The use of operator SCALE is shown in the following examples:

• Section 9.2, ' Multiple DMA Channel Designs '

Threshold binarization

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.3, 'Roberts Cross Gradient'

Examples - Roberts Cross Gradient filter example.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.2.1, 'Close'

Examples - Shows the implementation of a morphological close applied to binary images.

• Section 12.8.2.3, 'Open'

Examples - Shows the implementation of a morphological open applied to binary images.

• Section 12.8.3.1, 'Averaging 3x3'

Library Arithmetics 660

VisualApplets User Documentation Release 3

Examples - A simple 3x3 box filter.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 12.8.5.1, 'High Boost Sharpening Filter'

Examples - A high boost Laplace filter for sharpening

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

Library Arithmetics 661

VisualApplets User Documentation Release 3

19.15. Operator ShiftLeft
Operator Library: Arithmetics

The operator performs an arithmetic shift of the input data to the left. The number of bits to be shifted
is defined using parameter Shift. Each bit at the input is left shifted by the parameterized number of
bits. The newly inserted least significant bits will have value zero.

Bit shifting is usually used to scale a value by a power of two value. For example a left shift by one bit
will double the value. A left shift by 2 bits will quadruple the input value.

Each color component is shifted separately.

19.15.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.15.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The bit width at the output is the input bit width plus the value of parameter Shift.

19.15.3. Parameters

Shift
Type static parameter
Default 0
Range [0, 64 - Input BitWidth]

This parameter defines the number of bits by which the input is left shifted.

19.15.4. Examples of Use

The use of operator ShiftLeft is shown in the following examples:

• Figure 9.8, 'ShiftLeft Operator Added for 16Bit Output'

Tutorial - User ShiftLeft to change DMA bit width.

Library Arithmetics 662

VisualApplets User Documentation Release 3

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Arithmetics 663

VisualApplets User Documentation Release 3

19.16. Operator ShiftRight
Operator Library: Arithmetics

The operator performs an arithmetic shift of the input data to the right. The number of bits to be
shifted is defined using parameter Shift. Each bit at the input is right shifted by the parameterized
number of bits.

Bit shifting is usually used to scale a value by a power of two value. For example a right shift by one
bit will divide the input value by 2. A right shift by 2 bits will divide the input value by 4.

Each color component is shifted separately.

19.16.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.16.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The bit width at the output is the input bit width minus the value of parameter Shift.

19.16.3. Parameters

Shift
Type static parameter
Default 0
Range [0, Input BitWidth - 1] for unsigned

[0, Input BitWidth - 2] for signed

This parameter defines the number of bits by which the input is right shifted.

19.16.4. Examples of Use

The use of operator ShiftRight is shown in the following examples:

• Figure 9.8, 'ShiftLeft Operator Added for 16Bit Output'

Library Arithmetics 664

VisualApplets User Documentation Release 3

Tutorial - User ShiftLeft to change DMA bit width.

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.2.2, 'Auto Threshold Mean'

Determines the mean value of an image and used the value as threshold value for the next image
processed.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.3.1, 'Averaging 3x3'

Examples - A simple 3x3 box filter.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.4.1, 'Filter Basics'

Examples - Explains the implementation of filters.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.9.2, 'Downsampling 3x3'

Library Arithmetics 665

VisualApplets User Documentation Release 3

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Arithmetics 666

VisualApplets User Documentation Release 3

19.17. Operator SIN

Operator Library: Arithmetics

The operator calculates the sine of the input.

The input range of the sine function is [-∞, ∞]. Because of the periodicity of the sine function the input
range of the VisualApplets operator is limited to [-π, π] i.e. the minimum value at the input is -π and
the maximum value at the input plus 1 is π. Thus, it it not possible to have the value +π at the input.

The argument x of the sine function is therefore determined by

x = InputValue£ ¼

2wi¡1

where
wi

is the bit width at the input link.

The results of the sine function are in the range [-1, 1]. The output value range of the operator in
VisualApplets is mapped to

[¡2wo¡2;2wo¡2]
where

wo

is the bit width at the output link. Thus the output value is

OutputValue = sin(x)£ 2wo¡2

The following image shows the plot of the sine function.

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

Library Arithmetics 667

VisualApplets User Documentation Release 3

Le't have a look at an input pixel value. For example -50. With the given input bit width of 8, the real
value representation of the pixel value is -50 * pi / 128. The sine result will then be -0.94. In pixel
value representation this result becomes -121 which is the same as shown in the plot.

19.17.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.17.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8, 32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

Library Arithmetics 668

VisualApplets User Documentation Release 3

19.17.3. Parameters

None

19.17.4. Examples of Use

The use of operator SIN is shown in the following examples:

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.3.2.4, 'Geometric Transformation and Distortion Correction'

Examples- Geometric Transformation and Distortion Correction using PixelReplicator

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Arithmetics 669

VisualApplets User Documentation Release 3

19.18. Operator SQRT
Operator Library: Arithmetics

The operator calculates the square root of the input. The result is rounded to the next integer value.

19.18.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

19.18.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width {8, 12, 16, 20, 24, 28, 32} auto
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

The bit width at the output is

OutputBitWidth =
InputBitWidth

2
+ 1

19.18.3. Parameters

None

19.18.4. Examples of Use

The use of operator SQRT is shown in the following examples:

• Section 12.9.3.2.4, 'Geometric Transformation and Distortion Correction'

Examples- Geometric Transformation and Distortion Correction using PixelReplicator

• Section 12.9.3.2.5, 'Distortion Correction'

Examples- Distortion Correction

Library Arithmetics 670

VisualApplets User Documentation Release 3

19.19. Operator SUB

Operator Library: Arithmetics

Operator SUB calculates the difference between input link I1 and input link I2 i.e. O = I1 - I2

19.19.1. I/O Properties

Property Value
Operator Type O
Input Links I1, data input

I2, data input
Output Link O, data output

19.19.2. Supported Link Format

Link Parameter Input Link I1 Input Link I2 Output Link O
Bit Width [1, 62] unsigned, [2,

62] signed
[1, 62] unsigned, [2,
62] signed

auto

Arithmetic {unsigned, signed} {unsigned, signed} signed
Parallelism any as I1 as I1
Kernel Columns any as I1 as I1
Kernel Rows any as I1 as I1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

{VALT_IMAGE2D,
VALT_LINE1D,
VALT_PIXEL0D}

as I1

Color Format VAF_GRAY VAF_GRAY as I1
Color Flavor FL_NONE FL_NONE as I1
Max. Img Width any as I1 as I1
Max. Img Height any as I1 as I1

The output bit width is automatically determined from the input link bit widths. The output bit
width is determined by

OutputBitWidth = MaxfBitWidth(I1);BitWidth(I2)g+ 1

19.19.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy is selected
automatically based on the parametrization of the connected links.

EmbeddedALU: The operator uses embedded arithmetic logic elements of the FPGA that are not
LUT based.

Library Arithmetics 671

VisualApplets User Documentation Release 3

ImplementationType
LUT: The operator uses the LUT logic of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

19.19.4. Examples of Use

The use of operator SUB is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Arithmetics 672

VisualApplets User Documentation Release 3

19.20. Operator TAN

Operator Library: Arithmetics

The operator TAN calculates the tangent of the input.

The input range of the tangent function is [-∞, ∞]. Because of the periodicity of the tangent function
the input range of the VisualApplets operator is limited to [-π, π[i.e. the minimum value at the input
is -π and the maximum value at the input plus 1 is π. Thus, it it not possible to have the value +π
at the input.

The argument x of the tangent function is therefore determined by

x = InputValue£ ¼

2wi¡1

where
wi

is the bit width at the input link.

The results of the tangent function are in the range [-∞, ∞]. This operator includes a parameter
ResolutionBits to define the fixed point resolution bits of the output values. The output range is
therefore given by the number of output bits and the resolution bits =·

¡2wo¡2

2R
;
2wo¡2 ¡ 1
2R

·
where

wo

is the bit width at the output and R the resolution bits. Thus, the output value is

OutputValue = tan(x)£ 2R

The values -π/2 and π/2 are not defined for the tangent function. The VisualApplets operator will clip
these values to the maximum or minimum possible values at the output. Moreover, the result of the
tangent function can be out of the output value range. In this case, the results will be clipped to the
maximum or minimum possible values, too. Thus,

OutputValue =

8><>:
2wo¡1 ¡ 1 if x = ¡¼=2 or tan(x)£ 2R > 2wo¡1 ¡ 1
¡2wo¡1 if x = ¼=2 or tan(x)£ 2R < ¡2wo¡1

tan(x)£ 2R else

The following image shows the plot of the normal tangent function.

Library Arithmetics 673

VisualApplets User Documentation Release 3

In the next figure, the VisualApplets operator implementation is shown. Note the input and output
bit widths.

19.20.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input

Library Arithmetics 674

VisualApplets User Documentation Release 3

Property Value
Output Link O, data output

19.20.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [8, 12] [8,32]
Arithmetic signed signed
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

19.20.3. Parameters

ResolutionBits
Type static parameter
Default 8
Range [0, OutputBitWidth]

This parameter defines the accuracy of the input values as defined in the description above.

19.20.4. Examples of Use

The use of operator TAN is shown in the following examples:

• Section 13.7, 'Functional Example for Specific Operators of Library Arithmentics: Trigonometric
Functions'

Examples - Demonstration of how to use the operator

Library Base 675

VisualApplets User Documentation Release 3

20. Library Base

The Base library include common function operators required in most VisualApplets designs.

The following list summarizes all Operators of Library Base

Operator Name Short Description available
since

BRANCH Clones the input link to a number of output links
you can define. Version 1.1

CastBitWidth Changes the bit width by selecting the lower bits of
the input. Version 1.1

CastColorSpace Changes the logical attribute ColorFlavor. Version 1.1

CastKernel This operator re-organizes the parallelism and
kernel size of the incoming data. Version 1.1

CastParallel Enables the re-interpretation of the input link bits. Version 1.1

CastType Changes the link property Arithmetic Version 1.1

CONST Replaces each input value by a fixed value at the
output link. Version 1.1

ConvertPixelFormat
Preserve as much information as possible, while
arithmetic and bit width are adjusted to a desired
output pixel format.

Version 1.1

Coordinate_X Provides the x coordinate of the input pixel at its
output. Version 1.1

Coordinate_Y Provides the y coordinate of the input pixel at its
output. Version 1.1

Dummy Is a place holder for non existing operators. Version 2

DynamicROI Allows an ROI selection using input links. Version 1.2

Library Base 676

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

EventToHost Generates software events for rising edges at its
input links. Version 2.2

EventDataToHost This operator generates software events with data
payload. Version 3.5

ExpandToKernel The operator expands the input link I to an
arbitrary kernel size. Version 1.3

ExpandToParallel
The operator expands the input link I with
parallelism 1 to an arbitrary parallelism at output
link O.

Version 1.1

GetStatus Obtain the current value of a signal link. Version 1.2

HierarchicalBox Groups several operators into a single module. Version 1.1

ImageNumber Provides the image index of the current image of
the input link at the output link. Version 1.1

KernelRemap Remapping of kernel components. Version 1.4

MergeComponents Merges three gray input links to one RGB output
link Version 1.1

MergeKernel Merges the input links into a kernel. Version 1.2

MergeParallel
The operator merges N input links to a single
output link by concatenating the input links to
parallelism components.

Version 1.3

MergePixel Merges pixels of multiples input links of the same
parallelism into one pixel of larger bit width. Version 1.1

NOP No operation. Outputs the registered input. Version 1.1

PARALLELdn Decreases the parallelism between the input link
and the output link. Version 1.1

PARALLELup Increases the parallelism between the input link
and the output link. Version 1.1

Library Base 677

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

PseudoRandomNumberGenGenerates a stream of random values. Version 1.4

SampleDn Reduces the image size by downsampling the input
image. Version 1.1

SampleUp Increases the image size by upsampling the input
image. Version 1.1

SelectBitField Enables the selection of a bit field. Version 1.1

SelectComponent Extracts a single color component form the input
link. Version 1.1

SelectFromParallel Extracts a single parallelism component from the
input link. Version 1.1

SelectROI Extracts a rectangular region of interest (ROI) from
the frames at the input link. Version 1.1

SelectSubKernel Extracts a rectangular subset of the kernel matrix
at the input link. Version 1.1

SetDimension Enables to change of the link properties maximum
image width and maximum image height. Version 1.1

SplitComponents Separates the components of a color stream into
three separate gray image streams. Version 1.1

SplitKernel Splits the N x M kernel components of the input link
into N * M output links. Version 1.3

SplitParallel Splits the input link of parallelism degree N into N
output links of parallelism degree 1 Version 1.3

Trash A data sink for unused links. Version 1.1

Table 20.1. Operators of Library Base

Library Base 678

VisualApplets User Documentation Release 3

20.1. Operator BRANCH
Operator Library: Base

The BRANCH operator clones the input link to a parameterizable number of output links. You can define
the number of output links when you add the operator to your design. No FPGA resources are required
for this operator.

Inserting a New BRANCH into an Existing Link

Besides the possibility to insert a BRANCH operator form the operator library, you can
also insert a BRANCH operator directly into an existing link. To do this, right click a link
and select Split Link.... For more information, see Section 3.4.4, 'Inserting Operators' .

20.1.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O[0]..O[N-1], data output

20.1.2. Supported Link Format

Link Parameter Input Link I Output Link O[0]..O[N-1]
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.1.3. Parameters

None

20.1.4. Examples of Use

The use of operator BRANCH is shown in the following examples:

• Section 3.6.2, 'O-Type Networks'

Synchronization Rules - The use of the operator in an O-type Network.

Library Base 679

VisualApplets User Documentation Release 3

20.2. Operator CastBitWidth
Operator Library: Base

The CastBitWidth operator changes the bit width by selecting the lower bits of the input. If the output
bit width is greater than the input bit width, the value is kept, i.e. bits are added to the most significant
bits. A sign extension is performed for signed value. If the output bit width is less than the input bit
width, the most significant bits are discarded. The value changes to

OutputValue = InputValue & (2wo ¡ 1)

,i.e. only the remaining bits are used. The output bit width is defined by wo .

For color values, each component is processed individually.

The CastBitWidth Operator Might Destroy Your Values

Only discard bits, if you know you will not need them. The CastBitWidth operator might
destroy your values.

Input Value Output ValueInput Bit
Width Decimal Binary

Arithmetic Output Bit
Width Decimal Binary

Comment

5 10 01010 unsigned 4 10 1010 value is
kept

5 10 01010 unsigned 3 2 010 value is
changed

5 10 01010 signed 6 10 001010 value is
kept

5 -10 10110 signed 6 -10 110110 value is
kept, sign
extension

5 10 01010 signed 4 -6 1010 value is
changed

5 -10 10110 signed 4 6 0110 value is
changed

Table 20.2. Examples

20.2.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.2.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 64]
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I

Library Base 680

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].
The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].

20.2.3. Parameters

None

20.2.4. Examples of Use

The use of operator CastBitWidth is shown in the following examples:

• Figure 9.8, 'ShiftLeft Operator Added for 16Bit Output'

Tutorial - User ShiftLeft to change DMA bit width.

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

Library Base 681

VisualApplets User Documentation Release 3

• Section 12.4.4, 'RGB White Balancing'

Examples - The applet shows an example for white balancing on RGB images.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.3.1, 'Averaging 3x3'

Examples - A simple 3x3 box filter.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Base 682

VisualApplets User Documentation Release 3

20.3. Operator CastColorSpace
Operator Library: Base

The CastColorSpace operator changes the logical attribute Color Flavor. The values of the input link
are copied to the output link. The operator doesn't influence the data stream and doesn't require any
FPGA resources.

20.3.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [3, 63] unsigned, [6, 63] signed as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor any any except FL_NONE
Max. Img Width any as I
Max. Img Height any as I

20.3.3. Parameters

None

20.3.4. Examples of Use

The use of operator CastColorSpace is shown in the following examples:

• Section 13.8, 'Functional Example for Specific Operators of Library Color, Base and Memory'

Examples - Demonstration of how to use the operator

Library Base 683

VisualApplets User Documentation Release 3

20.4. Operator CastKernel
Operator Library: Base

With the CastKernel operator, you can re-organize the parallelism and kernel size of the incoming data.
For re-interpretation, change the kernel size at the output link. For example, an input link is configured
with two kernel rows and two kernel columns and a parallelism of four. The CastKernel operator gives
you the possibility to interpret these as four kernel rows and four kernel columns at parallelism 1 or as
one kernel row and two kernel columns at parallelism 8, etc. The constraint of the CastKernel operator
is that the product of kernel row and kernel column and parallelism must be identical for the input
and the output link.

The following examples illustrate the conversion of kernel configuration and parallelism performed by
the operator. The pseudo-code below the illustrations also describes the conversion pattern.

Example 1: Converting the kernel size (col x row) 3x1 to the kernel size 1x3 while keeping
parallelism 2:

Example 2: Converting parallelism 2 and kernel size (col x row) 2x3 to parallelism 3 and
kernel size 2x2:

Example 3: Converting parallelism 1 and kernel size (col x row) 3x2 to parallelism 6 and
kernel size 1x1:

The operator changes the width of the images.

The mapping follows the following pseudo-code:

 pi = 0
 ri = 0
 ci = 0
 for p in 0 to P-1
 for r in 0 to R-1
 for c in 0 to C-1
 O[p][r][c] = I[pi][ri][ci]

Library Base 684

VisualApplets User Documentation Release 3

 ci = ci + 1
 if ci >= Ci then ci = 0, ri = ri + 1
 if ri >= Ri then ri = 0, pi = pi + 1

The pseudo-code has the following meaning:

Pseudo-code Meaning
p Output-Parallel-Index

pi Input-Parallel-Index

r Output-Kernel-Row-Index

ri Input-Kernel-Row-Index

c Output-Kernel-Column-Index

co Output-Kernel-Column-Index

Pi Input-Parallelism

P Output-Parallelism

Ri Input-Kernel-Rows

R Input-Kernel-Columns

Ci Input-KernelColumns

C OutputKernelColumns

Table 20.3. Explanation of pseudo-code

The function of the CastKernel operator could also be achieved by combining the follwoing operators:
SplitKernel, MergeKernel, SplitParallel and MergeParallel:

In this example, the input configuration of four kernel columns and two kernel rows at parallelism 3 is
re-organised to two kernel columns and three kernel rows at parallelism 4. The same can be achieved
with the operator CastKernel by configuring the output link respectively:

Library Base 685

VisualApplets User Documentation Release 3

20.4.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] As I
Arithmetic {Unsigned, signed} As I
Parallelism Any Auto
Kernel Columns Any Any
Kernel Rows Any Any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
As I

Color Format Any As I
Color Flavor Any As I
Max. Img Width Any Auto
Max. Img Height Any As I

The range for bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63]
The output parallelism po is determined by the input parallelism pi , the input kernel size ri£ ci and
the output kernel size ro£ co :

po = pi£
ri£ ci
ro£ co

;

where r denotes the kernel rows and c denotes the kernel columns.
The output maximum image width is determined by the input maximum image width, the output
parallelism po and the input parallelism pi by:

OutputMaxImgWidth = InputMaxImgWidth£ pi
po

20.4.3. Parameters

None

20.4.4. Examples of Use

The use of operator CastKernel is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Base 686

VisualApplets User Documentation Release 3

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Base 687

VisualApplets User Documentation Release 3

20.5. Operator CastParallel
Operator Library: Base

Library: Base

The operator CastParallel enables the re-interpretation of the input link bits. Change the parallelism
at the output link for re-interpretation. For example, an input link width of 16-bit per pixel and
a parallelism of two transmits 32-bits at each clock cycle. The CastParallel operator gives you the
possibility to interpret these 32-bits as 8-bit per pixel at parallelism 4 or 4-bit per pixel at parallelism 8,
etc. One constraint of the cast is that the product of the width and the parallelism must be identical for
the input and the output link. The 2nd constraint is that the output pixel width must not exceed 64-bits.

At parallelism casts, the lower parallel components will be mapped to the lower bits.

Note that the operator will change the bit width of a pixel and the width of the images.

20.5.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} as I
Parallelism any any
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output bit width is determined from the output parallelism, the input parallelism and the input
bit width by

wo = wi£
pi
po

where wi = bit width at the input, pi = parallelism at the input, po = output parallleism and wo =
bit width at the output.
The output image width must not exceed 2^31 - 1.

20.5.3. Parameters

None

Library Base 688

VisualApplets User Documentation Release 3

20.5.4. Examples of Use

The use of operator CastParallel is shown in the following examples:

• Section 3.7.2.2, 'Parameter Editing'

Design Parametrization - Invalid link property.

• Section 11.1, 'Functional Example for the FrameBufferMultRoiDyn Operator on the imaFlex CXP-12
Penta Platform'

Examples - Demonstration of how to use the operator

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Base 689

VisualApplets User Documentation Release 3

20.6. Operator CastType
Operator Library: Base

The operator CastType changes the logical link property Arithmetic. The bits of the input and output
values are equal. No changes of the value are done in hardware. Therefore, the operator does not
require any FPGA resources.

Input Value Output ValueBit Width
Decimal Binary

Input
Arithmetic

Output
Arithmetic Decimal Binary

Comment

4 5 0101 unsigned signed 5 0101

4 10 1010 unsigned signed -6 1010 interpretation
of value
has been
changed

4 5 0101 signed unsigned 5 0101

4 -1 1111 signed unsigned 15 1111 interpretation
of value
has been
changed

Table 20.4. Examples

20.6.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.6.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} {unsigned, signed}
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.6.3. Parameters

None

Library Base 690

VisualApplets User Documentation Release 3

20.6.4. Examples of Use

The use of operator CastType is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Base 691

VisualApplets User Documentation Release 3

20.7. Operator CONST

Operator Library: Base

The operator CONST provides a fixed value at the output link. All input values are discarded and
replaced by the constant. The constant can be defined by parameter Value. This can either be a static
or dynamic value. Thus the value can be changed during runtime.

Note that for multi component formats like RGB, the constant value is defined as a single value for
the full pixel and not just the component.

Example: Output link RGB 24bit, constant value is set to 11862494 (0xB501DE). The output
components will then be set to the following const values: R = 222 (0xDE), G = 01 (0x01) and B =
181 (0xB5). The constant concatenates the component values to a single value. The component 0 is
placed in LSB area and the highest component in MSB area, i.e. for RGB, the constant value is {B-G-
R}. Value = {component N-1, ..., component 0}, with N being the number of the components.

20.7.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.7.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 63]
Arithmetic {unsigned, signed} {unsigned, signed}
Parallelism any as I
Kernel Columns any any
Kernel Rows any any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any any
Color Flavor any any
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The range of the output for unsigned arithmetic is [1, 63]. For signed outputs, the range is [2,
64]. For unsigned color outputs, the range is [3, 63] and for signed color, the range is [6, 63].
The same const value is used for all kernel components.

20.7.3. Parameters

Value
Type static/dynamic read/write parameter
Default 0
Range depends on arithmetic and bit width of the output link

Library Base 692

VisualApplets User Documentation Release 3

Value
This parameter defines the value at the output link. If the parameter is set to Static, the value
is selected at design time. If the parameter is Dynamic, it is possible to alter the value during
runtime.

20.7.4. Examples of Use

The use of operator CONST is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

Library Base 693

VisualApplets User Documentation Release 3

20.8. Operator ConvertPixelFormat
Operator Library: Base

The operator ConvertPixelFormat tries to preserve as much information as possible, while arithmetic
and bit width are adjusted to a desired output pixel format. Thus the operator allows the definition of
the bit width and arithmetic at the output link.

The main principle of algorithm is twofold:

1. Change the arithmetic by clipping

• unsigned to signed: the MSB at the output is used as a sign bit

• signed to unsigned: clipping to positive values i.e. if a value is less than 0 it is set to zero

2. Change the bit width y keeping the relative brightness

• if the output bit width is increased, the value is left shifted to meet the desired bit width

• if the output bit width is decreased, the value is divided and rounded to meet the desired bit width

Thus the output value can be determined by:

si =

½
1 if input arithmetic = signed

0 otherwise

so =

½
1 if output arithmetic = signed

0 otherwise

wi = input bit width

wo = output bit width

OutputValue =

8><>:
2wo¡so if InputValue£ 2wo¡wi¡so+si > 2wo¡so ¡ 1
0 if so = 1 & InputValue < 0

Round
¡
InputValue£ 2wo¡wi¡so+si

¢
otherwise

Input Value Output ValueInput Bit
Width

Output
Bit
Width

Input
Arithmetic

Output
ArithmeticDecimal Binary Decimal Binary

Comment

4 5 unsigned unsigned 10 1010 20 10100 value * 2

5 4 unsigned unsigned 15 1111 8 1000 value
divided
by 2 and
rounded

5 4 unsigned unsigned 31 11111 15 1111 value
clipped to
maximum

4 4 unsigned signed 11 1011 6 0100 value
divided
by 2 and
rounded

4 4 signed unsigned 4 0100 8 1000 value * 2

5 4 signed unsigned 10 01010 10 1010 value
kept

5 4 signed unsigned -2 11110 0 0000 value
clipped to
0

5 4 signed signed -7 11001 -4 1100 value
divided

Library Base 694

VisualApplets User Documentation Release 3

Input Value Output ValueInput Bit
Width

Output
Bit
Width

Input
Arithmetic

Output
ArithmeticDecimal Binary Decimal Binary

Comment

by 2 and
rounded

Table 20.5. Examples

For color links, each color component is processed individually.

20.8.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 64]
Arithmetic {unsigned, signed} {unsigned, signed}
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The range of the output bit width is [1, 64]. For signed outputs, the range is [2, 64]. For unsigned
color outputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.8.3. Parameters

None

20.8.4. Examples of Use

The use of operator ConvertPixelFormat is shown in the following examples:

• Figure 9.7, 'ConvertPixelFormat Operator Added for 16Bit Output'

Tutorial - User ConvertPiyelFormat to change DMA bit width.

• Section 11.8, 'Example for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator using the example of shading correction

• Section 12.4.1.2, 'Bayer 3x3 Demosaicing'

Library Base 695

VisualApplets User Documentation Release 3

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter.

• Section 12.4.1.3, 'Bayer 5x5 Demosaicing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter.

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.9, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern Red/
BlueFollowedByGreen GreenFollowedByBlue/Red '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByGreen_GreenFollowedByBlue/Red

• Section 12.4.1.10, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern
RedFollowedByBlue GreenFollowedByGreen '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByBlue/Red_GreenFollowedByGreen

• Section 12.4.1.11, 'Bayer Demosaicing a Line Scan Camera with 8 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a Bayer 8 bit RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.12, 'Bayer Demosaicing a Line Scan Camera with 10 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.13, 'Bayer Demosaicing a Line Scan Camera with 12 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.5.2, 'Co-Processor Large Filter Calculation'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a large
filter kernel is calculated.

• Section 12.7.2, 'Noise Reduction'

Examples - The average of two acquired images is calculated to reduce noise.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

Library Base 696

VisualApplets User Documentation Release 3

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Base 697

VisualApplets User Documentation Release 3

20.9. Operator Coordinate_X
Operator Library: Base

The operator Coordinate_X provides the x coordinate of the input pixels at its output. Thus, each pixel
at the input is replaced by its x-position in the image. The actual input pixel values are not used. The
operator works as a counter which is incremented with every new pixel and is reset after the end of
a line. The first pixel of each row will have coordinate zero.

20.9.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.9.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output bit width is automatically determined from the maximum image width i.e.

OutputBitWidth = log2(MaxImageWidth)

20.9.3. Parameters

None

20.9.4. Examples of Use

The use of operator Coordinate_X is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Library Base 698

VisualApplets User Documentation Release 3

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

Library Base 699

VisualApplets User Documentation Release 3

20.10. Operator Coordinate_Y
Operator Library: Base

The operator Coordinate_Y provides the y coordinate of the input pixels at its output. Thus, each pixel
at the input is replaced by its y-position in the image. The actual input pixel values are not used. The
operator works as a counter which is incremented with every new line and is reset after the end of a
frame. The pixels of the first image row will have coordinate zero.

20.10.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.10.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output bit width is automatically determined from the maximum image height i.e.

OutputBitWidth = log2(MaxImageHeight)

20.10.3. Parameters

None

20.10.4. Examples of Use

The use of operator Coordinate_Y is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.9.4, 'ImageSplitAndMerge'

Library Base 700

VisualApplets User Documentation Release 3

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Base 701

VisualApplets User Documentation Release 3

20.11. Operator Dummy
Operator Library: Base

The Dummy operator is automatically inserted into the design if the required operator is not available.
This can have one of the following reasons:

• The VisualApplet project has been ported from another hardware platform. If the operator is not
available for the new platform, the Dummy operator is inserted. Read Section 4.5, 'Target Hardware
Porting' for more information.

• The project was originally generated in an older version of VisualApplets. In the current version, the
operator might not be available anymore. Check the release notes of the current version and Section
4.14, 'Migration from Older Versions' for more information. Most operators can be replaced by other
operators with similar names.

• The VisualApplets installation is incomplete. Some files might be missing. Reinstall VisualApplets into
an empty directory.

To inform you about the module name and the parameter values of the original operator, check the
parameters.

The number of links differs. They replace the old paramerer links.

Dummy Operator has to be Replaced

A VisualApplets project cannot be build with a Dummy operator inside. All Dummy
operators have to be replaced or removed.

20.11.1. I/O Properties

Property Value
Operator Type

20.11.2. Supported Link Format

None

20.11.3. Parameters

Replaces
Type static parameter
Default
Range

Contains the original operator name.

Varius Parameter Names
Type static parameter
Default
Range

For each parameter of the original operator, a parameter exists. The name and the value is equal to
the original.

Library Base 702

VisualApplets User Documentation Release 3

20.12. Operator DynamicROI
Operator Library: Base

The operator DynamicROI extracts a rectangular region of interest (ROI) from the input link I. The
output image height and line width are defined by the ROI image parameters Ylength and Xlength. The
size of this ROI is defined dynamically by the four input links Xoffset, Yoffset, Xlength, and Ylength.
The purpose of the operator is to adapt the ROI dimension and location to results of image processing
steps. All parameters of the ROI may vary from image to image.

The image stream from I to O is controlled by the four links Xoffset, Yoffset, Xlength, and Ylength.
These four links can work fully asynchronous (sourced by different M type operators) as well as fully
synchronous (sourced by the same M type operator through an arbitrary network of O type operators).
To output an ROI at output O it is required to provide an image at all five inputs. Those inputs where
an image is already provided are blocked until at all inputs an image is provided. Buffering elements at
the indivdual inputs, especially at input link I, are highly recommended. You can imagine the behavior
of DynamicROI as a valve which only opens if an image is provided at all inputs.

Whenever an image arrives at each of the four control inputs the very last pixel of each control link
is captured by the DynamicROI. As soon as DynamicROI received all images at the control inputs, the
valve opens and an image is allowed to pass from I to O. Now the captured ROI coordinates are used
to extract the ROI. After the ROI image has been transferred to O, the valve closes again and waits
for the next image ROI coordinate set appearing at the control links.

An important use of this operator is in conjunction with CreateBlankImage and CoefficientBuffer or
with the results of an object detection implementation. An operator to control the ROI coordinates
using parameter is SelectROI.

Operator Restrictions

• If the Xlength is not an integer multiple of the parallelism of links I and O, the operator will extend the
ROI width to match with the parallelism. Dummy pixels are added to the end of each line. The value of
that dummy pixel is undefined. In VA simulation dummy pixels will be set to zero for better visibility.

• If the ROI coordinates are illegal, i.e. the Xlength and/or Ylength are zero or the offsets exceed the
image boundaries, the operator will cut and output an empty image or will remove the image. The
behavior can be controlled using parameter SuppressEmptyRoI.

• If the offset coordinates are valid but the Xlength and/or Ylength coordinates exceed the image
boundaries, the operator will shrink ROI to the image boundaries.

• When an empty coordinate set is provided on ROI inputs, i.e. a ROI frame of height and width equal
to 0, operator DynamicROI treats such an empty ROI as a ROI with invalid coordinates. The operator
will cut and output an empty image or will remove the image. The behavior can be controlled using
parameter SuppressEmptyRoI.

• Empty images on port I are not supported.

• The lines of each input image at port I must have the same length. Thus images with varying line
lengths are not allowed.

20.12.1. I/O Properties

Property Value
Operator Type M
Input Links I, image input

Xoffset, x-offset input
Yoffset, y-offset input
Xlength, x-length input
Ylength, y-length input

Output Link O, data output

Library Base 703

VisualApplets User Documentation Release 3

Synchronous and Asynchronous Inputs

• All inputs are asynchronous, i.e. they may be sourced by different M-type operators.

20.12.2. Supported Link Format

Link Parameter Input Link I Input Link Xoffset Input Link Yoffset
Bit Width [1, 64] auto auto
Arithmetic {unsigned, signed} unsigned unsigned
Parallelism any any any
Kernel Columns any any any
Kernel Rows any any any
Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format any VAF_GRAY VAF_GRAY
Color Flavor any FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

Link Parameter Input Link Xlength Input Link Ylength Output Link O
Bit Width auto auto as I
Arithmetic unsigned unsigned as I
Parallelism any any as I
Kernel Columns any any as I
Kernel Rows any any as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D as I
Color Format VAF_GRAY VAF_GRAY as I
Color Flavor FL_NONE FL_NONE as I
Max. Img Width any any as I
Max. Img Height any any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The allowed bit width at the control inputs is automatically determined from the maximum image
dimensions of the input link I

BitWidth =Max(Ceil(log2(MaxImageWidth+ 1));Ceil(log2(MaxImageHeight+ 1))

20.12.3. Parameters

SuppressEmptyRoI
Type static parameter
Default ON
Range {ON, OFF}

This parameter controls the removal of empty images on the operator's output if the ROI
coordinates are illegal. See Operator Restrictions for more information.

20.12.4. Examples of Use

The use of operator DynamicROI is shown in the following examples:

• Section 12.3.3, 'Blob2D ROI Selection'

Library Base 704

VisualApplets User Documentation Release 3

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

Library Base 705

VisualApplets User Documentation Release 3

20.13. Operator EventToHost

Operator Library: Base

The operator generates software events for rising edges at its input links. The operator provides up
to 16 input ports which can raise events.

All N inputs (up to 16) can generate individual events. The event will not provide any signal link data.
Commonly, this operator is used to monitor the status of GPIOs or to signal special conditions.

Each input port is associated with the correspondent event. The event is identified by the software
application by using the unique event name (parameter EventName_ (see parameter description
below)).

The operator uses one resource of type EventPort exclusively. You can modify resource EventPort.
EventPort specifies which event chanel is used by the software. Each EventPort number can only be
used once in a design.

In addition, for each input port a resource of type EventID is reserved. You cannot modify this resource
(therefore displayed in grey) as the EventID is generated automatically. If, via copy & paste, you have
the same EventID in different operator instances, you need to delete one of these instances and to
instanciate the operator anew.

Limited Amount of Event Ports and of Individual Events

The maximum amount of event ports available in a design depends on the target
hardware platform you are designing for (see Apendix, section Section A.2, ' Device
Resources of Supported Platforms ' for detailed information).

Library Base 706

VisualApplets User Documentation Release 3

If you design an applet for use in the runtime environment, you can use a maximum of
64 individual events in a design.

After Copy & and Pasting the Operator

After Copy & and Paste, you have to adapt the resources to ensure each EventPort and
each EvendID is used only once in the design.

To adapt the resources:

1. Click on the Resources button in the tool bar.

The resources that are overmapped are displayed in red:

Library Base 707

VisualApplets User Documentation Release 3

2. Enter a EventPort number for the event port that has not been used so far in the
design:

Library Base 708

VisualApplets User Documentation Release 3

Since the EventID is not editable, but generated automatically, you cannot enter new
values for EventID.

3. Click the OK button. The following message is displayed:

Library Base 709

VisualApplets User Documentation Release 3

4. Click on Apply. The Resources dialog closes. If you re-open it, you will see, that for
the EventIDs unique values have been generated:

Library Base 710

VisualApplets User Documentation Release 3

20.13.1. I/O Properties

Property Value
Operator Type M
Input Link I[000-015], Signal input to raise a software

event.

20.13.2. Supported Link Format

Link Parameter Input Link I[000-015]
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

20.13.3. Parameters

EventsWithTimestamp
Type static/dymanic write parameter
Default ON
Range {ON,OFF}

Defines if high-precision timestamps are attached to each event.
ON = timestamps are generated.
OFF = no timestamps are generated.

EventName_[n]
Type static write parameter
Default EventName_[n]
Range

Every event input must be assigned a unique identifier name. This event name is used to identify
and use a particular hardware event signal in the Framegrabber SDK.

20.13.4. Examples of Use

The use of operator EventToHost is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Base 711

VisualApplets User Documentation Release 3

20.14. Operator EventDataToHost
Operator Library: Base

The operator generates software events with data payload. The payload size can be configured as N
16-bit data words via the PayloadSize parameter.

The operator has a 16-bit data input I and a 1-bit strobe input S. The inputs are O-synchronous. The
input S starts a new event. Any data which arrives at I before S is asserted is ignored. S may be
asserted for more than one data cycle but once S is de-asserted it may not be asserted again before
the payload data for the ongoing event is completed. If an automatic clearance is set (see parameter
AutoClear), then S can even be constantly 1.

The parameter AutoClear defines at which time clearance is done so that another event can be
triggered:

• EoL: Another event may be started after the next end of line. As soon as the N-th data is ready, no
further event data is accepted until the end of the line, independent of the state of S. Starting with
the next line, a new event may be generated with S=1.

• EoF: Another event may be started after the next end of frame. As soon as the N-th data is ready,
no further event data is accepted until the end of the frame, independent of the state of S. Starting
with the next frame, a new event may be generated with S=1.

• NONE: No auto-clearance. S must transfer a 0 for at least one data cycle after the event strobe to
activate that event data for a subsequent event is accepted. Note that once S is de-asserted, it may
not be asserted again before the payload data for the ongoing event is completed.

The operator stores the data payload and triggers the event as soon as N words of data have been
received from I. If the event data is incomplete at the time when auto clearance happens, no event
is generated and the incomplete payload data is deleted.

The input of the operator is never blocked. As the capacity of the event transfer buffers is limited,
overflow may occur when the event rate is too high. To detect data loss, it may be useful to include
a sequential number in your event data.

The triggered event is identified by the software application by using the unique event name via
EventName parameter (see parameter description below).

The operator uses one resource of type EventPort exclusively. You can modify the resource EventPort.
EventPort specifies which event channel is used by the software. Each EventPort number can only be
used once in a design.

In addition, one resource of type EventID is reserved. You can't modify this resource (therefore it is
greyed out), because the EventID is generated automatically. If you copy & paste an operator instance,
and thus have the same EventID in different operator instances, you must delete one of these instances
and instantiate the operator anew.

Limited Amount of Event Ports and of Individual Events

The maximum amount of event ports available in a design depends on the target
hardware platform you are designing for (see Section A.2, ' Device Resources of
Supported Platforms ' for detailed information).

If you design an applet for use in the runtime environment, you can use a maximum of
64 individual events in a design.

20.14.1. I/O Properties

Property Value
Operator Type M
Input Links I, Input for payload data.

Library Base 712

VisualApplets User Documentation Release 3

Property Value
S, Strobe for starting new event.

20.14.2. Supported Link Format

Link Parameter Input Link I Input Link S
Bit Width 16 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
{VALT_IMAGE2D, VALT_LINE1D,
VALT_PIXEL0D}

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

20.14.3. Parameters

EventsWithTimestamp
Type static/dymanic write parameter
Default ON
Range {ON,OFF}

Defines whether high-precision timestamps are attached to each event.
ON: Timestamps are generated.
OFF: No timestamps are generated.

EventName
Type static write parameter
Default Event
Range

This event name is used to identify and use a particular event signal in the Framegrabber SDK.

PayloadSize
Type static parameter
Default 1
Range [1, 254]

Set the payload size as a number of 16-bit data words.

AutoClear
Type static parameter
Default NONE
Range {NONE, EoL, EoF}

Defines at which time clearance is done so another event can be triggered.

When EoL is set, then after the next end of line another event may be started. As soon as the N-th
data is ready, no further event data is accepted until the end of the line, independent of the state of
S. Starting with the next line, a new event may be generated with S=1.

Library Base 713

VisualApplets User Documentation Release 3

AutoClear
When EoF is set, then after the next end of frame another event may be started. As soon as the N-
th data is ready, no further event data is accepted until the end of the frame, independent of the
state of S. Starting with the next frame, a new event may be generated with S=1.

When NONE is set, then S must transfer a 0 for at least one data cycle after the event strobe to
activate that event data for a subsequent event is accepted. Note that once S is de-asserted, it may
not be asserted again before the payload data for the ongoing event is completed.

Library Base 714

VisualApplets User Documentation Release 3

20.15. Operator ExpandToKernel
Operator Library: Base

The operator expands the input link I to an arbitrary kernel size. The input value is replicated/copied
to each of the kernel components. Set the new kernel size at the output link.

20.15.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.15.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 any
Kernel Rows 1 any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.15.3. Parameters

None

20.15.4. Examples of Use

The use of operator ExpandToKernel is shown in the following examples:

• Section 12.13.2, 'Print Inspection Example- Position Correction and Defect Detection Using Blob
Based Template Matching'

Examples- Geometric Transformation and Defect Detection

Library Base 715

VisualApplets User Documentation Release 3

20.16. Operator ExpandToParallel

Operator Library: Base

The operator expands the input link I with parallelism 1 to an arbitrary parallelism at output link O.
The input value is replicated/copied to each parallel stream. Set the new parallelism at the output link.

The performed operation can be described as combination of the existing operators BRANCH and
MergeParallel:

In this example, an input link with parallism 1 is cloned to parallelism 4.

20.16.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.16.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] As I
Arithmetic {Unsigned, signed} As I
Parallelism 1 Any
Kernel Columns Any As I
Kernel Rows Any As I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
As I

Color Format Any As I
Color Flavor Any As I
Max. Img Width Any Auto
Max. Img Height Any As I

The range of the input bit width is:

• For unsigned values: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63]
The output maximum image width is determined by the input maximum image width and the
output parallelism po :

OutputMaxImgWidth = InputMaxImgWidth£ po

Library Base 716

VisualApplets User Documentation Release 3

20.16.3. Parameters

None

20.16.4. Examples of Use

The use of operator ExpandToParallel is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Base 717

VisualApplets User Documentation Release 3

20.17. Operator GetStatus
Operator Library: Base

The operator monitors the state of the input pixel stream and provides a register for reading out of
the latest valid value via software.

20.17.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input

20.17.2. Supported Link Format

Link Parameter Input Link I
Bit Width [1, 64] unsigned, [2, 64] signed
Arithmetic {unsigned, signed}
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D, VALT_PIXEL0D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

20.17.3. Parameters

Status
Type dynamic read parameter
Default 0
Range InputBitWidth

The latest valid value from the input pixel stream is stored in the register Status which is readable
via software.

Note that the parameter is always of type unsigned. If you connected a signed link to the operator,
reinterpret the value as signed value in your software.

20.17.4. Examples of Use

The use of operator GetStatus is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Base 718

VisualApplets User Documentation Release 3

20.18. Operator HierarchicalBox
Operator Library: Base

The HierarchicalBox is a pseudo module provided by the graphical user interface to group several
operators into a single module. This makes it feasible for users to maintain complex projects and
comfortably re-use parts from previous projects.

On instantiation of a HierachicalBox, it is possible to select an arbitrary number of input and output
links. To open a view of the inside, double click onto the HieracialBox.

A detailed explanation of the usage of hierarchical boxes can be found in the user manual of
VisualApplets in Section 4.1, 'Hierarchical Boxes'.

20.18.1. I/O Properties

Property Value
Operator Type Operator type depends on context
Input Link I[0] .. I[63], data input
Output Link O[0] .. O[63], data output

20.18.2. Supported Link Format

Link Parameter Input Link I[0] .. I[63] Output Link O[0] .. O[63]
Bit Width any any
Arithmetic any any
Parallelism any any
Kernel Columns any any
Kernel Rows any any
Img Protocol any any
Color Format any any
Color Flavor any any
Max. Img Width any any
Max. Img Height any any

20.18.3. Parameters

None

20.18.4. Examples of Use

The use of operator HierarchicalBox is shown in the following examples:

• Section 4.1, 'Hierarchical Boxes'

Usage and Navigation through design with HierarchicalBox modules in VisualApplets.

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

Library Base 719

VisualApplets User Documentation Release 3

Library Base 720

VisualApplets User Documentation Release 3

20.19. Operator ImageNumber

Operator Library: Base

The operator ImageNumber provides the index of the current image of the input link at the output link.
Thus, each pixel at the input is replaced by the index of the image i.e. the image number. The actual
input pixel values are not used. The operator works as a counter which is incremented with every new
image at its input. The counter is reset on the start of the process (Section 4.4, 'Multiple Processes')
or after it reached it's maximum. The first image will have image index 0.

The counter width can be defined by changing the bit width of the output link O. If the counter reached
it's maximum it will start from zero again = wrap around condition. For example, an output bit width
of 8 bit will result in counter values between zero to 255.

Using parameter SingleShot, the operator will not be reset on the wrap around condition. The counter
value output will remain at the maximum value. Thus, for an 8 bit image counter the counter value
will remain at it's maximum of 255.

Often this operator is used in conjunction with operator RemoveImage to remove the first N images
of a sequence.

Operator Restrictions

• The operator supports empty images. The operator will count those empty images. However, for
the empty images, the counter value cannot be provided at the output as the output of an empty
frame contains no pixel. After the next non-empty image the output link will provide the correct
counter value.

20.19.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.19.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 64]
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Base 721

VisualApplets User Documentation Release 3

20.19.3. Parameters

SingleShot
Type static parameter
Default OFF
Range {OFF, ON}

This parameter controls the wrap around condition. When set to OFF the counter will count infinitely
with each processed image, i.e. a wrap around will occur at maximum possible counter value
defined by the output link bit width.

When set to ON, the counter keeps counting until the maximal possible value is reached. The
counter will stop counting at it's maximum value.

20.19.4. Examples of Use

The use of operator ImageNumber is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.6.5, 'Image Monitoring'

Example - For debugging purposes image transfer states on links can be investigated.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Base 722

VisualApplets User Documentation Release 3

20.20. Operator KernelRemap

Operator Library: Base

The operator KernelRemap allows the remapping of kernel components between the input and the
output. The output of the operator has the same kernel dimension as the input. Using the static
parameter SourceSelect, it is possible to remap the kernel components. This can be useful to mirror
a kernel or it can be useful for a rotation of the kernel components.

The remapping is done by allocating a new input kernel index to each output. Hence, for each output
kernel component an input kernel component is selected using the parameter SourceSelect. It is also
possible to allocate the same input kernel component to multiple output kernel components. If an input
kernel component is not mapped to any output, the data is discarded.

20.20.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.20.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.20.3. Parameters

SourceSelect
Type static parameter
Default index
Range [0, KernelRows * KernelCols - 1]

This parameter defines the remapping of the kernel. It represents the output kernel components.
Hence, for every output kernel component an input kernel component is selected.

The kernel components are indexed from top-left to bottom-right.

Library Base 723

VisualApplets User Documentation Release 3

20.20.4. Examples of Use

The use of operator KernelRemap is shown in the following examples:

• Section 12.9.7, 'Shear of an Image'

Example - Line Shear example with linear interpolation.

Library Base 724

VisualApplets User Documentation Release 3

20.21. Operator MergeComponents

Operator Library: Base

The operator MergeComponents merges three gray input links to one color output link. The opposite
of this operator is Section 20.37, 'SplitComponents'.

20.21.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input color component {R, H, Y, L, X}

I1, data input color component {G, S, U, A, Y}
I2, data input color component {B, I, V, B, Z}

Output Link O, data output

20.21.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1
Bit Width [1, 21] unsigned, [2, 21] signed as I0
Arithmetic {unsigned, signed} as I0
Parallelism any as I0
Kernel Columns any as I0
Kernel Rows any as I0
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I0

Color Format VAF_GRAY as I0
Color Flavor FL_NONE as I0
Max. Img Width any as I0
Max. Img Height any as I0

Link Parameter Input Link I2 Output Link O
Bit Width as I0 auto
Arithmetic as I0 as I
Parallelism as I0 as I
Kernel Columns as I0 as I
Kernel Rows as I0 as I
Img Protocol as I0 as I
Color Format as I0 VAF_COLOR
Color Flavor as I0 any
Max. Img Width as I0 as I
Max. Img Height as I0 as I

The output bit width is the sum of the three input bit widths i.e. I0 + I1 + I2.

20.21.3. Parameters

None

Library Base 725

VisualApplets User Documentation Release 3

20.21.4. Examples of Use

The use of operator MergeComponents is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - Split and Merge Color components.

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 11.6, 'Functional Example for the JPEG_Encoder_Color_iF User Library Element on the
imaFlex CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator

• Section 11.7, 'Functional Example for the JPEG_Encoder_Color_iF_Penta User Library Element on
the imaFlex CXP-12 Penta Platform'

Examples - Demonstration of how to use the operator

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.6, 'Edge Sensitive Bayer Demosaicing Algorithm'

Examples - Edge Sensitive Laplace Bayer Demosaicing filter

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.4.4, 'RGB White Balancing'

Examples - The applet shows an example for white balancing on RGB images.

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Library Base 726

VisualApplets User Documentation Release 3

Examples - Rolling Average - Loop

Library Base 727

VisualApplets User Documentation Release 3

20.22. Operator MergeKernel
Operator Library: Base

The operator MergeKernel merges an arbitrary number N of input links I[0] .. I[63] (max.) into a
single output link O.

The operator allows kernels at its inputs. One kernel dimension (row or column) needs to have the
same size (number of pixels) at all inputs. For the other dimension (rows or columns) an individual
size can be defined for each input. Thus, either the number of rows or the number of columns has to
be the same for all kernels at the inputs.

For detailed information, see parameter description.

20.22.1. I/O Properties

Property Value
Operator Type O
Input Links I[0], data input

I[n], n > 0, data input
Output Link O, data output

20.22.2. Supported Link Format

Link Parameter Input Link I[0] Input Link I[n], n > 0 Output Link O
Bit Width [1, 64] as I[0] as I[0]
Arithmetic {unsigned, signed} as I[0] as I[0]
Parallelism any as I[0] as I[0]
Kernel Columns any horizontal: any

vertical: as I[0]
horizontal: sum of all
kernel columns
vertical: as I[0]

Kernel Rows any horizontal: as I[0]
vertical: any

horizontal: as I[0]
vertical: sum of all
kernel rows

Img Protocol {VALT_IMAGE2D,
VALT_LINE1D,
VALT_PIXEL0D}

as I[0] as I[0]

Color Format any as I[0] as I[0]
Color Flavor any as I[0] as I[0]
Max. Img Width any as I[0] as I[0]
Max. Img Height any as I[0] as I[0]

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.22.3. Parameters

Alignment
Type static write parameter
Default horizontal
Range [horizontal, vertical]

Parameter Alignment defines the ordering of the output vector. The vector is a concation of all
inputs in either horizontal or vertical direction.

Library Base 728

VisualApplets User Documentation Release 3

Alignment
Via parameter Alignment, you define if the number of rows or the number of columns has the same
value for all kernels at the inputs.

Horizontal: If you select "horizontal" (default) the number of rows needs to be the same for the
incoming kernels at all inputs. The number of columns you can define individually for each incoming
kernel. In the output, the number of rows is the same as in the inputs. The number of columns will
be the sum of the columns of all inputs.

Vertical: If you select "vertical" the number of rows can be defined individually for each incoming
kernel. The number of columns needs to be the same for the incoming kernels at all inputs. In the
output, the number of columns is the same as in the inputs. The number of rows will be the sum of
the rows of all inputs.

20.22.4. Examples of Use

The use of operator MergeKernel is shown in the following examples:

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.13.1, 'Histogram of Oriented Gradients (HOG)'

Examples- Histogram of oriented Gradients

Library Base 729

VisualApplets User Documentation Release 3

20.23. Operator MergeParallel
Operator Library: Base

The operator merges N input links to a single output link by concatenating the input links to parallelism
components. The following images illustrate 2 cases: In case A, 3 input links of parallelism 1 are
merged. In case B, 3 input links of parallelism 2 are merged.

The input parallel pixels are concatenated to a single output link of parallelism 3. The input link order
determines the position of the corresponding pixel in the parallel output.

Note that input pixels in this case are also concatenated to the parallel output and are not interleaved.
The 3 input links of parallelism 2 are concatenated to the output link of parallelism 6.

20.23.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I[n], n > 0, data input
Output Link O, data output

20.23.2. Supported Link Format

Link Parameter Input Link I0 Input Link I[n], n > 0 Output Link O
Bit Width [1, 64] as I0 as I0
Arithmetic {unsigned, signed} as I0 as I0
Parallelism any as I0 auto
Kernel Columns any as I0 as I0
Kernel Rows any as I0 as I0
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I0 as I0

Color Format any as I0 as I0
Color Flavor any as I0 as I0
Max. Img Width any as I0 auto

Library Base 730

VisualApplets User Documentation Release 3

Link Parameter Input Link I0 Input Link I[n], n > 0 Output Link O
Max. Img Height any as I0 as I0

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output parallelism is the sum of the input parallelism of all input links.
The output maximum image width is the sum of the input maximum image widths of all input links.

20.23.3. Parameters

MergeMode
Type static parameter
Default Append
Range {Append, Interleave}

This parameter defines the way how pixel from the input links are arranged in the output link.

Append: All parallel pixel of each input link are appended.

Example: If you have 3 input links of parallelism 2 then you get an output link of parallelism 6. The
first 2 pixel are taken from I0, then 2 pixels from I1, and finally 2 pixels from I2.

Interleave: Pixels are interleaved round robin over the input links.

Example: If you have 3 input links of parallelism 2 then you get an output link of parallelism 6. The
parallel pixels in the output link get arranged as follows: pixel 0 of I0, pixel 0 of I1, pixel 0 of I2,
pixel 1 of I0, pixel 1 of I1, and finally pixel 1 of I2.

20.23.4. Examples of Use

The use of operator MergeParallel is shown in the following examples:

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.6, 'Line Mirror'

Library Base 731

VisualApplets User Documentation Release 3

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

Library Base 732

VisualApplets User Documentation Release 3

20.24. Operator MergePixel
Operator Library: Base

The operator MergePixel merges pixels of multiple input links of the same parallelism into one pixel
of larger bit width. The bits of the inputs are concatenated. The bits of input I0 will be mapped to
the lower bits at the output. All inputs may have varying bit widths. The output is always unsigned. If
signed pixels are merged, the bits are simply reinterpreted and concatenated.

Each color component is merged separately.

The following figure shows the merge of three input links into one link.

20.24.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I[n], n > 0, data input
Output Link O, data output

20.24.2. Supported Link Format

Link Parameter Input Link I0 Input Link I[n], n > 0 Output Link O
Bit Width [1, 63] [1, 63] auto
Arithmetic {unsigned, signed} {unsigned, signed} unsigned
Parallelism any as I0 as I0
Kernel Columns 1 as I0 as I0
Kernel Rows 1 as I0 as I0
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I0 as I0

Color Format any as I0 as I0
Color Flavor any as I0 as I0
Max. Img Width any as I0 as I0

Library Base 733

VisualApplets User Documentation Release 3

Link Parameter Input Link I0 Input Link I[n], n > 0 Output Link O
Max. Img Height any as I0 as I0

The range of the input bit width is [1, 63] for unsigned values. For signed inputs, the range is [2,
63]. The sum of the input bits of all inputs must be <= 64.
The output bit width is the sum of the bit widths of all inputs. The output bit width must be <= 64.

20.24.3. Parameters

None

20.24.4. Examples of Use

The use of operator MergePixel is shown in the following examples:

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 10.1.1.5, 'Grayscale Camera Link Full Area'

Tutorial - Basic Acquisition

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.4, 'Simple Threshold Binarization'

Simple thresholding for binarization.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

Library Base 734

VisualApplets User Documentation Release 3

20.25. Operator NOP
Operator Library: Base

The operator NOP (no operation) has no influence on the processed data in the VisualApplets design.
Image data is not changed. The operator can be used to enhance the appearance and positioning of
links and operators in a design. For example, it is can be used to label a link with a name.

Technically, the NOP operator outputs the registered input i.e. the operator is represented by a register
stage. The use of these additional register stages in between a possible critical path might improve the
timing of a design for failing period constraints or might enable the use of a higher clock frequency.
The benefit of inserting a NOP operator into a design depends on the implementation of operators. For
example, a long chain of O-type operators might cause a critical path, where a NOP operator will help
to improve timing. As the operator is of type O, no balancing of delays is required for parallel paths
by the user. Visual Applets will automatically perform this balancing if all synchronization rules have
been followed. You cannot use the NOP operator to generate a delay.

20.25.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.25.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

20.25.3. Parameters

None

20.25.4. Examples of Use

The use of operator NOP is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

Library Base 735

VisualApplets User Documentation Release 3

Library Base 736

VisualApplets User Documentation Release 3

20.26. Operator PARALLELdn

Operator Library: Base

Library: Base

The operator PARALLELdn decreases the parallelism between the input link and the output link.

Following figure shows a parallel down conversion from parallelism 6 at the input down to parallelism
3 at the output.

In VisualApplets, the width of an image line has to be a multiple of the parallelism. As the PARALLELdn
operator allows any parallelism at its output it is possible that the width of a image line at the output
is not a multiple of the output parallelism. In this case the operator will add dummy pixels to fill up
the image line. The value of this dummy pixel is undefined. In VA simulation dummy pixels will be
set to zero for better visibility.

The following figure shows in illustration of this dummy pixel insertion. As can be seen, the output
parallelism of three cannot map the input line width of eight. Here, one extra dummy pixel is added
so that the line width becomes nine.

Note that a parallelism decrease will result in a lower bandwidth of the output link compared to the
input link. As the operator cannot buffer data, the reduced output bandwidth is also present at the
input and might influence the precedent operators in the image pipeline. Technically, the input of the
operator is closed/blocked for some clock cycles at a parallel down conversion. The following figure
illustrates the timing of the operator.

Library Base 737

VisualApplets User Documentation Release 3

The operator requires fewest resources if the input parallelism is an integer multiple of the output
parallelism.

20.26.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

20.26.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any <= input parallelism
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].
The output image width must not exceed 2^31-1. The maximum image width at the output is
automatically rounded to the next multiple of O.Parallelism. As a result, I.MaxImgWidth must not
be greater than 2^31-1-O.Parallelism so that the rounded maximum image width at the output
doesn't exceed 2^31-1.

20.26.3. Parameters

None

Library Base 738

VisualApplets User Documentation Release 3

20.26.4. Examples of Use

The use of operator PARALLELdn is shown in the following examples:

• Section 3.6.7, 'Bandwidth Bottlenecks'

Bandwidth Bottlenecks - Reducing the parallelism after the removal of pixels.

• Section 11.2, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Penta Platform'

Examples - Demonstration of how to use the operator

• Section 11.3, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

Library Base 739

VisualApplets User Documentation Release 3

20.27. Operator PARALLELup
Operator Library: Base

Library: Base

The operator PARALLELup increases the parallelism between the input link and the output link.

Following figure shows a parallel up conversion from parallelism 3 at the input to parallelism 6 at the
output.

In VisualApplets, the width of an image line always has to be a multiple of the parallelism. As the
PARALLELup operator allows any parallelism at its output it is possible that the width of an image line
at the output is not a multiple of the output parallelism. In this case the operator will add dummy
pixels to fill up the image line. The value of this dummy pixel is undefined. In VA simulation dummy
pixels will be set to zero for better visibility.

The following figure shows in illustration of this dummy pixel insertion. As can be seen, the output
parallelism of four cannot map the input line width of 6 pixels. Here, two extra dummy pixel are added
so that the line width becomes eight.

The operator requires fewest resources if the output parallelism is an integer multiple of the input
parallelism.

20.27.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

20.27.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I

Library Base 740

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Arithmetic {unsigned, signed} as I
Parallelism any >= input parallelism
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].
The output image width must not exceed 2^31-1. The maximum image width at the output is
automatically rounded to the next multiple of O.Parallelism. As a result, I.MaxImgWidth must not
be greater than 2^31-1-O.Parallelism so that the rounded maximum image width at the output
doesn't exceed 2^31-1.

20.27.3. Parameters
None

20.27.4. Examples of Use
The use of operator PARALLELup is shown in the following examples:

• Section 3.7.2.2, 'Parameter Editing'

Design Parametrization - Invalid link property.

• Section 11.1, 'Functional Example for the FrameBufferMultRoiDyn Operator on the imaFlex CXP-12
Penta Platform'

Examples - Demonstration of how to use the operator

• Section 11.2, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Penta Platform'

Examples - Demonstration of how to use the operator

• Section 11.3, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator

• Section 12.4.2.2, 'Color Plane Separation Option 2 - Three Buffers, One DMA'

Sequential output of the color planes using three image buffers and one DMA operator.

• Section 12.4.2.4, 'Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI
and a pre-sort of the Color Planes'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI. An additional pre-sorting optimizes the bandwdith and resources.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

Library Base 741

VisualApplets User Documentation Release 3

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

Library Base 742

VisualApplets User Documentation Release 3

20.28. Operator PseudoRandomNumberGen
Operator Library: Base

The operator PseudoRandomNumberGen generates a stream of N bit random numbers using linear
feedback shift registers (LFSR). These LFSRs generate uniformly distributed binary random sequences.
The length of the random sequence until it is repeated is defined by the number of registers of the
feedback shift registers. A LFSR of 32 bit length will generate a sequence of 2^32 - 2 values. The
implemented random number generator uses different LFSRs to generate the N bit random number
at the operator output. This increases the sequence lengths and avoids correlations between the bits.
The following figure illustrates the implementation of the pseudo random number generator.

To further improve the random number quality, the LFSRs are free running and not clock sourced by
the pixel frequency. The timing of the results therefore is non-deterministic and hence, real random
numbers are taken into the value generation which dramatically improves the quality.

The LFSRs are preinitialized with a seed on initialization of the applet. This seed is defined in
VisualApplets using parameters Seed0, Seed1 and Seed2. On operator instantiation, a software random
number generator is used for the default seed values.

20.28.1. Usage

The operator supports different bit widths and parallelism. However, for high parallelism and bit width
more resources are required. The output bit width can be adapted using the output link.

The operator input link is only used for synchronization. The data values on the input link are not used
for data output generation.

Parameter Min_LFSR_Length is used to specify the length of the shortest LFSR. For each further LFSR
another register stage is added. The maximum register length is 168.

To reduce the required resources of the operator, reduce parameter Min_LFSR_Length. If more than
one operator is used with the same Min_LFSR_Length they will both generate the same sequence. If the
seeds are different, the sequences are still the same, only the starting point of the sequence changed.

Library Base 743

VisualApplets User Documentation Release 3

20.28.2. Quality of the Generator Random Numbers

A pseudo random number generator can never generate real random values. Due to the efficient
generator implementation and the adding of non-deterministic timings, the quality of the generated
values is very high. In the following, the results of two tests applied on the generator are presented
to prove the quality of the implementation.

1. Test on Equidistribution:

A sequence of 8 bit random values is generated and the mean value is determined. The mean
value should be around 127.5. From theory of the LFSR we know that sequences are always
equidistributed (except value 0 in all registers).

If looking at a histogram of the generated values (for example in microDisplay), the uniform
distribution can be seen.

2. Spectral Test:

A spectral test tests the generator on serial correlation. No patterns should be visible in the
generated sequences. Bad generators show hyperplanes in the two- or three-dimensional space.
The VisualApplets generator does not show any hyperplanes:

Library Base 744

VisualApplets User Documentation Release 3

An example of a bad generator is shown in the next figure. It is the famous RANDU Generator
which is mostly used for the rand() function in C programming languages.

20.28.3. VisualApplets Simulations with PseudoRandomNumberGen

The operator can fully be simulated in VisualApplets. However, the non-deterministic hardware
implementation cannot be implemented in software for simulation. Therefore, a very simple random
number generator with bad quality is used in the simulation. (rand() function of the MS VisualStudio)
If seeds are not changed, the operator will always generate the same sequences.

20.28.4. I/O Properties

Property Value
Operator Type O

Library Base 745

VisualApplets User Documentation Release 3

Property Value
Input Link I, data input
Output Link O, data output

20.28.5. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width any [1, 64]
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned gray values. For signed inputs, the range
is [2, 64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Min LFSR Length+
OutputBitWidth£OutputParallelism

2
¡ 1 · 168

20.28.6. Parameters

Min_LFSR_Length
Type static parameter
Default random
Range [3, 168]

This parameter specifies the length of the shortest LFSR. Higher values cause a higher resource
consumption.

Note the follwing constraint:

Min LFSR Length+
OutputBitWidth£OutputParallelism

2
¡ 1 · 168

Seed0
Type static/dynamic read/write parameter
Default random
Range [0, 2^64 - 1]

As explained in the operator introduction, the seeds are used to pre-initialize the LFSRs. On
operator instantiation these values are initialized using a software generated random number. The
values can be chnaged during acquisition. The values of all three parameters are latched when
parameter Seed2 is modified.

Seed1
Type static/dynamic read/write parameter
Default random
Range [0, 2^64 - 1]

Library Base 746

VisualApplets User Documentation Release 3

Seed1
As explained in the operator introduction, the seeds are used to pre-initialize the LFSRs. On
operator instantiation these values are initialized using a software generated random number. The
values can be chnaged during acquisition. The values of all three parameters are latched when
parameter Seed2 is modified.

Seed2
Type static/dynamic read/write parameter
Default random
Range [0, 2^64 - 1]

As explained in the operator introduction, the seeds are used to pre-initialize the LFSRs. On
operator instantiation these values are initialized using a software generated random number. The
values can be chnaged during acquisition. The values of all three parameters are latched when
parameter Seed2 is modified.

20.28.7. Examples of Use

The use of operator PseudoRandomNumberGen is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Base 747

VisualApplets User Documentation Release 3

20.29. Operator SampleDn

Operator Library: Base

The operator SampleDn reduces the image size by downsampling the input image. The image
size downsampling factor can be individually defined for the width and height using any positive
integer number up to 128. This downsmpling factor is defined using parameters XSampleDown and
YSampleDown. The output pixels are computed by averaging the joint pixels.

The operator functions properly only on rectangular images, i.e. images whose lines are of equal length.
Images with variable line length within the same image will lead to wrong results.

If the down sampling parameters are set to a value that exceeds the width/height of the input image,
the resulting image will be an empty image.

If the actual image width/height is not divisible by the correspondent downsampling parameter value,
the operator will discard the remaining pixels. See the following figure for explanation.

If the width of an incoming image divided by XSampleDown is not a multiple of the parallelism and
is smaller than the calculated max. image width of the output then the image lines are expanded by
appending dummy pixels so the resulting line length is a multiple of the parallelism. The value of the
inserted dummy pixels is undefined.

Operator Restrictions

• The lines of each input image must have the same length. Thus images with varying line lengths
are not allowed.

• For color pixels, each color component is processed individually.

• If the actual image width is less than XSampleDown, an empty image is output.

• If the actual image height is less than YSampleDown, an empty image is output.

20.29.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

Library Base 748

VisualApplets User Documentation Release 3

20.29.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any auto

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].
The maximum image dimension at the output is automatically determined according to the
following formulas:

OutputMaxImgWidth =

¹
InputMaxImageWidth

XSampleDown£ Parallelism

º
£ Parallelism

OutputMaxImgHeight =

¹
InputMaxImageHeight

YSampleDown

º

20.29.3. Parameters

XSampleDown
Type static parameter
Default 1
Range [1, 128]

This parameter defines the down sampling factor for the image width.

The downsampling is limited to

264 ¡ 1 ¸
¡
2BitWidth ¡ 1

¢
£XSampleDown£ YSampleDown

YSampleDown
Type static parameter
Default 1
Range [1, 128]

This parameter defines the down sampling factor for the image height.

The downsampling is limited to

264 ¡ 1 ¸
¡
2BitWidth ¡ 1

¢
£XSampleDown£ YSampleDown

20.29.4. Examples of Use

The use of operator SampleDn is shown in the following examples:

• Section 12.9.1, 'Downsampling'

Library Base 749

VisualApplets User Documentation Release 3

Examples - The input image is downsampled i.e. reduced in size by 4x4.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

Library Base 750

VisualApplets User Documentation Release 3

20.30. Operator SampleUp
Operator Library: Base

Library: Base

The operator SampleUp increases the image size by upsampling the input image. The image size
upsampling factor can be individually defined for the width and height in steps 1, 2, 4, 8 and 16.
The upsampling factor is defined using parameters Expand_X and Expand_Y. The output pixels are
computed by duplicating pixels (nearest neighbor method).

See the following figure for explanation of the operator's output. In this example, an upsampling by
4 in x-direction and 2 in y-direction is performed.

Note that the parallelism at the output is not increase even though more pixels have to be transported
on the link. Thus this operator cannot process the input image data at its parallelism.

Operator Restrictions

• The lines of each input image must have the same length. Thus images with varying line lengths
are not allowed.

• Empty images or images with empty lines are not allowed.

20.30.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

20.30.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism {1, 2, 4, 8, 16, 32, 64, 128} as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I

Library Base 751

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any auto

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].
The output image width must not exceed 2^31 - 1.
The output image height must not exceed 2^31 - 1.

20.30.3. Parameters

Expand_X
Type static parameter
Default UpSampleXBy1
Range {UpSampleXBy1, UpSampleXBy2, UpSampleXBy4, UpSampleXBy8, UpSampleXBy16}

This parameter defines the upsampling factor for the image width.

Expand_Y
Type static parameter
Default UpSampleYBy1
Range {UpSampleYBy1, UpSampleYBy2, UpSampleYBy4, UpSampleYBy8, UpSampleYBy16}

This parameter defines the upsampling factor for the image height.

20.30.4. Examples of Use

The use of operator SampleUp is shown in the following examples:

• Section 12.13.1, 'Histogram of Oriented Gradients (HOG)'

Examples- Histogram of oriented Gradients

Library Base 752

VisualApplets User Documentation Release 3

20.31. Operator SelectBitField
Operator Library: Base

The module SelectBitField makes it feasible to select a field of succeeding bits form the input link.
Define the required output bit width using the output link. Additionally, you can define the bit offset
using parameter BitOffset. If the input arithmetic is signed, the values will be reinterpreted and always
output as unsigned values.

Each color component is sliced separately.

See the following figure for explanation. In this example, the output transports 3 bits cut from the 6
bit input values with an offset of two. For example, input value 20 will become 5.

20.31.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.31.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed [1, 64]
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The output bit width has to be in

OutputBitWidth · InputBitWidth¡BitOffset

Library Base 753

VisualApplets User Documentation Release 3

20.31.3. Parameters

BitOffset
Type static parameter
Default 0
Range [0, InputBitWidth - OutputBitWidth] if gray [0, (InputBitWidth - OutputBitWidth) / 3] if

color

This parameter defines the bit offset for the first bit to be used. This first bit is mapped to bit
position 0 at the output link. For color formats, the offset is handled per component.

20.31.4. Examples of Use

The use of operator SelectBitField is shown in the following examples:

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 10.1.1.5, 'Grayscale Camera Link Full Area'

Tutorial - Basic Acquisition

• Section 11.8, 'Example for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator using the example of shading correction

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

Library Base 754

VisualApplets User Documentation Release 3

20.32. Operator SelectComponent
Operator Library: Base

The operator SelectComponent enables the extraction of a single color component from the input link
and makes this value available at the output link as a gray pixel. Use parameter Component to select
the required component.

20.32.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.32.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [3, 63] unsigned, [6, 63] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR VAF_GRAY
Color Flavor {FL_RGB, FL_HSI, FL_YUV,

FL_LAB, FL_XYZ}
FL_NONE

Max. Img Width any as I
Max. Img Height any as I

The output bit width is

OutputBitWidth = InputBitWidth=3

20.32.3. Parameters

Component
Type static parameter
Default 0
Range [0, 2]

This parameter is used to select one of the color component from the input, e.g if the input flavor is
RGB Component=0 selects red, 1 select green, and 2 selects blue.

20.32.4. Examples of Use

The use of operator SelectComponent is shown in the following examples:

• Section 12.13.4, 'Normalized Cross Correlation'

Examples-

Library Base 755

VisualApplets User Documentation Release 3

Library Base 756

VisualApplets User Documentation Release 3

20.33. Operator SelectFromParallel
Operator Library: Base

The operator SelectFromParallel extracts a single parallelism component from the input link and makes
this value available at the output link. Use parameter ParNum to select the required component. The
parallelism at the output link is always one. Only the selected parallelism components will be output.

For example, if an input parallelism of four is used and parallelism component 1 is selected, the operator
will output pixels with index 1, 5, 9, 13, ...

20.33.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.33.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any 1
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any auto
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].
The maximum output image width is:

OutputMaxImgWidth = InputMaxImgWidth=InputParallelism

20.33.3. Parameters

ParNum
Type static parameter
Default 0
Range [0, InputParallelism - 1]

This parameter defines which parallel component of the parallel transmitted pixels of the input link
is forwarded to the output.

20.33.4. Examples of Use

The use of operator SelectFromParallel is shown in the following examples:

Library Base 757

VisualApplets User Documentation Release 3

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

Library Base 758

VisualApplets User Documentation Release 3

20.34. Operator SelectROI
Operator Library: Base

The operator SelectROI extracts a rectangular region of interest (ROI) from the frames at the input link.
The ROI is specified by using 4 parameters X_Offset, X_Length, Y_Offset and Y_Length. X parameters
are to be specified in pixels. Y parameters are to be specified in lines.

If it is required to set the ROI coordinates using input links instead of parameters, operator DynamicROI
must be used.

The operator will finalize the output image as soon as the ROI is completed. If the ROI is smaller than
the input image this can result in a behavior that the output image is finalized earlier to the finalization
of the input image. This is in contrast to operators RemoveLine or RemovePixel which have to wait
for the last line / pixel.

Operator Restrictions

The sum of X_Offset and X_Length parameters must not exceed the maximal link image width. The
sum of Y_Offset and Y_Length parameters must not exceed the maximal link image height.

Changing the dynamic ROI parameters is allowed when the process i.e. the acquisition is stopped only.
Changes while the acquisition is running will have no effect on the ROI. This avoids invalid ROIs when
the parameters are changed.

The lines of each input image must have the same length. Thus images with varying line lengths are
not allowed.

• In VisualApplets it is required that the number of pixels in a line i.e. the line width is always a multiple
of the parallelism. When the X_Length is not divisible by the link parallelism the operator will insert
dummy pixels to fill up the last parallel word, e.g. if the link parallelism is 2, X_Offset is 0 and
X_Length is 5, the operator will output 6 pixel where the last pixel is a dummy pixel. The value of
that dummy pixel is undefined. In VA simulation dummy pixels will be set to zero for better visibility.

• When the input frame is smaller than the specified ROI the operator will output only the available
part of the ROI.

• When using the operator in 1D mode, the Y parameters have no effect on the operator. The operator
will cut off ROIs only in X direction.

20.34.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

20.34.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I

Library Base 759

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.34.3. Parameters

X_Offset
Type static/dynamic read/write parameter
Default 0
Range [0, MaxImgWidth - X_Length]

This parameter value (together with X_Offset) defines the position of the left edge of the ROI in
pixels.

Y_Offset
Type static/dynamic read/write parameter
Default 0
Range [0, MaxImgHeight - Y_Length]

This parameter value (together with Y_Offset) defines the position of the upper edge of the ROI in
pixels.

X_Length
Type static/dynamic read/write parameter
Default 1024
Range [1, MaxImgWidth - X_Offset]

This parameter defines the width of the ROI.

Y_Length
Type static/dynamic read/write parameter
Default 1024
Range [1, MaxImgHeight - Y_Offset]

This parameter defines the height of the ROI.

20.34.4. Examples of Use

The use of operator SelectROI is shown in the following examples:

• Section 12.9.5, 'Moments in Image Processing'

Example - Calculates image moments orientation and eccentricity

Library Base 760

VisualApplets User Documentation Release 3

20.35. Operator SelectSubKernel
Operator Library: Base

The operator SelectSubKernel extracts a rectangular subset of the kernel matrix at the input link.
Similar to the ROI an offset for the first element of the new kernel can be defined using parameters
FirstROW and FirstCOL. The size (width/height) of the new kernel can be chosen at the output link
by setting the kernel size of the link.

Often, this operator is used to extract the central element of a kernel which mostly is the original
pixel value.

20.35.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.35.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any any
Kernel Rows any any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
Range is defined as follows:

OutputKernelRows · InputKernelRows¡ FirstRow

OutputKernelColumns · InputKernelColumns¡ FirstColumns

20.35.3. Parameters

FirstROW
Type static parameter
Default 0
Range [0, InputKernelRows - OutputKernelRows]

This parameter defines the first row for the new kernel.

FirstCOL
Type static parameter

Library Base 761

VisualApplets User Documentation Release 3

FirstCOL
Default 0
Range [0, InputKernelColumns - OutputKernelColumns]

This parameter defines the first column for the new kernel.

20.35.4. Examples of Use

The use of operator SelectSubKernel is shown in the following examples:

• Section 3.6.6, 'Timing Synchronization'

Synchronization - Avoiding deadlocks.

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

• Section 12.4.1.1, 'Nearest Neighbor Demosaicing'

Examples - Nearest Neighbor Bayer Demosaicing

• Section 12.4.1.6, 'Edge Sensitive Bayer Demosaicing Algorithm'

Examples - Edge Sensitive Laplace Bayer Demosaicing filter

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 12.8.5.1, 'High Boost Sharpening Filter'

Examples - A high boost Laplace filter for sharpening

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Base 762

VisualApplets User Documentation Release 3

20.36. Operator SetDimension
Operator Library: Base

In VisualApplets designs, images of size less equal than the maximum image dimensions of a link can
be processed on these links. The maximum image dimension on a link is set using the link properties
Max Image Width and Max Image Height. Images transported on a link must not exceed this image
dimensions. If the image size exceeds the maximum allowed image dimensions, operators will not
work correct.

The maximum image dimension link properties should always be set to the minimum required values
i.e. the maximum expected image dimensions of the link. For example, if an operator selects a ROI
from an image. Due to the dynamic ROI parameters, the resulting output images will not have a fixed
image size. If the user knows that the ROI size will not exceed a specific value, the link properties can
manually be changed. This can be done by operator SetDimension.

Operator SetDimension overwrites the link properties maximum image width and maximum image
height. The operator only changes this logic link property. There is no influence on the transported
data in hardware. Always use this operator with care and ensure that the image size limitations are
not exceeded.

20.36.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

20.36.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.36.3. Parameters

None

20.36.4. Examples of Use

The use of operator SetDimension is shown in the following examples:

Library Base 763

VisualApplets User Documentation Release 3

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Base 764

VisualApplets User Documentation Release 3

20.37. Operator SplitComponents

Operator Library: Base

The operator SplitComponents separates the components of a color stream at the input link into
three separate gray image streams at the output. The opposite of this operator is Section 20.21,
'MergeComponents'.

20.37.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Links O0 (dynamic), data output color component {R,

H, Y, L, X}
O1 (dynamic), data output color component {G,
S, U, A, Y}
O2 (dynamic), data output color component {B,
I, V, B, Z}

20.37.2. Supported Link Format

Link Parameter Input Link I Output Link O0 (dynamic)
Bit Width [3, 63] unsigned, [6, 63] signed auto
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR VAF_GRAY
Color Flavor {FL_RGB, FL_HSI, FL_YUV,

FL_LAB, FL_XYZ
FL_NONE

Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O1 (dynamic) Output Link O2 (dynamic)
Bit Width auto auto
Arithmetic as I as I
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width as I as I
Max. Img Height as I as I

The output bit width is the input bit width divided by three.

Library Base 765

VisualApplets User Documentation Release 3

20.37.3. Parameters

None

20.37.4. Examples of Use

The use of operator SplitComponents is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - Split and Merge Color components.

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 11.6, 'Functional Example for the JPEG_Encoder_Color_iF User Library Element on the
imaFlex CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator

• Section 11.7, 'Functional Example for the JPEG_Encoder_Color_iF_Penta User Library Element on
the imaFlex CXP-12 Penta Platform'

Examples - Demonstration of how to use the operator

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.2.1, 'Color Plane Separation Option 1 - Three DMAs'

Splitting the RGB color planes into three DMA channel outputs.

• Section 12.4.2.2, 'Color Plane Separation Option 2 - Three Buffers, One DMA'

Sequential output of the color planes using three image buffers and one DMA operator.

• Section 12.4.2.3, 'Color Plane Separation Option 3 - Sequential with Operator ImageBufferMultiRoI'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI.

• Section 12.4.2.4, 'Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI
and a pre-sort of the Color Planes'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI. An additional pre-sorting optimizes the bandwdith and resources.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

Library Base 766

VisualApplets User Documentation Release 3

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Base 767

VisualApplets User Documentation Release 3

20.38. Operator SplitKernel
Operator Library: Base

The operator splits the N x M kernel components of the input link into j = N * M output links. The
amount of output links j has to be specified on operator initialization. The number of output links has
to be equal to the number of kernel components. If the input kernel size changes, a new instantiation
of the operator is required. The opposite of this operator is Section 20.22, 'MergeKernel'.

20.38.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O[0, j-1], data output

20.38.2. Supported Link Format

Link Parameter Input Link I Output Link O[0, j-1]
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.38.3. Parameters

None

20.38.4. Examples of Use

The use of operator SplitKernel is shown in the following examples:

• Section 12.9.7, 'Shear of an Image'

Example - Line Shear example with linear interpolation.

• Section 12.13.1, 'Histogram of Oriented Gradients (HOG)'

Examples- Histogram of oriented Gradients

Library Base 768

VisualApplets User Documentation Release 3

20.39. Operator SplitParallel

Operator Library: Base

The operator splits the input link of parallelism degree N into N output links of parallelism degree 1.
The amount of output links N has to be specified on operator instantiation. The number of links has
to be equal to the number of parallel pixels of the input link and cannot be changed after operator
instantiation. If the input parallelism changes, a new instantiation of the operator is required. The
opposite of this operator is Section 20.23, 'MergeParallel'.

The following figure illustrates an example for input parallelism four.

20.39.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O[0, N-1], data output

20.39.2. Supported Link Format

Link Parameter Input Link I Output Link O[0, N-1]
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any 1
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

20.39.3. Parameters

None

Library Base 769

VisualApplets User Documentation Release 3

20.39.4. Examples of Use

The use of operator SplitParallel is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 12.9.9, 'Tap Geometry Sorting'

Examples - Scaling A Line Scan Image

Library Base 770

VisualApplets User Documentation Release 3

20.40. Operator Trash
Operator Library: Base

The operator Trash is a data sink for unused links.

If modules generate output links that are not required in a particular design or if some paths are not
implemented yet, it is necessary to terminate open output links. Connecting open outputs to the input
of a Trash module terminates these outputs.

20.40.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input

20.40.2. Supported Link Format

Link Parameter Input Link I
Bit Width [1, 64]
Arithmetic {unsigned, signed}
Parallelism any
Kernel Columns any
Kernel Rows any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D, VALT_PIXEL0D,

VALT_SIGNAL}
Color Format any
Color Flavor any
Max. Img Width any
Max. Img Height any

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 6] and for signed color, the range is [6, 63].

20.40.3. Parameters

None

20.40.4. Examples of Use

The use of operator Trash is shown in the following examples:

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Blob 771

VisualApplets User Documentation Release 3

21. Library Blob

The Blob library includes operators for segmentation, object detection and feature extraction.

Availability

To use the Blob library, you need either a Segmentation and Classification Library
license, or the VisualApplets 4 license.

Object detection is of central importance for image analysis and classification. The object detection
possibilities in VisualApplets allow you to design a huge range of image processing applications that run
at highest speed grades in FPGA hardware. Using the Blob Analysis operators, you can realize complete
image processing applications - including pre-processing, image analysis, and classification - in
hardware. This offers you great options for solving computationally intensive high-speed applications.
Blob analysis is a fundamental method for detecting objects using connected components in binary
images. Blob analysis is strongly used in machine vision applications. The following sections introduce
blob analysis and explain the features of the VisualApplets implementation.

21.1. Definition

A Blob Analysis operation detects objects in binary images and describes these objects using
geometrical and statistical features. Figure 21.1, 'Objects Visualized by Colored Boxes' shows a binary
image consisting of four objects. (In the figure, these four objects are visualized by colored boxes.)

In blob analysis, an object is defined by a set of pixels which differ from the background and are in direct
neighborhood. Therefore, at first all pixels of an image need to be transformed into a binary image.
Here, Visual Applets allows the design of various methods from simple thresholding up to complex
adaptive binarization algorithms. Next, all black pixels of the resulting binary image are assumed to be
background pixels, whereas all white pixels are assumed to be foreground pixels and thus to belong
to an object.

Every white (foreground) pixel is allocated to an object. An object is defined to be a set of neighbored
foreground pixels. Thus, if a white (foreground) pixel is in direct neighborhood to another white pixel,
they belong to the same object. Because of this data interpretation, the image shown in Figure 21.1,
'Objects Visualized by Colored Boxes' results in four objects.

Library Blob 772

VisualApplets User Documentation Release 3

Figure 21.1. Objects Visualized by Colored Boxes

If a pixel is interpreted as belonging to a specific object depends on the relation of the pixel to its
neighbor pixels.

Each pixel I(u,v) of the binary image has four pixels in its neighborhood which are directly connected.
This relation is called 4-connected neighborhood. If a foreground pixel I(u,v) has one or more other
foreground pixels in its 4-connected neighborhood, the pixels belong to the same object.

Figure 21.2. 4-Connected Neighborhood

Library Blob 773

VisualApplets User Documentation Release 3

Besides the direct neighborhood, a pixel can be connected to another pixel diagonally. This relation
is called an 8-connected neighborhood:

Figure 21.3. 8-Connected Neighborhood

The blob analysis operators can be parameterized to work with either 4-connected or 8-connected
neighborhoods.

In general, an 8-connected neighborhood results in better object detection as even weakly connected
objects are connected and edges are smoothened.

Example:

The image below shows a cutout of an image. On the left-hand side, the result of a blob analysis
using a 4-connected neighborhood is displayed. On the right-hand side, the result of a blob analysis
using an 8-connected neighborhood is displayed. (Object allocation is visualized via color.) The
neighborhood parametrization (4-connected versus 8-connected) results in different allocations of
pixels to objects: 4-connected neighborhood applied on the image results in six objects, whereas 8-
connected neighborhood results in four objects only.

Figure 21.4. Pixels allocated to objects in a 4-connected neighborhood (left) and an 8-connected
neighborhood (right). All colored pixels represent foreground pixels where their allocation to objects is
visualized by differing colors.

21.2. Definition of Object Features
A blob analysis extracts features of the detected objects. Images of the objects themselves are not
provided. The blob analysis operators offer the calculation of the most common object features which
describe the objects using geometrical and statistical methods. Respectively, the features

Library Blob 774

VisualApplets User Documentation Release 3

• area

• bounding box

• center of gravity

• contour length

are supported. A comprehensive definition of each feature will be presented in the following.

21.2.1. Area

Each object of an image can be described by a list of the coordinates of all foreground pixels included
in the object pi = (xi;yi). Therefore, the object or its region R can be described by

R = fp1;p2; :::;png = f(x1;y1);(x2;y2); :::(xn;yn)g

The area of an object is the number of pixels of the object, i.e., the size of the region R.

Area(R) = A = N

Or in other words: The area of an object is the sum of all its pixels. This feature is often used to
distinguish between objects of varying sizes.

21.2.2. Bounding Box

The bounding box of a region R is the minimum paraxial rectangle which fits over the object. It is a
simple but very useful feature to describe the position of an object in the image.

B = BoundingBox(R) = (xmin;ymin;xmax;ymax)

This feature provides four values for each object, described in VisualApplets as

X0 = xmin

X1 = xmax

Y0 = ymin

Y1 = ymax

This feature is different for the Blob Analysis 1D operator as no absolute coordinates for objects can
be given. Please see Section 21.4, 'Blob_Analysis_1D' for explanation.

21.2.3. Center of Gravity

The center of gravity is calculated in x- and y-direction and is the sum of all absolute coordinates of
an object. The point of origin for each object is the top left corner of an image.

C¤
x =

X
x2R

x

and

C¤
y =

X
y2R

y

Please note that the center-of-gravity values are not normalized. They need to be divided by object
area after the blob analysis. To perform this division, use the DIV operator found in the arithmetics
library. Alternatively, the division can be performed on the host PC.

Cx =
C¤

x

A

Library Blob 775

VisualApplets User Documentation Release 3

and

Cy =
C¤

y

A

This feature is different for the Blob Analysis 1D operator. Please see Section 21.4, 'Blob_Analysis_1D'
for explanation.

21.2.4. Contour Length

This feature is defined by the length of all contours of an object. Included are outer and inner edges
(the latter caused by holes).

Contour Length differentiates between a 4-connected neighborhood and an 8-connected neighborhood.
If the blob analysis operator is set to detect objects using a 4-conneted neighborhood, the contour
length is determined by scanning the edges of an object in orthogonal directions only. If the blob
analysis operator is set to 8-connected neighborhood, the contour length also considers diagonally
connected object edges. Thus, depending on the neighborhood setting of the operator, the feature
provides two different results.

The two figures below illustrate the difference. Both figures show an image containing a single object.

In the upper figure, the object is detected using a 4-connected neighborhood. For this object, the
contour length sums up all pixels located at object edges. Only horizontal and vertical pixel connections
are considered. Therefore, the object results in a contour length of 30x orthogonal length.

In the lower figure, the blob analysis uses an 8-connected neighborhood. The contour length also
considers diagonal edges. The object results in an contour length of 14x orthogonal length + 8x
diagonal lengh.

The results differ in contour length.

Figure 21.5. 4-connected neighborhood: Contour Orthogonal = 30, Diagonal = 0

Library Blob 776

VisualApplets User Documentation Release 3

Figure 21.6. 8-connected neighborhood: Contour Orthogonal = 14, Diagonal = 8

The edge connecting two neighboring pixels diagonally has the contour length ci =
p
12 + 12 =

p
2 which

represents the hypotenuse of an isosceles triangle. This square root operation is not performed by
the blob analysis operators. Make sure it is performed afterwards in your design. The total contour
length can be obtained by

Ctotal = Corthogonal+
p
2 ¤ Cdiagonal

The diagonal component of the contour length is very important for objects with edges that run not
in parallel to the image edges.

For example, a circle having a radius of 5.5 pixels will have a perimeter of P = 2 ¤ ¼ ¤ r = 34:56 . The
figures below show this circle. In the left-hand figure, the perimeter is calculated using an 8-connected
neighborhood. In the right-hand figure, the perimeter is calculated using an 4-connected neighborhood.
The example shows that the result of the calculation using the 8-connected neighborhood (32.97) is
close to the theoretic result (34.56), The result of the calculation using the 4-connected neighborhood
(40) is rather poor - it is equal to the perimeter of a rectangle having the same diameter.

Figure 21.7. Calculation of the perimeter using an 8-connected neighborhood (left) and a 4-connected
neighborhood (right)

Library Blob 777

VisualApplets User Documentation Release 3

21.3. VisualApplets Operators
VisualApplets offers two operators for performing a blob analysis. These are the "Blob_Analysis_2D"
operator for ordinary 2D images, and the "Blob_Analysis_1D" operator for line camera applications
that use endless image heights.

Figure 21.8. Blob Analysis Operators

The operator reference (below) provides detailed explanations for both operators.

The following list summarizes all Operators of Library Blob

Operator Name Short Description available
since

Blob_Analysis_1D Detects objects in binary images of unlimited height
and determines their properties. Version 1.3

Blob_Analysis_2D Detects objects in binary images and determines
their properties. Version 1.3

Table 21.1. Operators of Library Blob

Library Blob 778

VisualApplets User Documentation Release 3

21.4. Operator Blob_Analysis_1D
Operator Library: Blob

The Blob_Analysis_1D operator detects objects in binary images of infinite height and determines their
properties. The outputs of the operator are several streams of data which represent properties for
each object.

You Might Need the 2D Operator Instead

The Blob_Analysis_1D operator is used for acquisitions where objects are located in
arbitrary positions. If in your line scan application your object positions can be determined
with an image trigger, use the Blob_Analysis_2D operator instead.

Availability

To use the Blob_Analysis_1D operator, you need either a Segmentation and
Classification Library license, or the VisualApplets 4 license.

This operator reference manual includes the following information:

• Explanation of the operator's functionality

• Timing model for 1D applications

• Using the operator in the VisualApplets high level simulation

• Operator input and output ports

• I/O Properties

• Supported Link Formats

• Parameters

• Examples of Use

21.4.1. Explanation of the Operator's Functionality

For a general introduction into the blob analysis operators it is mandatory to read the introduction
in 21. Library Blob.

The Blob Analysis 1D operator is designed for endless one-dimensional images. In general, for 2D Blob
Analysis, the object features are related to the position of the object in the frame and the coordinate
point of origin is the top left corner of the image. This is not possible for 1D images with endless height.
The objects cannot be related to a y-coordinate as this value would grow infinitely or cause an overflow.

The VisualApplets Blob Analysis 1D operator allows the use of endless images where objects may
have any position. The operator is extended by a reference input "LineMarkerI" which the objects
are related to. This may be counter values controlled by an external encoder and trigger pulse, for
example. Using this method, it is possible to allocate each object determined by the blob analysis to
the correct reference position.

The input link "FlushI" is used to flush the output, i.e., complete an output frame. For example, this
is required to complete a DMA transfer.

The following figure illustrates the behavior of the Blob Analysis 1D operator. It shows exemplified data
at the input of the operator and the resulting output. The binary endless image processed by the Blob
Analysis is shown on the left. The second column represents the LineMarkerI input. Here, a counter is
used to mark the objects with reference values. For better visualization, only the values of interest are
printed. The line marker input is assumed to have a bit width of nine bits. Hence, an overflow occurs
at value 512. In the third column, the flush input is shown. In this example there is only one flush

Library Blob 779

VisualApplets User Documentation Release 3

condition. The right column represents the output of the Blob Analysis operator. Looking at the example
you see that the image together with the line marker is processed during Blob Analysis. As soon as an
object is completed, it is output. The resulting object properties of all objects are marked with the line
marker which was set together with the first image line of the respective object. The bounding box
coordinates X0 and X1 are similar to the Blob Analysis 2D object features, whereas the Y1 coordinate
is the height of the object. The Y0 coordinate results of an internal counter of the Blob Analysis 1D
operator. It starts with zero and its maximum value is equal to the maximum height of objects set in
the property dialog of the operator. The flush condition causes an end of frame flag at the output.

Figure 21.9. Behavior of the Blob Analysis 1D Operator

Similar to the 2D operator, the Blob Analysis 1D operator is of type "M" where all outputs are
synchronous. In contrast to 2D, the 1D operator has three inputs. The first two inputs "ImageI" and
"LineMarkerI" are synchronous and have to be sourced by the same M-type operator. The input link
"FlushI" is asynchronous to the image and therefore does not need any synchronization. The following
figure illustrates one possible configuration (amongst many others).

Library Blob 780

VisualApplets User Documentation Release 3

Figure 21.10. Synchronization of the Blob 1D Operator in a VisualApplets Network

21.4.2. Generation of Output Frames - Flush, Empty Frames, Discarding
Data

As mentioned above, the flush is used to finalize an output frame, i.e., to generate the end of
frame flag. Depending on the timing of the flush input and the objects in the image, it could be
possible to generate empty frames as well as output frames containing a lot of data. To control
this behavior, parameters output_frame_size_overflow_handling and suppress_empty_output_frames
(see parameter description below) are used. The following waveforms show sketches of different
combinations of parameter settings, data, and flush input. The "Blob Data" represents the output
timing.

The first example shows the generation of new frames after the maximum frame size has been reached.
The blob operator generates an end of frame after the last blob has been output which completed the
output frame. Flush signals will generate additional ends of frames:

Figure 21.11. Blob 1D Timing - Generation of New Frames

The next example shows the suppression of empty output frames. As you see, the first flush is ignored.
The second flush is delayed until a blob is available for output. This way, the operator can delay flush
outputs:

Library Blob 781

VisualApplets User Documentation Release 3

Figure 21.12. Blob 1D Timing - Suppression of Empty Frames

In the third example we se the behavior of a constant 1 at the flush input. As
suppress_empty_output_frame is set to "yes", the operator will generate an end of frame after each
blob output. Warning: If suppress_empty_output_frame is accidently set to "no", constant one can
result in millions of ends of frames. If this output is connected to the VisualApplets output (DMA
operator), it could cause a PC overload!

Figure 21.13. Blob 1D Timing - Constant Flush

The last example shows the discarding of objects, as parameter
"output_frame_size_overflow_handling" is set to "discard_exceeding_objects".

Figure 21.14. Blob 1D Timing - Discarding of Objects

Library Blob 782

VisualApplets User Documentation Release 3

Please note that the output timing depends on the output pipeline. If data cannot be processed, i.e.,
the successive operators behind the blob operator block the processing, it might happen that flush
signals are lost.

21.4.3. Performance

The VisualApplets blob analysis operators are some of the very few operators where the processing
speed, i.e., the bandwidth, depends on the image content. Many objects in an image cause a large
object list what may result in slowing down the operator input. This applies only for images containing
very strong noise. For controlled conditions, the operator should be sufficiently fast.

21.4.4. Latency

The operator is designed to have a latency reduced to the minimum. Input images are transferred to
the Blob Analysis line by line. If an object is completely transferred into the operator, its object features
are output immediately once the operator can detect its completion. Hence, the Blob Analysis outputs
objects as soon as they are completely transferred to the operator. The post-processing of the object
features can be started while the image itself is still being processed.

Note that the DMA and some other operators wait for the frame end signal before they report
completion. Check the description of the flush input to learn about frame end generation in the
Blob_Analysis_1D operator.

21.4.5. Simulation of the Operator

Use the Simulation of Blob_Analysis_1D with Caution

The Blob 1D simulation has some limitations. Please use the simulation feature with due
caution.

VisualApplets uses normal 2D images, even if the image protocol is 1D. So for simulating the operator,
we use normal images. Each image is treated individually.

The simulation of the operator is NOT equal to the hardware behavior. There are two differences:

• The order of the object feature output might differ in hardware and software. This is because the
hardware output depends on the timing of the data which cannot be simulated in VisualApplets.

• The second (and most important) difference is the behavior of the Flush conditions. The FlushI input is
completely asynchronous to the image data input. FlushI is used to complete the output frames, i.e., it
inserts end-of-frame markers into the output stream. (See above, and parameter description below.)
As the flush is asynchronous to the image data, it cannot be simulated to reflect the same behavior
as in hardware. Therefore, the VisualApplets simulation uses an alternative simulation model. As the
behavior of the hardware cannot be copied, the simulation model is implemented differently to the
hardware on purpose. It has the following properties:

• The simulation tries to compare the correlation of the data input and the flush input by counting
the pixels of both inputs. So if the data input and flush input have the same image dimensions,
the correlation is 1:1 to the pixel position. However, if the flush input has less pixel (for example
1 pixel per line), only the simulation will compare the pixel positions.

• The flush condition will output an object in comparison to the Y0 coordinate of the object and not
in comparison to its completion as done in hardware.

• After the last object of an image has been output, all further flush signals are ignored. So in
simulation, the number of flush signals at the input are not correlated to the number of frame
outputs.

Because of this behavior, the simulation should be used with caution.

Library Blob 783

VisualApplets User Documentation Release 3

The following figures show some examples on mini-images, explaining some special conditions of
using the flush signal in simulation.

Figure 21.15. Simulation Scenario 1 - Flush and Y0 Relation

Figure 21.16. Simulation Scenario 2 - Flush Pixel Position

Figure 21.17. Simulation Scenario 3 - Discarded Flush Pixel at End of Frame

Library Blob 784

VisualApplets User Documentation Release 3

Figure 21.18. Simulation Scenario 4 - Multiple Blobs

21.4.6. Input Ports

The ImageI input of the Blob Analysis is represented by a binary one-dimensional image, i.e., an image
having a bit with of 1Bit, a specified width, and an unlimited height. A parallelism of up to 32 pixels can
be selected. Foreground values are assumed to have the value ONE, while background values must
have the value ZERO. This must be considered at the binarization process.

As the LineMarkerI input is synchronous to the image data input, these links must have the same
image dimensions and parallelism. However, the link may have any bit width. The value of LineMarker
has to be constant throughout each image line.

The input link "FlushI" is asynchronous to the other input links. It may have any bit width, parallelism,
and image dimensions. If one of the input bits of any of the parallel components is set, the Blob
Analysis output is flushed.

21.4.7. Output Ports

Each of the output ports represents one object feature / object property. Each output value at these
ports represents one object. Hence, the object properties result in a stream of data. The length of the
output data streams is equal to the number of objects found in the image and can be interrupted into
several sub-frames. Each output port has a height of 1 pixel and a specific length. They are represented
as grayscale 2D images.

The output ports are configured by using the operator parameters and the properties of the input. The
direct change of a link property is not possible.

The port ErrorFlagsO outputs several error flags of overflows. Each bit is reserved for a special flag.
A detailed explanation can be found in the parameter description below. A summary is given in the
following table:

Bit # Description Object
Related

Notes

0, 1 label overflow no The Blob Analysis has detected too many objects
to store in memory. To increase the maximum
number of objects within two image lines,
operator parameter "LabelBits" can be changed.

The flag is set upon detection until the end of the
data output frame. All object properties which
have been output so far are valid.

Library Blob 785

VisualApplets User Documentation Release 3

Bit # Description Object
Related

Notes

For the Blob Analysis 1D operator, the flag has
only high-level state for one clock cycle together
with the next valid data output.

After the flag is set, the output of the blob
analysis might result in wrong object properties.
The operator returns to correct functionality if
enough object labels are available.

2 output truncated yes The number of objects in the image exceed
the maximum output width set in the operator
parameters dialog. The flag is set together with
the last object which fits into the output width.

3 object size exceeds
maximum

yes The flag is set if an object of the 1D Blob
Analysis exceeds its maximum height. The
operator will cut this exceeding object into
smaller objects. The continuative object is
marked with the flag to allow the detection of a
cut.

For 2D Blob Analysis the flag is set to const zero.

4 area is truncated yes The area of the object together with the error
flag is larger than the area bits allow.

5 center of gravity X is
truncated

yes The center of gravity in X-direction is larger than
the bits allow.

6 center of gravity Y is
truncated

yes The center of gravity in Y-direction is larger than
the bits allow.

7 contour length overflow yes The contour length is larger than the bits
parameterized for the operator allow.

Table 21.2. Explanation of Blob Error Flags

21.4.8. I/O Properties

Property Value
Operator Type M
Input Links ImageI, image data input

LineMarkerI, data input
FlushI, data input

Output Links LineMarkerO, data output
BoundingX0O, data output
BoundingX1O, data output
BoundingY0O, data output
BoundingY1O, data output
AreaO, data output
CenterXO, data output
CenterYO, data output
ContourOrthoO, data output
ContourDiaO, data output
ErrorFlagsO, data output

Synchronous and Asynchronous Inputs

• Synchronous Group: ImageI, LineMarkerI

• FlushI is asynchronous to the group.

Library Blob 786

VisualApplets User Documentation Release 3

21.4.9. Supported Link Format

Link Parameter Input Link ImageI Input Link
LineMarkerI

Input Link FlushI

Bit Width 1 any any
Arithmetic unsigned unsigned unsigned
Parallelism {1, 2, 4, 8, 16, 32} as ImageI any
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE1D VALT_IMAGE1D VALT_IMAGE1D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any as ImageI any
Max. Img Height any as ImageI any

Link Parameter Output Link
LineMarkerO

Output Link
BoundingX0O

Output Link
BoundingX1O

Bit Width auto auto auto
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE1D VALT_IMAGE1D VALT_IMAGE1D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width auto auto auto
Max. Img Height 1 1 1

Link Parameter Output Link
BoundingY0O

Output Link
BoundingY1O

Output Link AreaO

Bit Width auto auto auto
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE1D VALT_IMAGE1D VALT_IMAGE1D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width auto auto auto
Max. Img Height 1 1 1

Link Parameter Output Link CenterXO Output Link CenterYO Output Link
ContourOrthoO

Bit Width auto auto auto
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1

Library Blob 787

VisualApplets User Documentation Release 3

Link Parameter Output Link CenterXO Output Link CenterYO Output Link
ContourOrthoO

Img Protocol VALT_IMAGE1D VALT_IMAGE1D VALT_IMAGE1D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width auto auto auto
Max. Img Height 1 1 1

Link Parameter Output Link ContourDiaO Output Link ErrorFlagsO
Bit Width auto 8
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_IMAGE1D VALT_IMAGE1D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width auto auto
Max. Img Height 1 1

The output bit width depends on the parameter settings of the object feature. If a feature is
disabled, the output is set to one bit which is always value zero.

The output maximum image width depends on the settings of parameter output_frame_size.

21.4.10. Parameters

label_bits
Type static parameter
Default 7
Range [5, 31]

This parameter sets the number of bits which are used to label the objects internally. It also
influences the maximum number of objects which may coexist within two image lines determined
by 2^label_bits. Note that the required memory resources for the blob analysis almost double with
every additional bit. A good value range for this parameter is between 7 and 9 Bits which should be
sufficient for almost every application.

If an overflow of this address space is detected, the operator outputs error flags at bits 0 and 1 of
port "ErrorFlagsO". These flags are set upon detection of the overflow and are reset with the end of
the output frame.

neighborhood
Type static parameter
Default eight_connected
Range {four_connected, eight_connected}

Select the required neighborhood for object detection. See Section 21.1, 'Definition' for a detailed
explanation of pixel neighborhoods.

max_object_height_bits
Type static parameter
Default 10

Library Blob 788

VisualApplets User Documentation Release 3

max_object_height_bits
Range [3, 31]

This parameter is required to specify the maximum height of an object. For example, a height of 10
bits will not allow objects exceeding a height of 1024 image lines.

If an object exceeds this limitation, it is cut into two ore more separated objects. If this happens,
an error flag at bit number 3 of port ErrorFlagsO is set together with the resumed object.

max_output_frame_size
Type static parameter
Default 65536
Range [1, 67108864]

Select the maximum output frame size, i.e., the maximum number of objects in one output frame.

output_frame_size_overflow_handling
Type static parameter
Default generate_new_frame
Range {generate_new_frame, discard_exceeding_objects}

The maximum output frame size is specified with parameter "max_output_frame_size". If the
number of objects exceeds this size, the operator can either generate a new frame or discard
the exceeding objects. The generation of a new frame results in an end of frame, i.e., the frame
is completed. If objects are discarded, the operator outputs an error flag at bit no. 2 of port
ErrorFlagsO together with the last valid object of the frame.

Note that a new frame is also generated with the flush input.

suppress_empty_output_frames
Type static parameter
Default yes
Range {yes, no}

This parameter is used to suppress empty output frames caused by a flush condition and no object
data.

Detailed timing diagrams can be found in Section 21.4.2, 'Generation of Output Frames - Flush,
Empty Frames, Discarding Data'.

line_marker
Type static parameter
Default used
Range {used, not_used}

The "line_marker" of each object is output at "LineMarkerO". The bit width is determined by the
input LineMarkerI input link. If the line marker is not used, the bit width is set to one with constant
zero at its output.

bounding_box_x0
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box X0 represents
the lowest x-coordinate of each object. It is output at "BoundingX0O". The bit width is determined
by the input image. If the bounding box is not used, the bit width is set to one bit with constant
zero at its output.

Library Blob 789

VisualApplets User Documentation Release 3

bounding_box_x1
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box X1 represents
the highest x-coordinate of each object. It is output at "BoundingX1O". The bit width is determined
from the input image. If the bounding box is not used, the bit width is set to one bit with constant
zero at its output.

bounding_box_y0
Type static parameter
Default used
Range {used, not_used}

The bounding box y0 represents the lowest y-coordinate of each object. This coordinate is based
on an internal counter of the operator. It starts counting with the first image line processed. Its
maximum value is equal to the maximum height set with the parameter max_object_height_bits.
After an overflow, the counter starts from zero again.

This feature can be used instead of the line marker. However, the line marker offers more
possibilities and allows complex configurations.

The feature is output at "BoundingY0O". The bit width is determined by the input image. If the
bounding box is not used, the bit width is set to one with constant zero at its output.

bounding_box_y1
Type static parameter
Default used
Range {used, not_used}

With the the 1D operator (in contrast to the 2D operator), bounding box y1 represents the height
of an object. It is output at "BoundingY1O". The bit width is determined by the input image. If the
bounding box is not used, the bit width is set to one with constant zero at its output.

area_mode
Type static parameter
Default use_area_with_maximum_required_bits
Range {area_not_used, use_area_with_maximum_required_bits,

use_area_with_specified_bits}

The area of an object is defined by the sum of all object foreground pixels. This parameter is used
to select the required area mode. If "use_area_with_maximum_required_bits" is selected, the
operator will automatically determine the required bits for the maximum possible size of an object.
The maximally possible size of an object dependeds on the maximum width and height at the
input link I. The theoretical maximum of an object is achieved if all pixels of an image consist of
foreground values, i.e., a white input image which is one large object.

If users can be sure that objects will not have a larger area than a specified value, this can be
parameterized. Select "use_area_with_specified_bits" if the maximum object size is known.
Use parameter "area_bits" to specify the number of bits. If the area is not required at all, select
"area_not_used". In "area_not_used" mode, the bit width is set to one with constant zero at its
output.

area_bits
Type static parameter
Default not_used
Range {not_used, used}

Library Blob 790

VisualApplets User Documentation Release 3

area_bits
This parameter is enabled only if parameter "area_mode" is set to "use_area_with_specified_bits".
If the area of an object is larger than the selected bits allow for, the blob analysis will output an
overflow flag at bit 4 of the output link "ErrorFlagsO".

center_of_gravity_x_mode
Type static parameter
Default use_cX_with_maximum_required_bits
Range {cX_not_used, use_cX_with_maximum_required_bits, use_cX_with_specified_bits}

See Section 21.2.3, 'Center of Gravity' for an explantion of the Center of Gravity.

Note that the output has to be divided by the area after blob analysis to get correct results.

If the parameter is set to "use_cX_width_maximum_required_bits", the operator will determine the
output bits automatically. The required number of bits can get very high if large input images are
used.

The number of bits is adjustable if "use_cX_with_specified_bits" is used for parameter value.

If no center of gravity in x-direction is required, it can be switched off by selecting "cX_not_used".

center_of_gravity_x_bits
Type static parameter
Default 29
Range [2, auto]

If "use_cX_with_specified_bits" is set for "center_of_gravity_x_mode", the bits can be changed
here. Otherwise, the parameter is disabled.

center_of_gravity_x_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

If the number of bits for the center of gravity in x-direction is set manually, this parameter is
activated and can be set to "used". The operator will then output a ONE at bit index 5 of the output
link "ErrorFlagsO" if an overflow is detected.

center_of_gravity_y_mode
Type static parameter
Default use_cY_with_maximum_required_bits
Range {cY_not_used, use_cY_with_maximum_required_bits, use_cY_with_specified_bits}

See Section 21.2.3, 'Center of Gravity' for an explantion of the Center of Gravity.

Note that the output has to be divided by the area after blob analysis to get correct results.

If the parameter is set to "use_cY_width_maximum_required_bits", the operator will determine the
output bits automatically. The required number of bits can get very high if large input images are
used.

The number of bits is adjustable if "use_cY_with_specified_bits" is used for parameter value.

If no center of gravity in y-direction is required, it can be switched off by selecting "cY_not_used".

center_of_gravity_y_bits
Type static parameter
Default 29

Library Blob 791

VisualApplets User Documentation Release 3

center_of_gravity_y_bits
Range [2, auto]

If "use_cY_with_specified_bits" is set for "center_of_gravity_y_mode", the bits can be changed
here. Otherwise, the parameter is disabled.

center_of_gravity_y_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

If the number of bits for the center of gravity in y-direction is set manually, this parameter is
activated and can be set to "used". The operator will then output a ONE at bit index 6 of the output
link "ErrorFlagsO" if an overflow is detected.

contour_length_mode
Type static parameter
Default contour_length_not_used
Range {contour_length_not_used, contour_length_used}

The contour length of an object includes all edges, even at holes. For a detailed explanation see
Section 21.2.4, 'Contour Length'.

If this feature is selected, the required bits can be chosen with the parameters
"contour_length_bits_orthogonal_connected" and "contour_length_bits_diagonal_connected"
depending on the neighborhood selected. If a 4-connected neighborhood is selected, the contour
length can only be determined in orthogonal directions. If an 8-connected neighborhood is selected
the contour length is determined in orthogonal and diagonal directions.

contour_length_bits_orthogonal_connected
Type static parameter
Default 16
Range [1, 31]

If "contour_length_mode" is set to "contour_length_used", the bits required to represent the
contour length for orthogonal connected pixels can be chosen here.

contour_length_bits_diagonal_connected
Type static parameter
Default 16
Range [1, 31]

If "contour_length_mode" is set to "contour_length_used", the bits required to represent the
contour length for diagonal connected pixels can be chosen here. This is only possible if an 8-
connceted neighborhood is selected. Otherwise, this parameter is disabled.

contour_length_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

The contour length may cause an overflow. If the flag is used, an error flag is set at bit number 7 of
port "ErrorFlagsO" in case of an overflow.

21.4.11. Examples of Use

The use of operator Blob_Analysis_1D is shown in the following examples:

Library Blob 792

VisualApplets User Documentation Release 3

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

Library Blob 793

VisualApplets User Documentation Release 3

21.5. Operator Blob_Analysis_2D
Operator Library: Blob

The Blob_Analysis_2D operator detects objects in binary images and determines their properties. The
outputs of the operator are several streams of data which represent properties for each object.

The functionality of the operator can be fully simulated in VisualApplets. However, please note that the
order of the output values might not be equal to the hardware implementation.

Availability

To use the Blob_Analysis_2D operator, you need either a Segmentation and
Classification Library license, or the VisualApplets 4 license.

Make sure you first read the general introduction into the blob analysis operators (section
21. Library Blob).

21.5.1. Performance

The VisualApplets blob analysis operators belong to the few operators whose processing speed, i.e.,
bandwidth, depends on the image content. Are many objects in the image, a large object list is created.
This may result in slowing down the operator input. However, this applies only for images containing
very strong noise. For controlled conditions, the operator should be sufficiently fast.

21.5.2. Latency

The operator works with minimum latency. Input images are transferred to the blob analysis line by
line. As soon as an object has been transferred into the operator completely, the operator detects
object completion and outputs the object features. Thus, post-processing of object features can be
started while the image itself is still being processed by the operator.

Note that the DMA and some other operators wait for the frame end signal before they report
completion. The frame end signal is generated once the input image is finalized.

21.5.3. Input Ports

The ImageI input of the blob analysis is represented by a binary, two-dimensional image, that is, an
image having a bit width of 1 Bit, a specified image width, and a specified image height. You can select
a parallelism of up to 32 pixels.

The operator assumes foreground values to have value ONE, and background values to have value
ZERO. Make sure you match this requirement in the preliminary binarization process.

21.5.4. Output Ports

Each of the output ports represents one object feature / object property. Each output value at these
ports represents one object. Hence, each object property results in one data stream. The length of
the output data streams is equal to the number of objects found in the image. The streams can be
interrupted into several sub-frames. The data on each output port has a height of 1 pixel and a specific
length. The output is represented in form of grayscale 2D images.

The output ports are configured using the operator parameters and properties of the input. The direct
change of a link property is not possible.

The port ErrorFlagsO outputs several error flags of overflows. Each bit is reserved for a special flag.
A detailed explanation can be found in the parameter description below. A summary is given in the
following table:

Library Blob 794

VisualApplets User Documentation Release 3

Bit # Description Object
Related

Notes

0, 1 label overflow no The Blob Analysis has detected too many objects
to store in memory. To increase the maximum
number of objects within two image lines,
operator parameter "LabelBits" can be changed.

The flag is set upon detection until the end of the
data output frame. All object properties which
have been output so far are valid.

For the Blob Analysis 1D operator, the flag has
only high-level state for one clock cycle together
with the next valid data output.

After the flag is set, the output of the blob
analysis might result in wrong object properties.
The operator returns to correct functionality if
enough object labels are available.

2 output truncated yes The number of objects in the image exceed
the maximum output width set in the operator
parameters dialog. The flag is set together with
the last object which fits into the output width.

3 object size exceeds
maximum

yes The flag is set if an object of the 1D Blob
Analysis exceeds its maximum height. The
operator will cut this exceeding object into
smaller objects. The continuative object is
marked with the flag to allow the detection of a
cut.

For 2D Blob Analysis the flag is set to const zero.

4 area is truncated yes The area of the object together with the error
flag is larger than the area bits allow.

5 center of gravity X is
truncated

yes The center of gravity in X-direction is larger than
the bits allow.

6 center of gravity Y is
truncated

yes The center of gravity in Y-direction is larger than
the bits allow.

7 contour length overflow yes The contour length is larger than the bits
parameterized for the operator allow.

Table 21.3. Explanation of Blob Error Flags

21.5.5. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Links BoundingX0O, data output

BoundingX1O, data output
BoundingY0O, data output
BoundingY1O, data output
AreaO, data output
CenterXO, data output
CenterYO, data output
ContourOrthoO, data output
ContourDiaO, data output
ErrorFlagsO, data output

Library Blob 795

VisualApplets User Documentation Release 3

21.5.6. Supported Link Format

Link Parameter Input Link I Output Link
BoundingX0O

Output Link
BoundingX1O

Bit Width 1 auto auto
Arithmetic unsigned unsigned unsigned
Parallelism {1, 2, 4, 8, 16, 32} 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any auto auto
Max. Img Height any 1 1

Link Parameter Output Link
BoundingY0O

Output Link
BoundingY1O

Output Link AreaO

Bit Width auto auto auto
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width auto auto auto
Max. Img Height 1 1 1

Link Parameter Output Link CenterXO Output Link CenterYO Output Link
ContourOrthoO

Bit Width auto auto auto
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width auto auto auto
Max. Img Height 1 1 1

Link Parameter Output Link ContourDiaO Output Link ErrorFlagsO
Bit Width auto 8
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_IMAGE2D VALT_IMAGE2D

Library Blob 796

VisualApplets User Documentation Release 3

Link Parameter Output Link ContourDiaO Output Link ErrorFlagsO
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width auto auto
Max. Img Height 1 1

The output bit width depends on the parameter settings of the object feature. If a feature is
disabled, the output is set to one bit which is always value zero.

The output maximum image width depends on the settings of parameter output_frame_size.

21.5.7. Parameters

label_bits
Type static parameter
Default 7
Range [5, 31]

This parameter sets the number of bits which are used to label the objects internally. It also
influences the maximum number of objects which may coexist within two image lines determined
by 2^label_bits. Note that the required memory resources for the blob analysis almost double with
every additional bit. A good value range for this parameter is between 7 and 9 bits which should be
sufficient for almost every application.

If an overflow of this address space is detected, the operator outputs error flags at bits 0 and 1 of
port "ErrorFlagsO". These flags are set upon detection of the overflow and are reset with the end of
the output frame.

neighborhood
Type static parameter
Default eight_connected
Range {four_connected, eight_connected}

Select the required neighborhood for object detection. See Section 21.1, 'Definition' for a detailed
explanation of pixel neighborhoods.

output_frame_size
Type static parameter
Default specify_max_no_of_objects
Range {maximum_required, specify_max_no_of_objects}

The maximum number of objects which may theoretically populate an image is: Input image width
* input image height / 2 (equal to a check pattern using 4-connected neighborhood). This pattern is
quite unlikely. Therefore, you can configure the maximum number of objects in the images via this
parameter.

max_output_frame_size
Type static parameter
Default 65536
Range [1, 67108864]

Select the maximum number of objects at the output. Any more objects detected by the blob
analysis will be discarded. However, on port "ErrorFlagsO", an error flag at bit 2 will be set. The flag
is set together with the last valid object. This parameter is disabled if "ouput_frame_size" is set to
"maximum_required".

Library Blob 797

VisualApplets User Documentation Release 3

bounding_box_x0
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box X0 represents
the lowest x-coordinate of each object. It is output at "BoundingX0O". The bit width is determined
from the input image. If the bounding box is not used, the bit width is set to one bit with constant
zero at its output.

bounding_box_x1
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box X1 represents
the highest x-coordinate of each object. It is output at "BoundingX1O". The bit width is determined
from the input image. If the bounding box is not used, the bit width is set to one bit with constant
zero at its output.

bounding_box_y0
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box Y0 represents
the lowest y-coordinate of each object. It is output at "BoundingY0O". The bit width is determined
from the input image. If the bounding box is not used, the bit width is set to one with constant zero
at its output.

bounding_box_y1
Type static parameter
Default used
Range {used, not_used}

A bounding box represents the minimum paraxial rectangle which fits over the object. Each
coordinate value is relatively to the top left corner of the image. The bounding box Y1 represents
the highest y-coordinate of each object. It is output at "BoundingY1O". The bit width is determined
from the input image. If the bounding box is not used, the bit width is set to one with constant zero
at its output.

area_mode
Type static parameter
Default use_area_with_maximum_required_bits
Range {area_not_used, use_area_with_maximum_required_bits,

use_area_with_specified_bits}

The area of an object is defined by the sum of all object foreground pixels. This parameter is used
to select the required area mode. If "use_area_with_maximum_required_bits" is selected, the
operator will automatically determine the required bits for the maximally possible size of an object.
The maximally possible size of an object dependeds on the maximum width and height at the
input link I. The theoretical maximum of an object is achieved if all pixels of an image consist of
foreground values, i.e., a white input image which is one large object.

If users can be sure that their objects will not have a larger area than a specified value, this can
be parameterized. Select "use_area_with_specified_bits" if the maximum object size is known.

Library Blob 798

VisualApplets User Documentation Release 3

area_mode
Use parameter "area_bits" to specify the number of bits. If the area is not required at all, select
"area_not_used". In "area_not_used" mode, the bit width is set to one with constant zero at its
output.

area_bits
Type static parameter
Default not_used
Range {not_used, used}

This parameter is enabled only if parameter "area_mode" is set to "use_area_with_specified_bits".
If the area of an object is larger than the selected bits allow for, the blob analysis will output an
overflow flag at bit 4 of the output link "ErrorFlagsO".

center_of_gravity_x_mode
Type static parameter
Default use_cX_with_maximum_required_bits
Range {cX_not_used, use_cX_with_maximum_required_bits, use_cX_with_specified_bits}

See Section 21.2.3, 'Center of Gravity' for an explantion of the Center of Gravity.

Note that the output has to be divided by the area after blob analysis to get correct results.

If the parameter is set to "use_cX_width_maximum_required_bits", the operator will determine the
output bits automatically. The required number of bits can get very high if large input images are
used.

The number of bits is adjustable if "use_cX_with_specified_bits" is used for parameter value.

If no center of gravity in x-direction is required, it can be switched off by selecting "cX_not_used".

center_of_gravity_x_bits
Type static parameter
Default 29
Range [2, auto]

If "use_cX_with_specified_bits" is set for "center_of_gravity_x_mode", the bits can be changed
here. Otherwise, the parameter is disabled.

center_of_gravity_x_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

If the number of bits for the center of gravity in x-direction is set manually, this parameter is
activated and can be set to "used". The operator will then output a ONE at bit index 5 of the output
link "ErrorFlagsO" if an overflow is detected.

center_of_gravity_y_mode
Type static parameter
Default use_cY_with_maximum_required_bits
Range {cY_not_used, use_cY_with_maximum_required_bits, use_cY_with_specified_bits}

See Section 21.2.3, 'Center of Gravity' for an explantion of the Center of Gravity.

Note that the output has to be divided by the area after blob analysis to get correct results.

If the parameter is set to "use_cY_width_maximum_required_bits", the operator will determine the
output bits automatically. The required number of bits can get very high if large input images are
used.

Library Blob 799

VisualApplets User Documentation Release 3

center_of_gravity_y_mode
The number of bits is adjustable if "use_cY_with_specified_bits" is used for parameter value.

If no center of gravity in y-direction is required, it can be switched off by selecting "cY_not_used".

center_of_gravity_y_bits
Type static parameter
Default 29
Range [2, auto]

If "use_cY_with_specified_bits" is set for "center_of_gravity_y_mode", the bits can be changed
here. Otherwise, the parameter is disabled.

center_of_gravity_y_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

If the number of bits for the center of gravity in y-direction is set manually, this parameter is
activated and can be set to "used". The operator will then output a ONE at bit index 6 of the output
link "ErrorFlagsO" if an overflow is detected.

contour_length_mode
Type static parameter
Default contour_length_not_used
Range {contour_length_not_used, contour_length_used}

The contour length of an object includes all edges, even at holes. For a detailed explanation see
Section 21.2.4, 'Contour Length'.

If this feature is selected, the required bits can be chosen with the parameters
"contour_length_bits_orthogonal_connected" and "contour_length_bits_diagonal_connected"
depending on the selected neighborhood. If a 4-connected neighborhood is selected, the contour
length can only be determined in orthogonal directions. If an 8-connected neighborhood is selected,
the contour length is determined in orthogonal and diagonal directions.

contour_length_bits_orthogonal_connected
Type static parameter
Default 16
Range [1, 31]

If "contour_length_mode" is set to "contour_length_used", the bits required to represent the
contour length for orthogonally connected pixels can be chosen here.

contour_length_bits_diagonal_connected
Type static parameter
Default 16
Range [1, 31]

If "contour_length_mode" is set to "contour_length_used", the bits required to represent the
contour length for diagonally connected pixels can be chosen here. This is only possible if an 8-
connceted neighborhood is selected. Otherwise this parameter is disabled.

contour_length_overflow_flag
Type static parameter
Default not_used
Range {not_used, used}

Library Blob 800

VisualApplets User Documentation Release 3

contour_length_overflow_flag
The contour length may cause an overflow. If the flag is used, an error flag is set at bit number 7 of
port "ErrorFlagsO" in case of an overflow.

21.5.8. Examples of Use

The use of operator Blob_Analysis_2D is shown in the following examples:

• Section 11.1, 'Functional Example for the FrameBufferMultRoiDyn Operator on the imaFlex CXP-12
Penta Platform'

Examples - Demonstration of how to use the operator

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.13.2, 'Print Inspection Example- Position Correction and Defect Detection Using Blob
Based Template Matching'

Examples- Geometric Transformation and Defect Detection

• Section 12.13.3, 'Print Inspection Example- Position Correction and Defect Detection Using Image
Moments and Blob Based Template Matching '

Examples- Geometric Transformation and Defect Detection Using Image Moments

Library Color 801

VisualApplets User Documentation Release 3

22. Library Color

The Color library includes operators for color space transformations and color processing.

The following list summarizes all Operators of Library Color

Operator Name Short Description available
since

BAYER3x3Linear Reconstructs an RGB image. Input link is a 3x3
kernel of a Bayer image. Version 1.1

BAYER5x5Linear Reconstructs an RGB image. Input link is a 5x5
kernel of a Bayer image. Version 1.1

ColorTransform Implements a matrix multiplication of a 3 by 3
matrix with an RGB vector. Version 1.2

HSI2RGB Converts the color space from HSL (Hue Saturation
Lightness) to RGB. Version 1.1

RGB2HSI Converts the color space from RGB to HSL (Hue
Saturation Luminance). Version 1.1

RGB2YUV Converts the color space from RGB to YCbCr. Version 1.1

WhiteBalance Scales the three color components of an RGB input
stream. Version 1.1

WhiteBalanceBayer Scales the three color components of a Bayer input
stream. Version 1.1

Table 22.1. Operators of Library Color

Library Color 802

VisualApplets User Documentation Release 3

22.1. Operator BAYER3x3Linear

Operator Library: Color

The operator BAYER3x3Linear reconstructs an RGB image from a Bayer input image. Technically, a
Bayer raw image is a grayscale image which is composed from alternating red, green and blue pixels.
BAYER3x3Linear acquires an RGB image from a Bayer camera through a bilinear reconstruction. The
input link must be a 3x3 kernel of a Bayer image.

The operator input is a grayscale image while the output is a color image. Therefore, the output bit
width is increased by a factor of three plus 2 precision bits per component. For example, an 8 bit
grayscale input image will be reconstructed into a 3 * (8 + 2) bit color image. If the added precision
bits are not required they can be discarded using operator RND or ShiftRight.

The Bayer array configuration of the camera must match the operator settings. The operator setting
is changed using parameter BayerInit. Four different mappings of the Bayer array on the sensor are
possible:

• GreenFollowedByRed

• RedFollowedByGreen

• BlueFollowedByGreen

Library Color 803

VisualApplets User Documentation Release 3

• GreenFollowedByBlue

The figures show the top left corner of an image transferred to the frame grabber. In general, this is
the top left corner of the camera's sensor but could change if you set a region of interest in the camera.
The sensor pixel are overlaid with one of the four different Bayer patterns shown in the figures. Select
the Bayer pattern corresponding to the image sensor of your camera.

The underlying algorithm is patent free.

22.1.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 19] (InputBitWidth + 2) * 3
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 3 1
Kernel Rows 3 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format VAF_GRAY VAF_COLOR

Library Color 804

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Flavor FL_NONE FL_RGB
Max. Img Width any as I
Max. Img Height any as I

22.1.3. Parameters

BayerInit
Type dynamic/static read/write parameter
Default GreenFollowedByRed
Range {GreenFollowedByRed, GreenFollowedByBlue, RedFollowedByGreen,

BlueFollowedByGreen}

The Bayer array configuration of the camera match the operator settings. See descriptions above.

22.1.4. Examples of Use

The use of operator BAYER3x3Linear is shown in the following examples:

• Section 12.4.1.2, 'Bayer 3x3 Demosaicing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter.

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

Library Color 805

VisualApplets User Documentation Release 3

22.2. Operator BAYER5x5Linear

Operator Library: Color

The operator BAYER5x5Linear reconstructs an RGB image from a Bayer input image. Technically, a
Bayer raw image is a grayscale image which is composed from alternating red, green and blue pixels.
BAYER5x5Linear acquires an RGB image from a Bayer camera through a bilinear reconstruction. The
input link must be a 5x5 kernel of a Bayer image.

The underlying algorithm is a patent free high quality linear implementation.

The operator input is a grayscale image while the output is a color image. Therefore, the output bit
width is increased by a factor of three plus 4 precision bits per component. For example, an 8 bit
grayscale input image will be reconstructed into a 3 * (8 + 4) bit color image. If the added precision
bits are not required they can be discarded using operator RND or ShiftRight.

The Bayer array configuration of the camera must match the operator settings. The operator setting
is changed using parameter BayerInit. Four different mappings of the Bayer array on the sensor are
possible:

• GreenFollowedByRed

• RedFollowedByGreen

• BlueFollowedByGreen

Library Color 806

VisualApplets User Documentation Release 3

• GreenFollowedByBlue

The figures show the top left corner an image transferred to the frame grabber. In general, this is the
top left corner of the camera's sensor but could change if you set a region of interest in the camera.
The sensor pixel are overlaid with one of the four different Bayer patterns shown in the figures. Select
the Bayer pattern corresponding to the image sensor of your camera.

22.2.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.2.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 16] (InputBitWidth + 4) * 3
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 3 1
Kernel Rows 3 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format VAF_GRAY VAF_COLOR
Color Flavor FL_NONE FL_RGB

Library Color 807

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Max. Img Width any as I
Max. Img Height any as I

22.2.3. Parameters

BayerInit
Type dynamic/static read/write parameter
Default GreenFollowedByRed
Range {GreenFollowedByRed, GreenFollowedByBlue, RedFollowedByGreen,

BlueFollowedByGreen}

The Bayer array configuration of the camera must match the operator settings. See descriptions
above.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy is selected
automatically based on the parametrization of the connected links.

EmbeddedALU: The operator uses embedded arithmetic logic elements of the FPGA that are not
LUT based.

LUT: The operator uses the LUT logic of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

22.2.4. Examples of Use

The use of operator BAYER5x5Linear is shown in the following examples:

• Section 12.4.1.3, 'Bayer 5x5 Demosaicing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.9, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern Red/
BlueFollowedByGreen GreenFollowedByBlue/Red '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByGreen_GreenFollowedByBlue/Red

Library Color 808

VisualApplets User Documentation Release 3

• Section 12.4.1.10, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern
RedFollowedByBlue GreenFollowedByGreen '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByBlue/Red_GreenFollowedByGreen

• Section 12.4.1.11, 'Bayer Demosaicing a Line Scan Camera with 8 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a Bayer 8 bit RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.12, 'Bayer Demosaicing a Line Scan Camera with 10 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.13, 'Bayer Demosaicing a Line Scan Camera with 12 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

Library Color 809

VisualApplets User Documentation Release 3

22.3. Operator ColorTransform
Operator Library: Color

The operator ColorTransform transforms the RGB stream at the input into an RGB stream with weighted
components. The transformation is performed by a 3x3 matrix multiplication with the input RGB vector.

The transformation matrix is defined by the parameter Coefficients. This parameter is a 3x3
matrix containing double precision coefficients. The following formula represents the transformation
algorithm. 0@Ro

Go

Bo

1A =

Ã
C0 C1 C2
C3 C4 C5
C6 C7 C8

!
£

0@Ri

Gi

Bi

1A
For calculation fixed point precision values are used. Parameters Precision and Resolution specify the
multiplication precisions.

• Precision defines the number of bits used to encode the coefficients.

• Resolution defines the number of fractional bits of a coefficient.

For example a precision of 8 bit and a resolution of 6 bits will result in coefficients within the range·
¡2Precision¡Resolution¡1 to 2Precision¡Resolution¡1 ¡ 1

2Resolution

¸
=

·
¡2 to 2¡ 1

64

¸
; Stepsize

1

2Resolution
=
1

64
 .

Signed values are allowed as coefficients, if the input link is signed or the field parameter Coefficients
is set to static. When the field parameter Coefficients is set to dynamic (i.e., transformation coefficients
can be altered during runtime), the output link is always signed. One of the precision bits is used as
the signed bit.

The results of the matrix multiplication are provided. They are rounded to the next integer value. The
output bit width is automatically determined from the input bit width and parameter settings.

Less Resources for Static Parameter

The operator requires less FPGA resources if the parameter Coefficients is set to static.

22.3.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [3, 54] unsigned, [6, 54] signed auto
Arithmetic {unsigned, signed} auto
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_RGB as I

Library Color 810

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Max. Img Width any as I
Max. Img Height any as I

The output bit width is automatically determined from the input bit width and the parameter
settings.

22.3.3. Parameters

Resolution
Type static parameter
Default 8
Range auto

Defines the number of fractional bits of a coefficient. The range depends on the input bit width and
the value of parameter Precision. Mind the following limitations:

Resolution > 0

Precision > Resolution

Precision + Resolution <= 32

(InputBitWidth=3 + Precision¡Resolution+ 2)£ 3 < 64

Precision
Type static parameter
Default 16
Range auto

Defines the number of bits to encode the whole coefficient - resolution bits and sign bit included.
The range depends on the input bit width and the value of parameter Precision. Mind the following
limitations:

Resolution > 0

Precision > Resolution

Precision + Resolution <= 32

(InputBitWidth=3 + Precision¡Resolution+ 2)£ 3 < 64

Coefficients
Type dynamic/static read/write parameter
Default identity matrix
Range

All Coefficients unsigned:
·
0 to 2Precision¡Resolution ¡ 1

2Resolution

¸
; Stepsize

1

2Resolution
 Any

Coefficient signed:
·
¡2Precision¡Resolution¡10 to 2Precision¡Resolution¡1 ¡ 1

2Resolution

¸
; Stepsize

1

2Resolution

The coefficient matrix initialized with the identity transformation. All coefficients of the matrix are
treated as signed numbers by the operator. The coefficients are double numbers.

Only Embedded VisualApplets (eVA): Deviating Parameter Interface
during Runtime

During runtime on eVA platforms, this parameter shows another parameter interface
than during design time in the VisualApplets GUI: Field parameter Coefficents
is replaced by separate index parameters and value parameters (parameter

Library Color 811

VisualApplets User Documentation Release 3

Coefficients
names: CoefficientIndex and CoefficientValue). The value is written on access to
CoefficientValue.

22.3.4. Examples of Use

The use of operator ColorTransform is shown in the following examples:

• Section 13.8, 'Functional Example for Specific Operators of Library Color, Base and Memory'

Examples - Demonstration of how to use the operator

Library Color 812

VisualApplets User Documentation Release 3

22.4. Operator HSI2RGB
Operator Library: Color

The operator HSI2RGB converts the color space from HSI (Hue Saturation Lightness) to RGB (Red,
Green, Blue).

Warning

The operator implements the HSL (Hue Saturation Lightness) to RGB color space
conversion and not HSI to RGB.

Operator Features and Restrictions

• Empty Images (i.e., images with no pixels) are fully supported.

• Not empty Images with empty lines are fully supported.

• Images with varying line lengths are fully supported.

22.4.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [24, 48] as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_HSI FL_RGB
Max. Img Width any as I
Max. Img Height any as I

The Bit Width must be divisible by three without remainder.
VALT_IMAGE2D and VALT_LINE1D: The Maximal Image Width must be divisible by the parallelism
without remainder (not important for VALT_PIXEL0D and VALT_SIGNAL).

22.4.3. Parameters

HueAmplitude
Type static parameter
Default 255
Range [1; (1 << (BitWidth(I) / 3)) - 1]

Library Color 813

VisualApplets User Documentation Release 3

HueAmplitude
This parameter defines the maximum value for the hue. 9bit at 360 degrees corresponds to a result
in degrees.

Range Violation leads to DRC error

If the value of HueAmplitude is not in range, the parameter state is set to error and
the parameter is reported by the DRC.

22.4.4. Examples of Use

The use of operator HSI2RGB is shown in the following examples:

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Color 814

VisualApplets User Documentation Release 3

22.5. Operator RGB2HSI
Operator Library: Color

The operator RGB2HSI converts the color space from RGB (Red, Green, Blue) to HSL (Hue Saturation
Luminance).

Warning

The operator implements the RGB to HSL (Hue Saturation Luminance) color space
conversion and not RGB to HSI (Hue Saturation Intensity).

Operator Features and Restrictions

• Empty Images (i.e., images with no pixels) are fully supported.

• Not empty Images with empty lines are fully supported.

• Images with varying line lengths are fully supported.

22.5.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [24, 48] as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_RGB FL_HSI
Max. Img Width any as I
Max. Img Height any as I

The Bit Width must be divisible by three without remainder.
VALT_IMAGE2D and VALT_LINE1D: The Maximal Image Width must be divisible by the parallelism
without remainder (not important for VALT_PIXEL0D and VALT_SIGNAL).

22.5.3. Parameters

HueAmplitude
Type static parameter
Default 255
Range [1; (1 << (BitWidth(I) / 3)) - 1]

Library Color 815

VisualApplets User Documentation Release 3

HueAmplitude
This parameter defines the maximum value for the hue. 9bit at 360 degrees corresponds to a result
in degrees.

Range Violation leads to DRC error

If the value of HueAmplitude is not in range, the parameter state is set to error and
the parameter is reported by the DRC.

22.5.4. Examples of Use

The use of operator RGB2HSI is shown in the following examples:

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

Library Color 816

VisualApplets User Documentation Release 3

22.6. Operator RGB2YUV
Operator Library: Color

The module RGB2YUV converts the color space from RGB to YCbCr.

Operator converts RGB into YCbCr, not into YUV

The operator converts only RGB into YCbCr. It does not convert RGB into YUV.

Operator Features and Restrictions

• Empty Images (i.e., images with no pixels) are fully supported.

• Not empty Images with empty lines are fully supported.

• Images with varying line lengths are fully supported.

22.6.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.6.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 24 as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_RGB FL_YUV
Max. Img Width any as I
Max. Img Height any as I

VALT_IMAGE2D and VALT_LINE1D: The Maximal Image Width must be divisible by the parallelism
without remainder (not important for VALT_PIXEL0D and VALT_SIGNAL).

22.6.3. Parameters

None

22.6.4. Examples of Use

The use of operator RGB2YUV is shown in the following examples:

• Section 13.8, 'Functional Example for Specific Operators of Library Color, Base and Memory'

Library Color 817

VisualApplets User Documentation Release 3

Examples - Demonstration of how to use the operator

Library Color 818

VisualApplets User Documentation Release 3

22.7. Operator WhiteBalance
Operator Library: Color

The operator WhiteBalance scales the three color components of an RGB input stream using three
independent coefficients. One usage of the operator is manual white balancing. Each color component
is scaled with the values defined by parameter RedCoefficient, GreenCoefficient and BlueCoefficient.
The range and precision of the multiplication is defines using parameters ResolutionBits and RangeBits.
RangeBits defines the scaling range. The range is [0, 2^RangeBits[. ResolutionBits defines the step

size of the scaling which is
1

2ResolutionBits
 . The results are rounded to the next integer values and output

on output link O.

22.7.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.7.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [3, 63] 3*(InputBitWidth/3 +

RangeBits) <= 64
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_RGB as I
Max. Img Width any as I
Max. Img Height any as I

22.7.3. Parameters

ResolutionBits
Type static parameter
Default 8
Range [1, 16]

This parameter defines the precision of the multiplication i.e. the step size of the coefficient
parameters.

RangeBits
Type static parameter
Default 2
Range [1, 8]

This parameter defines the range of the multiplication. This parameter influences the output bit
width. The output bit width must not exceed 64 Bit.

Library Color 819

VisualApplets User Documentation Release 3

RedCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the red component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

GreenCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the green component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

BlueCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the blue component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

22.7.4. Examples of Use

The use of operator WhiteBalance is shown in the following examples:

• Section 12.4.4, 'RGB White Balancing'

Examples - The applet shows an example for white balancing on RGB images.

Library Color 820

VisualApplets User Documentation Release 3

22.8. Operator WhiteBalanceBayer
Operator Library: Color

The operator WhiteBalanceBayer scales the three color components of a Bayer input stream using three
independent coefficients. One usage of the operator is manual white balancing. Each color component
is scaled with the values defined by parameter RedCoefficient, GreenCoefficient and BlueCoefficient.
The range and precision of the multiplication is defines using parameters ResolutionBits and RangeBits.
RangeBits defines the scaling range. The range is [0, 2^RangeBits[. ResolutionBits defines the step

size of the scaling which is
1

2ResolutionBits
 . The results are rounded to the next integer values and output

on output link O.

The Bayer array configuration of the camera must match the operator settings. The operator setting
is changed using parameter BayerInit.

22.8.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data input

22.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 16] InputBitWidth + RangeBits
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

22.8.3. Parameters

BayerInit
Type dynamic/static read/write parameter
Default GreenFollowedByRed
Range {GreenFollowedByRed, GreenFollowedByBlue, RedFollowedByGreen,

BlueFollowedByGreen}

The Bayer array configuration of the camera must match the operator settings.

ResolutionBits
Type static parameter
Default 8
Range [1, 16]

Library Color 821

VisualApplets User Documentation Release 3

ResolutionBits
This parameter defines the precision of the multiplication i.e. the step size of the coefficient
parameters.

RangeBits
Type static parameter
Default 2
Range [1, 8]

This parameter defines the range of the multiplication. This parameter influences the output bit
width. The output bit width must not exceed 64 Bit.

RedCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the red component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

GreenCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the green component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

BlueCoefficient
Type dynamic/static read/write parameter
Default 1
Range

·
0 to 2RangeBits ¡ 1

2ResolutionBits

¸
; Stepsize

1

2ResolutionBits

This parameter defines the coefficient which scales the blue component of the input. The entered
floating point coefficient is rounded to the nearest valid fixed point value (see RangeBits and
ResolutionBits).

22.8.4. Examples of Use

The use of operator WhiteBalanceBayer is shown in the following examples:

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

Library Compression 822

VisualApplets User Documentation Release 3

23. Library Compression

The Compression library includes operators for image compressions such as JPEG.

Availability

To use the Compression library, you need either a JPEG Compression Library license,
or the VisualApplets 4 license.

The following list summarizes all Operators of Library Compression

Operator Name Short Description available
since

ImageBuffer_JPEG_Gray Buffers the image stream in on-board RAM and
remaps the pixels in 8x8 blocks for JPEG encoding. Version 1.3

JPEG_Encoder_Gray Performs a JPEG compression of the previously
remapped input stream. Version 1.3

JPEG_Encoder Performs a JPEG compression of the previously
remapped input stream. Version 1.3

Table 23.1. Operators of Library Compression

Library Compression 823

VisualApplets User Documentation Release 3

23.1. Operator ImageBuffer_JPEG_Gray

Operator Library: Compression

The operator ImageBuffer_JPEG_Gray is used in combination with operator JPEG_Encode_Gray. The
operator buffers the image data and remap pixels for the successive JPEG encoder.

Availability

To use the ImageBuffer_JPEG_Gray operator, you need either a JPEG Compression
Library license, or the VisualApplets 4 license.

For JPEG compression images have to be divided into blocks of eight by eight pixels. The JPEG encoder
requires an input data stream consisting of these previously remapped pixels which is performed by
the ImageBuffer_JPEG_Gray. The following figure illustrates the behavior

Besides the sorting of pixels and the buffering of image data, the operator allows a dynamic ROI
selection. The XLength has to be a multiple of 16 where the XOffset has to be a multiple of eight. In
y-direction the offset may be any value, where the YLength has to be a multiple of 8. The operator
always cuts the given XLength. If the input image is smaller than the parameterized XLength, the
current memory content will be output. If the y length of the input image is smaller than the y length
given by the parameters, the output of the buffer is clipped the same y length as the input plus an
extension so that the height is a multiple of eight.

The ROI coordinates may be changed at any time. However, a change while the operator is currently
processing an image might result in unwanted results. Therefore, a change during idle periods is
recommended.

Operator Restrictions

• The operator does not support empty images i.e. images with no pixels.

• The lines of each input image at port I must have the same length. Thus images with varying line
lengths are not allowed.

• The operator requires non FPGA memory. The memory resources might be limited. Check the
available memory resources. (mostly DRAM memory) Map available RAM resources to modules of
this operators. See Section 3.8, 'Allocation of Device Resources' for more information.

Library Compression 824

VisualApplets User Documentation Release 3

Availability for Hardware Platforms
Please note that this operator is only available for target platforms of the microEnable 4 series
(including PixelPlant).

23.1.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

23.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 8 as I
Arithmetic unsigned as I
Parallelism {1, 2, 4, 8} 8
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

The maximum parallelism depends on the available RAM data width on the frame grabber.
Parallelism eight is only available for RAM data widths greater equal 64.

The RAM data width of all microEnable IV frame grabbers is 64.
The maximum image width is

2RamAddressWidth=4

The RAM address width of all microEnable IV frame grabbers is 24 bit.

23.1.3. Parameters

XOffset
Type static/dynamic read/write parameter
Default 0
Range [0, MaxImageWidth - 16], step size = 8

This parameter defines the x-coordinate of the upper left corner of the ROI. The XOffset has to be a
multiple of eight.

XOffset+XLenght · OutputMaxImageWidth

XLength
Type static/dynamic read/write parameter
Default 1024
Range [16, MaxImageWidth], step size = 16

Library Compression 825

VisualApplets User Documentation Release 3

XLength
This parameter defines the width of the ROI. It has to be a multiple of 16.

XOffset+XLenght · OutputMaxImageWidth

YOffset
Type static/dynamic read/write parameter
Default 0
Range [0, MaxImageHeight - 8], step size = 1

This parameter defines the y-coordinate of the upper left corner of the ROI. The YOffset has to be a
multiple of eight.

YOffset+ YLenght · OutputMaxImageHeight

YLength
Type static/dynamic read/write parameter
Default 1024
Range [8, MaxImageHeight], step size = 8

This parameter defines the height of the ROI. It has to be a multiple of 8.

YOffset+ YLenght · OutputMaxImageHeight

FillLevel
Type static read parameter
Default 0%
Range [0, 100%]

This read only parameter shows the current fill level of the buffer.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

Set this parameter to ENABLED if the operator is connected to a camera without any other buffers
in between. Otherwise set the value to DISABLED. See Section 3.6.9, 'Infinite Sources / Connecting
Cameras' for more information.

23.1.4. Examples of Use

The use of operator ImageBuffer_JPEG_Gray is shown in the following examples:

• Section 12.1.2, 'JPEG Encoder Gray'

Examples - A simple example which shows the usage of the JPEG operators.

Library Compression 826

VisualApplets User Documentation Release 3

23.2. Operator JPEG_Encoder_Gray

Operator Library: Compression

The operator performs a JPEG compression of grayscale 8-bit images.

Availability

To use the JPEG_Encoder_Gray operator, you need either a JPEG Compression Library
license, or the VisualApplets 4 license.

Input Data in 8x8 pixels blocks required

On its input, the operator needs to receive image data that have been remapped into
blocks of 8x8 pixels.

If you use a microEnable IV frame grabber, you can use operator
ImageBuffer_JPEG_Gray for this remapping. For microEnable IV designs, simply use
operator ImageBuffer_JPEG_Gray in front of operator JPEG_Encoder_Gray. Operator
ImageBuffer_JPEG_Gray is designed to perform this reordering.

If you use a microEnable 5 frame grabber, make sure you remap the image data into
blocks of 8x8 pixels (using the general VisualApplet options) before you use operator
JPEG_Encoder_Gray.

The operator's output is a Huffman stream without JPEG headers. The compression rate depends on
the selected quantization table which is changeable during runtime. For Huffman coding the standard
luminance table is used. Besides the quantization table, the compression rate i.e. the output stream
size depends on the input image. Therefore, the operator's output width is changeable to the desired
output size.

The JPEG encoder is able to process around 2.5 input pixels per clock cycle. The clock frequency
depends on the used frame grabber. microEnable IV frame grabbers have a base clock frequency of
62.5MHz. Therefore, the operator can process 158MPixels/s on a microEnable IV frame grabber. If
quantization tables that cause a high quality compression are used, the data rate can be reduced.
This is at quality levels of approximately more than 95%. Please refer to the JPEG application notes
for further details.

The operator allows the selection of the quantization table using two parameters representing two
different ways of configuration.

• If desired, each of the quantization table values can be set individually. Use parameter
quantization_matrix in this case.

• In alternative, the quantization table can be determined from percentage values. Use parameter
quality_in_percent in this case.

The standard luminance quantization table is shown in the following and is used as the default setting
of the operator.

Qorig(u;v) =

0BBBBBBBB@

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

1CCCCCCCCA
If a percentage quality is used, the quantization table is calculated by the following equation

Library Compression 827

VisualApplets User Documentation Release 3

Q(u;v) =

8>>>>>>>>><>>>>>>>>>:

"
1 ¢ ¢ ¢ 1
:::

: : :
:::

1 ¢ ¢ ¢ 1

#
if q = 100

Q(u;v) = round

µ
Qorig(u;v)

100¡ q

50

¶
if q ¸ 50

Q(u;v) = round

µ
Qorig(u;v)

50

q

¶
if q · 50

As described, the operator's output is a Huffman Stream of the encoded image data. The underlying
DC coefficients and AC coefficients are fixed and taken from literature, namely W. P. Pennbaker and J.
L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Rheinhold, 1993. See beyond
for the listing. The generated Huffman Stream generated by the encoder does not contain the required
JPEG headers to generate a JPEG image file. Furthermore, the generated data stream is of 32Bbit
width. The last word i.e. the four last byte of the JPEG data stream provide status information of the
following format:

• Bytes zero and one of the last word represent the JPEG EOI marker which is 0xff and 0xd9.

• Byte no. two represents the number of bytes used in the second last data word in the range [1, 4]
i.e. the true end of the JPEG data stream.

• The last byte no. three represents an error code. If the JPEG data stream is larger than the maximum
image width specified for the output link, the output will be truncated. If this happens, the last byte
will be set to one which allows the detection of this truncation.

An example of the end of a JPEG output data stream is given in the following:

Second last word: 0xffff5fed

Last word: 0x0002d9ff

Hence, the JPEG output data stream ends with the second byte of the second last word. The data
stream is not truncated.

Operator Restrictions

• The operator does not support empty images i.e. images with no pixels.

• The lines of each input image at port I must have the same length. Thus images with varying line
lengths are not allowed.

23.2.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

23.2.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 8 32
Arithmetic unsigned as I
Parallelism 8 1
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format VAF_GRAY as I

Library Compression 828

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Flavor FL_NONE as I
Max. Img Width any any
Max. Img Height any 1

The input width and height have to be multiples of 8.

23.2.3. Parameters

quality_in_percent
Type dynamic read/write parameter
Default 50
Range [-1, 100]

Using this parameter the quality of the JPEG compression can be changed. The quantization
matrix is determined from the percentage values using the equation given above. The determined
quantization values can be read from parameter quantization_matrix. The parameter is dynamic
and should only be changed during idle time of the applet.

Quality settings between 0 and 100 can be defined. Writing to this parameter overwrites manual
chnages of the quantization matrix made by parameter quantization_matrix. If -1 is read from
quality_in_percent, manual change of the quantization matrix has been made.

quantization_matrix
Type static/dynamic read/write parameter
Default standard matrix (see above)
Range [1, 255]

This parameter is a dynamic read and write matrix paramter. If the JPEG quality is set in
percentage values. This parameter can be used to read the determined quantization matrix values.

The parameter can also be used to specify a user defined quantization matrix. This can be done by
writing to any of the quantization matrix values. Note that a write to parameter qulity_in_percent
will discard the user specified quantization values. For convenience, parameter quality_in_percent is
set to -1 after a user specified value has been written.

23.2.4. Examples of Use

The use of operator JPEG_Encoder_Gray is shown in the following examples:

• Section 12.1.2, 'JPEG Encoder Gray'

Examples - A simple example which shows the usage of the JPEG operators.

• Section 12.1.3, 'Using more than one JPEG encoder to enhance the bandwidth of JPEG compression.'

Examples - multible JPEG encoder

23.2.5. More Information

The following Huffman DC- and AC Coefficients are used.

typedef char DCHuffTableType[12][17]; // huffman-table for luminance-DC-coefficients

DCHuffTableType Lum_DC_HuffmanTable= {
"00",
"010",
"011",
"100",
"101",

Library Compression 829

VisualApplets User Documentation Release 3

"110",
"1110",
"11110",
"111110",
"1111110",
"11111110",
"111111110" };

typedef char ACHuffTableType[16][11][17]; // Huffman-Tabelle für Luminance-AC-Koeffizienten

ACHuffTableType Lum_AC_HuffmanTable= {
{ //Run == 0
"1010",//EOB
"00",
"01",
"100",
"1011",
"11010",
"1111000",
"11111000",
"1111110110",
"1111111110000010",
"1111111110000011"
},
{ //Run == 1
"1010",//EOB
"1100",
"11011",
"1111001",
"111110110",
"11111110110",
"1111111110000100",
"1111111110000101",
"1111111110000110",
"1111111110000111",
"1111111110001000"
},
{ //Run == 2
"1010",//EOB
"11100",
"11111001",
"1111110111",
"111111110100",
"1111111110001001",
"1111111110001010",
"1111111110001011",
"1111111110001100",
"1111111110001101",
"1111111110001110"
},
{ //Run == 3
"1010",//EOB
"111010",
"111110111",
"111111110101",
"1111111110001111",
"1111111110010000",
"1111111110010001",
"1111111110010010",
"1111111110010011",
"1111111110010100",
"1111111110010101"
},
{ //Run == 4
"1010",//EOB
"111011",
"1111111000",
"1111111110010110",
"1111111110010111",
"1111111110011000",
"1111111110011001",
"1111111110011010",
"1111111110011011",
"1111111110011100",
"1111111110011101",
},
{ //Run == 5
"1010",//EOB
"1111010",
"11111110111",

Library Compression 830

VisualApplets User Documentation Release 3

"1111111110011110",
"1111111110011111",
"1111111110100000",
"1111111110100001",
"1111111110100010",
"1111111110100011",
"1111111110100100",
"1111111110100101"
},
{ //Run == 6
"1010",//EOB
"1111011",
"111111110110",
"1111111110100110",
"1111111110100111",
"1111111110101000",
"1111111110101001",
"1111111110101010",
"1111111110101011",
"1111111110101100",
"1111111110101101"
},
{ //Run == 7
"1010",//EOB
"11111010",
"111111110111",
"1111111110101110",
"1111111110101111",
"1111111110110000",
"1111111110110001",
"1111111110110010",
"1111111110110011",
"1111111110110100",
"1111111110110101",
},
{ //Run == 8
"1010",//EOB
"111111000",
"111111111000000",
"1111111110110110",
"1111111110110111",
"1111111110111000",
"1111111110111001",
"1111111110111010",
"1111111110111011",
"1111111110111100",
"1111111110111101"
},
{ //Run == 9
"1010",//EOB
"111111001",
"1111111110111110",
"1111111110111111",
"1111111111000000",
"1111111111000001",
"1111111111000010",
"1111111111000011",
"1111111111000100",
"1111111111000101",
"1111111111000110"
},
{ //Run == 0xA
"1010",//EOB
"111111010",
"1111111111000111",
"1111111111001000",
"1111111111001001",
"1111111111001010",
"1111111111001011",
"1111111111001100",
"1111111111001101",
"1111111111001110",
"1111111111001111"
},
{ //Run == 0xB
"1010",//EOB
"1111111001",
"1111111111010000",
"1111111111010001",
"1111111111010010",

Library Compression 831

VisualApplets User Documentation Release 3

"1111111111010011",
"1111111111010100",
"1111111111010101",
"1111111111010110",
"1111111111010111",
"1111111111011000"
},
{ //Run == 0xC
"1010",//EOB
"1111111010",
"1111111111011001",
"1111111111011010",
"1111111111011011",
"1111111111011100",
"1111111111011101",
"1111111111011110",
"1111111111011111",
"1111111111100000",
"1111111111100001"
},
{ //Run == 0xD
"1010",//EOB
"11111111000",
"1111111111100010",
"1111111111100011",
"1111111111100100",
"1111111111100101",
"1111111111100110",
"1111111111100111",
"1111111111101000",
"1111111111101001",
"1111111111101010"
},
{ //Run == 0xE
"1010",//EOB
"1111111111101011",
"1111111111101100",
"1111111111101101",
"1111111111101110",
"1111111111101111",
"1111111111110000",
"1111111111110001",
"1111111111110010",
"1111111111110011",
"1111111111110100"
},
{ //Run == 0xF
"11111111001", //ZRL
"1111111111110101",
"1111111111110110",
"1111111111110111",
"1111111111111000",
"1111111111111001",
"1111111111111010",
"1111111111111011",
"1111111111111100",
"1111111111111101",
"1111111111111110"
}
};

Library Compression 832

VisualApplets User Documentation Release 3

23.3. Operator JPEG_Encoder
Operator Library: Compression

The operator performs a JPEG compression of grayscale 8-bit images. It uses the JPEG baseline
algorithm. The operator's output is a Huffman stream. Optionally, JPEG headers are included in the
output (parametrizable). If the headers are included, the output format is JFIF (JPEG File Interchange
Format), version 1.2.

Availability

To use the JPEG_Encoder operator, you need either a JPEG Compression Library
license, or the VisualApplets 4 license.

The compression rate (and thus the output stream size) depends on two factors:

• on the selected quantization table which is changeable during runtime.

• on the input image.

Operator JPEG_Encoder is able to process the full input data rate as specified in the link parametrization.
You can define the throughput rate via the input parallelism. Please note that higher parallelism entails
a higher FPGA resource utilization.

The maximum image height is 65.535 pixels. If the image height is not a multiple of eight, the operator
internally adds dummy lines. This behaviour reduces the overall input data rate.

The operator allows you to define the quantization table. You have two options to configure the table:

• The quantization table can be calculated automatically on the basis of a quality value (in percent). For
calculation, the standard luminance quantization table (see below) is used. Use parameter Quality
(in percent) to configure automatic calculation. Automatic calculation is the default setting of the
operator.

• Alternatively, you can set each of the quantization table values individually. Use parameter
LuminanceQuantization to enter your values. Parameter Quality is automatically disabled in this case
by being set to value -1.

The standard luminance quantization table (default setting) looks as follows:

Qorig(u;v) =

0BBBBBBBB@

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

1CCCCCCCCA
In default mode (i.e. automatic calculation out of the standard lumninance quantization table set by
the parameter Quality), the quantization table is calculated by the following equation:

Q(u;v) =

8>>>>>>>>><>>>>>>>>>:

"
1 ¢ ¢ ¢ 1
:::

: : :
:::

1 ¢ ¢ ¢ 1

#
if q = 100

Q(u;v) = round

µ
Qorig(u;v)

100¡ q

50

¶
if q ¸ 50

Q(u;v) = round

µ
Qorig(u;v)

50

q

¶
if q · 50

As described above, the operator's output is a Huffman stream of the encoded image data. For Huffman
coding, the standard luminance tables for DC and AC coefficients are used. These tables are fixed and
taken from literature, namely W. P. Pennbaker and J. L. Mitchell, 'JPEG Still Image Data Compression
Standard', Van Nostrand Rheinhold, 1993. The Huffman stream generated by the encoder includes

Library Compression 833

VisualApplets User Documentation Release 3

the JPEG header if parameter IncludeHeader is set to YES. The generated data stream consists of
parallel outputs of multiple bytes (8-bit blocks) where the parallelism is automatically derived from
the throughput requirements.

Operator Restrictions

• The operator does not support empty images, i.e., images with no pixels.

• Input images with varying line lengths are not allowed.

• The operator has a minimum input image width which depends on the input parallelism. The minimum
input image width is at least twice the input parallelism. The minimum input image width is calculated
as follows:

1. On the basis of the input parallelism: The first multiple of 8 is identified which is equal to or
bigger than the input parallelism.

2. To this multiple of 8, value 1 is added.

3. On the basis of the result of step 2: As the input image width has to be a multiple of the input
parallelism, the first multiple of the input parallelism that is bigger than the result of step 2
is identified.

The result of step 3 is the minimum input image width for the operator.

Figure 23.1. Formula for calculating the minimum input image width

For example, if the input parallelism is 4, the minimum input image width is 12.

If the input parallelism is 12, the minimum input image width is 24.

Optimizing the Operator Throughput

If the input parallelism is greater than 8, the data throughput depends on the size of the
input image. The maximum data throughput can be achieved with the following image
size (OptimalSize):

OptimalSize = Ceil(FrameSize/(PathCount *
IntervalSize))*PathCount * IntervalSize

FrameSize = ceil(ImageWidth/8)*8 * ceil(ImageHeight/8)*8;

PathCount = ceil(Par/8)

IntervalSize: Next value greater than 7, which has no common factor
with PathCount.

Internally, the operator always uses a parallelism that is a multiple of 8. Depending on
the input parallelism, the internal parallelism conversion can compensate some of the
loss of bandwidth. The loss of bandwidth only occurs at the end of a frame.

As the size of the compressed image data is not predictable, the last output data byte of a compressed
frame might not occur aligned to the output parallelism. Consequently, the last data vector of a frame
can contain random dummy values. To mark the actual end of a frame, the EOI (End of Image) marker
as defined in the JPEG standard will be used. The EOI marker consists of two bytes. The second last
byte of each frame is 0xFF, and the last byte of each frame is 0xD9.

To optimize its image throughput rate (band width), the operator outputs the header as soon as header
generation is activated - even before image data arrive at the operator's input. This way, the transfer of
the header data doesn't interrupt the transfer of image data, as the header is transferred in advance.

Library Compression 834

VisualApplets User Documentation Release 3

The drawback of this practice is that the operator's output transfer starts earlier than the actual image
data transfer. This may cause irritations under specific circumstances:

• Using operator SourceSelector directly after JPEG_Encoder: Operator SourceSelector registers a
partly processed frame as soon as it gets the header data. Therefore, if SourceSelector is switched
to getting image data from JPEG_Encoder, SourceSelector cannot be switched to any another source
as it always detects an unfinished frame. In addition, when header generation is enabled and
SourceSelector switches from another source to the JPEG_Encoder channel, the first image is lost.

• To measure the latency, use operator FrameEndToSignal (instead of FrameStartToSignal and
SignalToDelay).

• If working on eVA devices, please make sure the output is capable to accept data transfer before
the sensor transfer is started.

Get more information and additional examples on VisualApplets' JPEG compression features in the
VisualAppletsOnline Community Forum [https://forum.silicon.software/forum/] at New High-Speed
JPEG Operator and Examples [https://forum.silicon.software/forum/index.php?thread/100-new-high-
speed-jpeg-operator-and-examples-va-3-2-0/].

Overflow Management with InfiniteSource

In the InfiniteSource mode it is possible for images to be lost or corrupted, because the JPEG_Encoder
module or one of the succeeding modules can't handle the bandwidth. If the overflow occurs while a
partial image was already accepted by the operator, all further incoming image data is discarded and
the truncated image in the operator is truncated, which results in a partial output image. If the operator
is in an overflow state while the start of a frame arrives, the entire frame is discarded and the frame
is lost. For each truncated or lost frame, a VA event is generated (TruncatedEvent and LostEvent).
The JPEG_Encoder events consist of 3 packets with 2 byte each. The first two VA event packets make
up the frame-ID, which is just a counter for each frame that arrives at the JPEG_Encoder input. The
frame-ID identifies the exact frame that was lost or truncated. The third packet marks the type of
error that occurred. Bit 0 marks whether a frame was lost (Bit0 = 1) or truncated (Bit0 = 0). The
other 15 bit of the third packet are only used in case events were lost, which can only occur if events
occur too fast for the CPU. Bit1 of the third packet marks any occurrence of a TruncatedEvent that
was lost and Bit2 of the same packet marks any occurrence of a LostEvent that was lost. Additionally,
for LostEvents that were lost, Bit[15:3] form a counter that holds the number of LostEvents that
were lost. If the counter value is zero, the lost-LostEvent-counter has overflown. Since a truncated
frame results in JPEG_Encoder output data but a lost frame does not, the VA events only count the
number of lost LostEvents.

Figure 23.2. Overflow Event Data

23.3.1. I/O Properties

Property Value
Operator Type M

https://forum.silicon.software/forum/
https://forum.silicon.software/forum/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/
https://forum.silicon.software/forum/index.php?thread/100-new-high-speed-jpeg-operator-and-examples-va-3-2-0/

Library Compression 835

VisualApplets User Documentation Release 3

Property Value
Input Link I, data input
Output Link O, data output

23.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 8 8
Arithmetic unsigned as I
Parallelism any automatically calculated
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width 2^16 -1 = 65.535 any
Max. Img Height 2^16 -1 = 65.535 1

The value must not be lower than the minimum image width requirement.
The image width at the output link is configurable. If the output image is bigger than the maximal
image width configured for the output link, the image is cut off and the remaining image data is
discarded. The last two bytes of each image are always containing the End of Image Marker (EOI).

23.3.3. Parameters

Quality
Type static/dynamic write parameter
Default 50.00
Range [1.00 - 100.00 %], {-1}, step size = 0.01%

Using this parameter, the quality of the JPEG compression can be changed. The quantization
matrix is determined from the percentage values using the equation given above. The determined
quantization values can be read from parameter quantization_matrix. The parameter is dynamic
and should only be changed during idle time of the applet.

Quality settings between 1 and 100 can be defined. Writing to this parameter overwrites manual
changes of the quantization matrix made by parameter LuminanceQuantization. If -1 is read from
Quality, manual change of the quantization matrix has been made.

The quality parameter is the primary source to define the compression rate of the encoder. The
luminance table will be auto-computed from the specified quality and can be read back. However
it is possible to modify the luminance table directly. If this happens the quality parameter will be
auto-changed to -1 to show that the parameter is not valid anymore and manual overwrite mode
for the tables is used. The quality and the quantization tables can be set to static mode if the user
wants to optimize resource usage. Static versus dynamic change can be performed only on the
quality parameter. The quantization table settings will follow the quality type automatically and
cannot be overwritten manually. When the quality is set to static, the operator determines the
output parallelism from the quality settings. In most cases the output parallelism will be reduced in
comparison to the dynamic mode, which can mean a significant FPGA resource reduction at the cost
of giving up the flexibility to change the compression rate during the runtime.

LuminanceQuantization
Type follows Quality type (dynamic or static) write parameter
Default none

Library Compression 836

VisualApplets User Documentation Release 3

LuminanceQuantization
Range [1 - 255]

auto computed for quality in range [1.00 - 100.00], when manually set, quality is invalidated to -1.

IncludeHeader
Type static write parameter
Default YES
Range [YES,NO]

The JPEG header is per default included in the compression stream. However, you can disable
this feature. If you set parameter IncludeHeader to NO, the JPEG parameters ImageHeight and
ImageWidth will become deactivated. If you set parameter IncludeHeader to YES, the header is
included and you can decide if the header parameters can be static or are required to be dynamic.
If set to static, the values for image width and image height will be statically embedded into the
header and cannot be changed, regardless of the input image size. If set to dynamic, you can
change the values for image width and image height during the runtime. Please note that these
header parameters are not automatically updated to the input image size. If you use the operator
with images the size of which is dynamically changing during runtime, you will have to patch the
produced header afterwards. If you set ImageHeight and ImageWidth both to "static", you will
achieve a slight reduction of the FPGA resource usage.

ImageWidth
Type static/dynamic write parameter
Default 1024
Range 1 - 2^16-1

This parameter is only available if parameter IncludeHeader is set to YES.

Parameter ImageWidth is only used for generating the JPEG image header as described in
parameter IncludeHeader.

ImageHeight
Type static/dynamic write parameter
Default 1024
Range 1 - 2^16-1

This parameter is only available if parameter IncludeHeader is set to YES.

Parameter ImageHeight is only used for generating the JPEG image header as described in
parameter IncludeHeader.

InfiniteSource
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The operator can be plugged directly after a camera operator. In this case the InfiniteSource
parameter must be set to ENABLED. Then the operator will perform active overflow management
and report overflow conditions to the software through VA event system. The overflow can occur
only in 2 situations: the sink behind the operator will stop/pause the transmission or the input
image height is not a multiple of 8 lines. In the latter case the operator has to pad the missing lines
to complete the last row JPEG blocks as required in JPEG standard.

See Section 3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

23.3.4. Examples of Use

The use of operator JPEG_Encoder is shown in the following examples:

Library Compression 837

VisualApplets User Documentation Release 3

• Section 12.1.4, 'JPEG Compression Using Operator JPEG_Encoder'

Examples - Simple examples which show the usage of the operator JPEG_Encoder.

23.3.5. More Information

The following Huffman DC and AC coefficients are used.

 typedef char DCHuffTableType[12][17]; // Huffman table for
 luminance DC coefficients DCHuffTableType Lum_DC_HuffmanTable= { "00", "010", "011", "100",
 "101", "110", "1110", "11110", "111110", "1111110", "11111110", "111111110" }; typedef char
 ACHuffTableType[16][11][17]; // Huffman table for luminance AC coefficients ACHuffTableType
 Lum_AC_HuffmanTable= { { //Run == 0 "1010",//EOB "00", "01", "100", "1011", "11010",
 "1111000", "11111000", "1111110110", "1111111110000010", "1111111110000011" }, { //Run == 1
 "1010",//EOB "1100", "11011", "1111001", "111110110", "11111110110", "1111111110000100",
 "1111111110000101", "1111111110000110", "1111111110000111", "1111111110001000" }, { //Run == 2
 "1010",//EOB "11100", "11111001", "1111110111", "111111110100", "1111111110001001",
 "1111111110001010", "1111111110001011", "1111111110001100", "1111111110001101",
 "1111111110001110" }, { //Run == 3 "1010",//EOB "111010", "111110111", "111111110101",
 "1111111110001111", "1111111110010000", "1111111110010001", "1111111110010010",
 "1111111110010011", "1111111110010100", "1111111110010101" }, { //Run == 4 "1010",//EOB
 "111011", "1111111000", "1111111110010110", "1111111110010111", "1111111110011000",
 "1111111110011001", "1111111110011010", "1111111110011011", "1111111110011100",
 "1111111110011101", }, { //Run == 5 "1010",//EOB "1111010", "11111110111", "1111111110011110",
 "1111111110011111", "1111111110100000", "1111111110100001", "1111111110100010",
 "1111111110100011", "1111111110100100", "1111111110100101" }, { //Run == 6 "1010",//EOB
 "1111011", "111111110110", "1111111110100110", "1111111110100111", "1111111110101000",
 "1111111110101001", "1111111110101010", "1111111110101011", "1111111110101100",
 "1111111110101101" }, { //Run == 7 "1010",//EOB "11111010", "111111110111",
 "1111111110101110", "1111111110101111", "1111111110110000", "1111111110110001",
 "1111111110110010", "1111111110110011", "1111111110110100", "1111111110110101", }, { //Run ==
 8 "1010",//EOB "111111000", "111111111000000", "1111111110110110", "1111111110110111",
 "1111111110111000", "1111111110111001", "1111111110111010", "1111111110111011",
 "1111111110111100", "1111111110111101" }, { //Run == 9 "1010",//EOB "111111001",
 "1111111110111110", "1111111110111111", "1111111111000000", "1111111111000001",
 "1111111111000010", "1111111111000011", "1111111111000100", "1111111111000101",
 "1111111111000110" }, { //Run == 0xA "1010",//EOB "111111010", "1111111111000111",
 "1111111111001000", "1111111111001001", "1111111111001010", "1111111111001011",
 "1111111111001100", "1111111111001101", "1111111111001110", "1111111111001111" }, { //Run ==
 0xB "1010",//EOB "1111111001", "1111111111010000", "1111111111010001", "1111111111010010",
 "1111111111010011", "1111111111010100", "1111111111010101", "1111111111010110",
 "1111111111010111", "1111111111011000" }, { //Run == 0xC "1010",//EOB "1111111010",
 "1111111111011001", "1111111111011010", "1111111111011011", "1111111111011100",
 "1111111111011101", "1111111111011110", "1111111111011111", "1111111111100000",
 "1111111111100001" }, { //Run == 0xD "1010",//EOB "11111111000", "1111111111100010",
 "1111111111100011", "1111111111100100", "1111111111100101", "1111111111100110",
 "1111111111100111", "1111111111101000", "1111111111101001", "1111111111101010" }, { //Run ==
 0xE "1010",//EOB "1111111111101011", "1111111111101100", "1111111111101101",
 "1111111111101110", "1111111111101111", "1111111111110000", "1111111111110001",
 "1111111111110010", "1111111111110011", "1111111111110100" }, { //Run == 0xF "11111111001",
 //ZRL "1111111111110101", "1111111111110110", "1111111111110111", "1111111111111000",
 "1111111111111001", "1111111111111010", "1111111111111011", "1111111111111100",
 "1111111111111101", "1111111111111110" } };

Further operators ave available as user library elements, see Section 4.2.8, 'Delivered User Libraries'
for details.

Library Debugging 838

VisualApplets User Documentation Release 3

24. Library Debugging

Runtime Analysis: The Debugging library allows you to analyze VisualApplets designs (that do not
work as expected) during runtime.

The data provided by the individual operators will help you to

• debug your VisualApplet Design and to improve its stability.

• debug the Custom Operators you are developing: You can use the operators of the debugging
library to analyze the effects of your custom operators in designs.

Runtime Testing

The debugging library is designed for testing and analyzing your design during runtime:
You need to build (synthesize) the design, load it onto the target hardware, and start
actual image processing, before the operators provide data you can use for debugging.

The operators of the debugging libary have nothing to do with design simulation within
VisualApplets.

The Debugging Library offers dedicated operators you can use to

• Analyze the data stream in an image processing pipeline:

• Image statistics (number of frames, image width/image height, line frequency, image frequency,
detection of varying line length and especially of empty lines)

• Data flow analysis (blocking statistics, bandwidth)

• Manipulate the image data stream by:

• Intentionally blocking the data stream

• Suppressing the natural blocking of the image stream

• Test individual parts of your VA designs via:

• Image emulators that you can configure to show most diverse timing behaviour

• Insert and monitor image data at any place within a design:

• Image injection via register I/O

• Image monitoring via register I/O

• Analyze signals

Availability

To use the Debugging library, you need either an Expert license, a Debugging Module
license, or the VisualApplets 4 license.

The following list summarizes all Operators of Library Debugging

Library Debugging 839

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

ImageAnalyzer Performs an analysis of image properties without
touching the image data. Version 3.0.1

ImageStatistics
Tracks the most important parameters of an
image stream. Calculates average line and frame
frequencies.

Version 3.0.1

StreamAnalyzer
Performs an analysis of the current flow control
properties (blocked/not blocked) of the data stream
without touching the image data.

Version 3.0.1

Scope Provides means for drawing a waveform from
sampled input data. Version 3.0.1

ImageInjector Allows to inject image data into the processing
pipeline by register I/O. Version 3.0.1

ImageTimingGenerator Creates a black image output with adjustable
timing setting. Version 3.0.1

ImageFlowControl Allows to handle overflow situations. Version 3.0.1

StreamControl Allows to suppress the blocking status as well as to
create blocking pulses towards the input link. Version 3.0.1

ImageMonitor Allows probing image data from the processing
pipeline by register I/O. Version 3.0.1

Table 24.1. Operators of Library Debugging

Library Debugging 840

VisualApplets User Documentation Release 3

24.1. Operator ImageAnalyzer
Operator Library: Debugging

Operator ImageAnalyzer analyzes image properties without touching the image data.

The operator analyzes individual images. For analyzing image sequences, use operator ImageStatistics.

Availability

To use the ImageAnalyzer operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

Operator ImageAnalyzer provides

• data about the last frame (values for the complete frame), and

• intermediate values for the current frame (the frame that is currently streamed).

Operator ImageAnalyzer analyzes frames in area scan applications (2D). You can also use it for
analyzing data in line scan applications (1D).

The operator offers dynamic read parameters you can use to retrieve data about

• image dimension (width x height) and image size (pixel),

• the deviation of line lengths within a frame,

• time gaps between lines,

• the blocking state of the operator input (blocked/not blocked).

In addition, the operator offers some parameters to control the operator itself.

When an internal counter overflows, a corresponding overflow bit is set in the OverflowMask parameter
and the counter halts.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.1.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

24.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I

Library Debugging 841

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

24.1.3. Parameters

ClearMode
Type dynamic write parameter
Default ClearWithProcessStart
Range {NoClearing, ClearWithProcessStart, ClearWithProcessReset, SendClearPulse}

Operator Control:

This parameter defines the reset behavior for all read parameters.

NoClearing: Values of all read parameters are held. ProcessEnable and ProcessReset have no
influcence on these values.

ClearWithProcessStart: Values of all read parameters are only cleared with rising edge of
ProcessEnable.

ClearWithProcessReset: Values of all read parameters are only cleared with rising edge of
ProcessReset.

SendClearPulse: On-demand clearing of all read parameter values.

FrameCountWidth
Type static write parameter
Default 24
Range [4, 63]

Operator Control:

Sets the bit width of parameter FrameCounter.

GapCountWidth
Type static write parameter
Default 20
Range [4, 63]

Operator Control:

Sets the bit width of the line gap counters (FrameMinLineGap, FrameMaxLineGap, CurrLineGap).

FrameCount
Type dynamic read parameter
Default 0
Range [0, (2^FrameCountWidth) -1]

General Information:

Counts all images which are terminated with an EndOfFrame.

Library Debugging 842

VisualApplets User Documentation Release 3

FramePixelCount
Type dynamic read parameter
Default 0
Range [0, (2^ (ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Last Frame:

Size of the last completed frame in pixels.

FrameHeight
Type dynamic read parameter
Default 0
Range [0, (2^(ImageHeightBitwidth+4))-1]

Last Frame:

Height of the last completed frame in pixels.

FrameMinWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Last Frame:

Minimal width encountered in last completed frame (in pixels).

FrameMaxWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Last Frame:

Maximal width encountered in last completed frame (in pixels).

FrameMinLineGap
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Last Frame:

Minimal line gap encountered in last completed frame. In the example displayed in the figure below,
FrameMinLineGap = 3.

Library Debugging 843

VisualApplets User Documentation Release 3

FrameMaxLineGap
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Last Frame:

Maximal line gap encountered in last completed frame. In the example displayed in the figure
below, FrameMaxLineGap = 4.

CurrPixelCount
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Current Frame:

Pixel count in the frame that is currently active and under inspection.

CurrXPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Current Frame:

Current horizontal position in the frame that is currently active and under inspection.

CurrYPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageHeightBitwidth+4))-1]

Current Frame:

Current vertical position in the frame that is currently active and under inspection.

CurrMinWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Current Frame:

Minimal width detected in the frame that is currently active and under inspection.

Library Debugging 844

VisualApplets User Documentation Release 3

CurrMaxWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Current Frame:

Maximal width detected in the frame that is currently active and under inspection.

CurrLineGap
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Current Frame:

Gap between current line and preceding line (in frame that is currently active and under
inspection).

CurrBlocked
Type dynamic read parameter
Default 0
Range [0, 1]

General Information:

If set to one: Value 1 informs that the input link is currently blocked by the output link.

OverflowMask
Type dynamic read parameter
Default 0
Range [0, 31]

Operator Control:

Bit-encoded overflow signaling. A set bit indicates an overflow in the following counters:

[0] = FrameCount

[1] = PixelCount

[2] = xPos

[3] = yPos

[4] = LineGapCount.

Library Debugging 845

VisualApplets User Documentation Release 3

24.1.4. Examples of Use

The use of operator ImageAnalyzer is shown in the following examples:

• Section 12.6.2, 'Image Dimension Test'

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

Library Debugging 846

VisualApplets User Documentation Release 3

24.2. Operator ImageStatistics
Operator Library: Debugging

Operator ImageStatistics measures frame properties for whole frame sequences without touching the
image data.

Availability

To use the ImageStatistics operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

Operator ImageStatistics analyzes image sequences. For analyzing individual images, use operator
Operator ImageAnalyzer.

The operator allows to analyze deviations between frames (width, height, size, line gaps, etc.). The
operator also provides measurands regarding line rates and frame rates.

In addition, operator ImageStatistics provides data about the utilization of the pipeline capacity (valid
fraction, idle fraction, blocked fraction of time in percent).

When an internal counter overflows, a corresponding overflow bit is set in the OverflowMask parameter
and the counter halts.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.2.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data output

24.2.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

Library Debugging 847

VisualApplets User Documentation Release 3

24.2.3. Parameters

ClearMode
Type dynamic write parameter
Default ClearWithProcessStart
Range {NoClearing, ClearWithProcessStart, ClearWithProcessReset, SendClearPulse}

This parameter defines the reset behavior for all read parameters.

NoClearing: Values of all read parameters are held. ProcessEnable and ProcessReset have no
influcence on these values.

ClearWithProcessStart: Values of read parameters are only cleared with rising edge of
ProcessEnable.

ClearWithProcessReset: Values of read parameters are only cleared with rising edge of
ProcessReset.

SendClearPulse: On-demand clearing of all read parameter values.

MeasurementPeriod
Type dynamic read parameter
Default 1000
Range [1, 65535]

Time in milliseconds for rate and duty cycle measurements. .

FrameCountWidth
Type static write parameter
Default 24
Range [4, 63]

Sets the bit width of the frame counter (parameter FrameCount).

GapCountWidth
Type static write parameter
Default 20
Range [4, 63]

Sets the bit width of the line gap counters (MinLineGap, MaxLineGap, MeanLineGap, MinLinePeriod,
MaxLinePeriod, MeanLinePeriod).

FrameCount
Type dynamic read parameter
Default 0
Range [0, (2^FrameCountWidth) -1]

Counts all images which are terminated with an EndOfFrame. Available only in IMAGE-2D mode.

FramePixelCount
Type dynamic read parameter
Default 0
Range [0, (2^ (ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Size of the last completed frame in pixels.

MinWidth
Type dynamic read parameter

Library Debugging 848

VisualApplets User Documentation Release 3

MinWidth
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Minimal line width detected in all frames inspected so far (in pixels).

MaxWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Maximal line width detected in all frames inspected so far (in pixels).

MinHeight
Type dynamic read parameter
Default 0
Range [0, (2^(ImageHeightBitwidth+4))-1]

Minimal image height detected in all frames inspected so far (in pixels).

MaxHeight
Type dynamic read parameter
Default 0
Range [0, (2^(ImageHeightBitwidth+4))-1]

Maximal image height detected in all frames inspected so far (in pixels).

MinPixelCount
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Size of smallest frame out of all frames inspected so far (in pixels).

MaxPixelCount
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+ImageHeightBitwidth+4))-1]

Size of biggest frame out of all frames inspected so far (in pixels).

MinLineGap
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Minimal line gap encountered in all frames inspected so far. Does not include the frame gap
between the last line of a 2D image and the first line of the next image.

Library Debugging 849

VisualApplets User Documentation Release 3

MinLineGap

MaxLineGap
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Maximal line gap encountered encountered in all frames inspected so far. Does not include the
frame gap between the last line of a 2D image and the first line of the next image.

MinLinePeriod
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Minimal line period encountered. A Line period is the number of clock cycles between two line
beginnings. A line period thus covers the line width, a single EndOfLine pulse, and the line gap. The
frame gap between the last line of a 2D image and the first line of the next image is not included.

MaxLinePeriod
Type dynamic read parameter
Default 0

Library Debugging 850

VisualApplets User Documentation Release 3

MaxLinePeriod
Range [0, (2^GapCountWidth)-1]

Maximal line period encountered. A Line period is the number of clock cycles between two line
beginnings. A line period thus covers the line width, a single EndOfLine pulse, and the line gap. The
frame gap between the last line of a 2D image and the first line of the next image is not included.

MeanWidth
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Mean line width during set MeasurementPeriod (in pixels).

MeanLinePeriod
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Mean line period during set MeasurementPeriod. A Line period is the number of clock cycles
between two line beginnings. A line period thus covers the line width, a single EndOfLine pulse, and
the line gap. The frame gap between the last line of a 2D image and the first line of the next image
is not included.

MeanLineGap
Type dynamic read parameter
Default 0
Range [0, (2^GapCountWidth)-1]

Mean line gap during set MeasurementPeriod (mean number of clock cycles between two line
beginnings).

The frame gap between the last line of a 2D image and the first line of the next image is not
included.

Library Debugging 851

VisualApplets User Documentation Release 3

MeanLineGap

MeanLineDutyCycle
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Mean line duty cycle during set MeasurementPeriod. Defined as MeanWidth divided by
MeanLinePeriod.

LineRate
Type dynamic read parameter
Default 0
Range

Line rate in Hertz.

FrameRate
Type dynamic read parameter
Default 0
Range

Frame rate in Hertz.

BlockedFraction
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Percentage of blocked cycles.

IdleFraction
Type dynamic read parameter

Library Debugging 852

VisualApplets User Documentation Release 3

IdleFraction
Default 0
Range [0.0, 100.0]

Percentage of idle cycles.

ValidFraction
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Percentage of valid cycles carrying data.

MaxWidthErrorCount
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitwidth+4))-1]

Counts up if line width is greater than maximum line width defined on the input link.

MaxHeightErrorCount
Type dynamic read parameter
Default 0
Range [0, (2^(ImageHeightBitwidth+4))-1]

Counts up if image height is greater than maximum image height defined on the input link.

OverflowMask
Type dynamic read parameter
Default 0
Range [0, 4095]

Bit encoded overflow signaling. A set bit indicates an overflow in the following counters:

[0] = FrameCount

[1] = PixelCount

[2] = xPos

[3] = yPos

[4] = LineGap

[6] = MeanLineGap

[8] = BlockedFraction

[10] = ValidFraction

[11] = LineCounter. Invalidates LineRate, MeanWidth, MeanLinePeriod and MeanLineGap.

24.2.4. Examples of Use

The use of operator ImageStatistics is shown in the following examples:

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

Library Debugging 853

VisualApplets User Documentation Release 3

Library Debugging 854

VisualApplets User Documentation Release 3

24.3. Operator StreamAnalyzer

Operator Library: Debugging

Operator StreamAnaylzer provides information about the data flow through. It doesn't touch the image
data.

Availability

To use the StreamAnaylzer operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

You can use the operator to detect blocking (inhibit) conditions.

When a blocking occurs in the pipeline, you can use this operator to see where in a frame (at which
pixel) the blocking occured.

In addition, operator StreamAnalyzer provides data about the utilization of the pipeline capacity (valid
fraction, idle fraction, blocked fraction of time in percent).

When an internal counter overflows, a corresponding overflow bit is set in the OverflowMask parameter
and the counter halts.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.3.1. I/O Properties

Property Value
Operator Type O
Input Link I, Image data input
Output Link O, Image data output

24.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol VALT_IMAGE2D, LINE1D,

PIXEL0D
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

Library Debugging 855

VisualApplets User Documentation Release 3

24.3.3. Parameters

ClearMode
Type dynamic write parameter
Default ClearWithProcessStart
Range {NoClearing, ClearWithProcessStart, ClearWithProcessReset, SendClearPulse}

This parameter defines the reset behavior for all read parameters.

NoClearing: Values of all read parameters are held. ProcessEnable and ProcessReset have no
influcence on these values.

ClearWithProcessStart: Values of read parameters are only cleared with rising edge of
ProcessEnable.

ClearWithProcessReset: Values of read parameters are only cleared with rising edge of
ProcessReset.

SendClearPulse: On-demand clearing of all read parameter values.

MeasurementMode
Type dynamic write parameter
Default AllCycles
Range {AllCycles, FrameCyclesOnly, LineCyclesOnly}

This parameter allows you to analyze specific fractions of the MeasurementPeriod:

AllCycles: Performance is measured over all cycles inside the MeasurementPeriod.

FrameCyclesOnly: Performance is measured over all cycles between the start end the end of
frames. Frame gaps inside the MeasurementPeriod are therefore omitted.

LineCyclesOnly: Performance is measured over all cycles between the start end the end of lines.
Frame gaps and line gaps inside the MeasurementPeriod are therefore omitted.

MeasurementPeriod
Type dynamic write parameter
Default 1000
Range [1, 65535]

Time in milliseconds for performance measurements.

The definition of the measurement period is important for analyzing time fractions, and for
calculating mean values.

FrameCountWidth
Type static write parameter
Default 24
Range [4, 63]

Sets the bit width of the frame counter. (Frame counter is parameterCurrFrame).

CurrTime
Type dynamic read parameter
Default 0
Range [0, (2^32)-1]

Time passed since the beginning of the measurement period (in milliseconds).

Library Debugging 856

VisualApplets User Documentation Release 3

CurrFrame
Type dynamic read parameter
Default 0
Range [0, (2^FrameCountWidth) -1]

This parameter acts as a frame counter. Counted are all frames which are terminated with an
EndOfFrame flag. Available only in IMAGE-2D mode.

CurrBlocked
Type dynamic read parameter
Default 0
Range [0, 1]

If set to one: Value 1 informs that the image flow is blocked.

BlockedCyclesPerFrame
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthtBitwidth+4))-1]

Counts the number of clock cycles during which the image flow is blocked during the flow-through
of one frame.

A pixel gap always has exactly the length of the blocking which provokes the gap. However, the
offset of the gap may differ from the offset of the blocking status.

If buffer operators have been implemented earlier in the processing line, the pixels that can not be
transferred due to the blocking status are buffered.

If no buffer operator is implemented earlier in the processing line, the pixels that can not be
transferred due to the blocking status are discarded.

FirstBlockedFrame
Type dynamic read parameter
Default 0
Range [0, (2^FrameCountWidth)-1]

Frame number of frame during which first blocking occurred.

LastBlockedFrame
Type dynamic read parameter
Default 0

Library Debugging 857

VisualApplets User Documentation Release 3

LastBlockedFrame
Range [0, (2^FrameCountWidth)-1]

Frame number of frame during which last blocking has occurred.

FirstBlockedXPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitWidth+4))-1]

Horizontal position at which first blocking appeared.

LastBlockedXPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitWidth+4))-1]

The last horizontal position at which the image flow was blocked until now.

Example: If the value is 7: Horizontal position 7 was the last X position blocked until now.
Horizontal position 8 was the first unblocked position after the last blocking that occurred.

FirstBlockedYPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitWidth+4))-1]

Vertical position at which first blocking appeared.

LastBlockedYPos
Type dynamic read parameter
Default 0
Range [0, (2^(ImageWidthBitWidth+4))-1]

The last vertical position at which the image flow was blocked until now.

Example: If the value is 13: Vertical position 13 was the last Y position blocked until now. Vertical
position 14 was the first unblocked position after the last blocking that occurred.

FirstBlockedTime
Type dynamic read parameter
Default 0
Range [0, (2^32)-1]

Time stamp at which first blocking appeared.

LastBlockedTime
Type dynamic read parameter
Default 0
Range [0, (2^32)-1]

Time stamp of point of time at which last blocking has appeared.

After this point of time, no further blocking occured until now.

DataRate
Type dynamic read parameter
Default 0

Library Debugging 858

VisualApplets User Documentation Release 3

DataRate
Range

Measured data rate in mega pixel per second.

BlockedFraction
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Percentage of blocked cycles within the measurement period (see parameter MeasurementPeriod).

IdleFraction
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Percentage of idle cycles within the measurement period (see parameter MeasurementPeriod).

ValidFraction
Type dynamic read parameter
Default 0
Range [0.0, 100.0]

Percentage of valid cycles carrying data within the measurement period (see parameter
MeasurementPeriod).

OverflowMask
Type dynamic read parameter
Default 0
Range [0, 511]

Operator Control:

Bit-encoded overflow signaling. A set bit indicates an overflow in the following counters:

[0] = FrameCount

[1] = PixelCount

[2] = xPos

[3] = yPos

[4] = LinePeriod

[5] = InhibitCount

[6] = InhibitCountFrame

[7] = IdleCount

[8] = ValidCount

24.3.4. Examples of Use

The use of operator StreamAnalyzer is shown in the following examples:

• Section 12.6.2, 'Image Dimension Test'

Library Debugging 859

VisualApplets User Documentation Release 3

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

Library Debugging 860

VisualApplets User Documentation Release 3

24.4. Operator Scope

Operator Library: Debugging

The Scope operator provides options for analyzing gray-scale pictures.

Availability

To use the Scope operator, you need either an Expert license, a Debugging Module
license, or the VisualApplets 4 license.

The operator outputs a 2D waveform for each image channel by sampling input image lines. Up to
four channels are supported.

In a channel, each incoming line is sampled once. According to the settings you define in parameter
SampleMode, the gray scale value of the first pixel in the line, the last pixel in the line, the smallest
pixel value in the line, or the greatest pixel value in the line is used for sampling.

The sampled pixel value is used to set an output pixel in a co-ordinate system. The horizontal position
of the output pixel is defined by the actual value of the sampled pixel. The vertical position corresponds
to the order of incoming lines, i.e., to the time axis.

To create a waveform out of the individual pixels values, the values are connected via lines.

The height of the output waveform corresponds to the input image height.

This operator supports up to four channels by using the input link parallelism to separate the input
channels. This means, up to four waveforms may be created at a time.

For each channel, i.e., for each waveform that is output, you can define a color value, an offset, and
a scaling.

Library Debugging 861

VisualApplets User Documentation Release 3

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.4.1. I/O Properties

Property Value
Operator Type O
Input Link I, Image data input
Output Link O, Image data output

Library Debugging 862

VisualApplets User Documentation Release 3

24.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] 24
Arithmetic {unsigned} as I
Parallelism [1, 4] 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D} as I
Color Format GRAY VAF_Color
Color Flavor None FL_RGB
Max. Img Width any [8, 4096]
Max. Img Height any as I

Please note that a configuration where the output image width is larger than the input image width
can cause a slowdown of fetching input data.

24.4.3. Parameters

LineWidth
Type dynamic write parameter
Default 1024
Range [8, Maximum Output Image Width]

Defines the output line width.

Offset[1, 4]
Type dynamic write parameter
Default 0
Range [-Maximum Output Image Width, Maximum Output Image Width - 1]

Horizontal position offset to be added to each output channel.

SampleMode[1, 4]
Type dynamic write parameter
Default first
Range {first, last, min, max}

Sets the sample mode used in each channel to acquire pixel value in each line.

First: value of the first pixel in line.

Last: value of the last pixel in line.

Min: value of the smallest pixel value found in line.

Max: value of the greatest pixel value found in line.

ScalingMode[1, 4]
Type dynamic write parameter
Default none
Range {none, div128, div64, div32, div16, div8, div4, div2, none, mult2, mult4, mult8,

mult16, mult32, mult64, mult128}

Library Debugging 863

VisualApplets User Documentation Release 3

ScalingMode[1, 4]
Sets the waveform zoom mode for each channel. The captured pixel value can be multiplied or
divided by multiples of two.

Color[1, 4]
Type dynamic write parameter
Default blue
Range {cyan, black, blue, green, cyan, red, magenta, brown, lightgray, darkgray, brightblue,

brightgreen, brightcyan, brightred, brightmagenta, brightyellow, white}

Parameter for setting the output color for each channel.

24.4.4. Examples of Use

The use of operator Scope is shown in the following examples:

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

Library Debugging 864

VisualApplets User Documentation Release 3

24.5. Operator ImageInjector
Operator Library: Debugging

The operator ImageInjector allows you to inject images into the image data output of the operator. The
images can be injected directly from file (file format: *.tif). You can give the command for injecting
via Framegrabber API or via the Framegrabber SDK tool microDisplay.

Availability

To use the ImageInjector operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

The operator ImageInjector works like the Simulation Sources you use when simulating a design in
VisualApplets - only that the operator ImageInjector is used for testing during runtime.

Two ways of injection are supported: insertion and replacement.

Insert modes: When one of the insert modes is active, the input link is blocked.

Replacement modes: When one of the replacement modes is active, the operator acts as an image
sink during image injection. The input link is not blocked.

The injected image data is inserted pixel-by-pixel via writing to the WritePixel and WriteFlag registers.
The write registers are only enabled, if the parameter ReadyForInjection is switched to "yes". (To
understand when the parameter ReadyForInjection is set to "yes", see parameter Mode .)

At the end of each line of the injected image (except the last line), an EndOfLine flag must be written
to the WriteFlag register. When the end of the last line is reached, an EndOfFrame flag must be written
to the WriteFlag register.

The CurrXPos and CurrYPos parameters point to the currently active pixel position.

The parameter EnableInsertModes changes the type of the operator from
M-type to P-type

The operator ImageInjector is an M-type operator. However, if you set EnableInsertModes
to "no", the operator is handled like a P-Type operator by VisualApplets.

Deactivating Injection Modes

Switching back to default mode FlowThrough (i.e., deactivating all kinds of injection) is
only allowed when the parameter ReadyForFlowThrough is set to "yes".

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.5.1. I/O Properties

Property Value
Operator Type M
Input Link I, Image data input
Output Link O, Image data output

Library Debugging 865

VisualApplets User Documentation Release 3

24.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism 1 as I
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

24.5.3. Parameters

Mode
Type dynamic write parameter
Default FlowThrough
Range {FlowThrough, InsertAfterEof, InsertAfterEol, ReplaceAfterEof, ReplaceAfterEol}

This mode parameter enables and disables image injection. During image injection, the operator
either blocks the input link (InsertAfterEof, InsertAfterEol) or discards the image data that come in
during injection (ReplaceAfterEof, ReplaceAfterEol).

Inject: In this mode, the operator immediately blocks the input link and sets the parameter
ReadyForInjection to "yes". As soon as ReadyForInjection is set to "yes", you can inject an image
from file.

FlowThrough: Image injection is disabled. Switching back to default mode FlowThrough (i.e.,
deactivating all kinds of injection) is only allowed when the parameter ReadyForFlowThrough is set
to "yes".

InsertAfterEof: When set to this mode, the operator looks for an End-of-Frame (EoF) flag. As
soon as it finds an EoF flag (i.e., when the end of the current image is reached), the operator blocks
the input link and sets the parameter ReadyForInjection to "yes". As soon as ReadyForInjection is
set to "yes", you can inject an image from file. This mode is not available with the LINE-1D image
protocol. This mode is only available, if the parameter EnableInsertModes is set to "yes", which also
implies that the operator is of type M.

InsertAfterEol: When set to this mode, the operator looks for an End-of-Line (EoL) flag. As
soon as it finds an EoL flag (i.e., when the end of the current line is reached), the operator blocks
the input link and sets the parameter ReadyForInjection to "yes". As soon as ReadyForInjection
is set to "yes", you can inject an image from file. This mode is only available, if the parameter
EnableInsertModes is set to "yes", which also implies that the operator is of type M.

When set to one of the two available relacement modes, the operator acts as an image sink during
image injection.

ReplaceAfterEof: The operator waits for the current image to end. As soon as it finds an EoF flag,
the operator sets the parameter ReadyForInjection to "yes". As soon as ReadyForInjection is set to
"yes", you can inject an image from file. During injection, incoming image data are discarded. Not
available with the LINE-1D image protocol.

ReplaceAfterEol: The operator waits for the current line to end. As soon as it finds an EoL flag,
the operator sets the parameter ReadyForInjection to "yes". As soon as ReadyForInjection is set to
"yes", you can inject an image from file. During injection, incoming image data are discarded.

Library Debugging 866

VisualApplets User Documentation Release 3

EnableInsertModes
Type static write parameter
Default no
Range {yes, no}

If set to "yes", the parameter Mode can be set to the insert modes InsertAfterEof or
InsertAfterEol. In this case, the operator is of type M. If set to "no", these two insert modes are
not allowed for the parameter Mode and the operator is of type P.

ReadyForInjection
Type dynamic read parameter
Default no
Range {yes, no}

Indicates readiness to write a pixel or a flag when the parameter Mode is in insert or replace mode.
It must be set to "yes" in order to enable the parameters WritePixel and WriteFlag.

ReadyForFlowThrough
Type dynamic read parameter
Default no
Range {yes, no}

Indicates readiness to switch back to FlowThrough mode (of the parameter Mode).

The parameter is automatically set to "yes" when to parameter WriteFlag

• in IMAGE-2D mode an EndOfFrame is written, or

• in LINE-1D mode an EndOfLine is written.

CurrXPos
Type dynamic read parameter
Default 0
Range [0, MaxImageWidth-1]

Displays the current line position.

CurrYPos
Type dynamic read parameter
Default 0
Range [0, MaxImageHeight-1]

Displays the current image height position.

WritePixel
Type dynamic write parameter
Default 0
Range [0, 2^BitWidth-1]

Pixel value. If 24 bit color format is used, the following bit mapping must be applied: Red = [0, 7],
Green = [9,15], Blue = [16,23].

WriteFlag
Type dynamic write parameter
Default EndOfLine
Range {EndOfLine, EndOfFrame}

Library Debugging 867

VisualApplets User Documentation Release 3

WriteFlag
You need to write an EndOfLine flag at the end of each injected line, except at the end of the last
line of an image.

You need to write an EndOfFrame flag at the end of the last line of an injected image.

This parameter also influences the parameter ReadyForFlowThrough:

The parameter ReadyForFlowThrough is set to "yes", when

• in IMAGE-2D mode an EndOfFrame is written, or

• in LINE-1D mode an EndOfLine is written.

Use only one flag at a time

At the end of an image, only write an EndOfFrame flag to this parameter.

Do not write an EoL together with an EoF. EoF always includes EoL+EoF.

ImageFile
Type dynamic write parameter
Default image.tif
Range

Image file to be injected. The image dimensions must be equal or smaller than the ouput link
properties. The pixel depth of the image file can be 8 bit or 16 bit per component. If the image
pixel depth per component is not equal to the bit width per component defined by the link property,
the image components are shifted so that they are most significant bit (MSB)-aligned to the pixel
components defined by the link property. For the file selection in microDisplay, set the file path
manually or right-click this parameter to open a file selection menu.

InjectFromFile
Type dynamic write parameter
Default no
Range {no, yes}

When set to "yes", the image file is injected into the output link. Disabled in FlowThrough mode
(i.e., when parameter Mode is set to FlowThrough).

24.5.4. Examples of Use

The use of operator ImageInjector is shown in the following examples:

• Section 11.4, 'Functional Example for Loading Test Images Using ImageInjector '

Examples - Demonstration of how to use the operator

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

Library Debugging 868

VisualApplets User Documentation Release 3

24.6. Operator ImageTimingGenerator
Operator Library: Debugging

Operator ImageTimingGenerator allows you to emulate the image timing as it occurs with real cameras
in productive systems.

Availability

To use the ImageTimingGenerator operator, you need either an Expert license, a
Debugging Module license, or the VisualApplets 4 license.

The operator creates a black image output. It offers many parameters that enable you to define the
timing behavior of the image output.

Use this operator to test whether the subsequent image processing pipeline can handle a
specific timing of the data stream.

You will see if a specific timing behavior causes bottlenecks, or if the pipeline of your design is able
to process the images despite timing deviations.

The line generation settings and the frame generation settings support four different generation modes:

• FreeRun: The FreeRun mode achieves the fastest generation.

• JitterMode:The JitterMode works like the FreeRun mode but enables you to define jitter for timing
generation.

• FixedFreqency: The FixedFreqency generation mode allows you to set a fix timing.

• ExternalTrigger: If you want to use an input signal for triggering the line and/or frame generation,
you set the line and/or frame generation settings to ExternalTrigger mode.

In addition, you can test how the design reacts to variations in image height, image width, line gap,
and frame gap. You can define these parameters via lookup tables and variable jitter settings.

You can also adjust the pixel duty cycle to simulate a slowdown of a virtual pixel clock.

ImageHeightJitter and FrameGapJitter are only active (can only be used) as long as
FrameGenerationMode is set to JitterMode. Likewise, ImageWidthJitter and LineGapJitter are only
active during LineGenerationMode = JitterMode.

Frame generation parameters as well as ImageHeight parameters are only available with the
VALT_IMAGE2D image output protocol. Also all Line generation parameters as well as ImageWidth
parameters are only available with the VALT_IMAGE2D or the VALT_LINE1D image output protocol.

Behavior During Design Simulation (Before Build)

During design simulation, only the parameters ImageHeightLut, ImageWidthLut,
MaxImageSequenceLength and ImageSequenceLength are used. All other operator
parameters and LUT entries of this operator have no influence on the simulated image.
This means that during simulation, the operator ImageTimingGenerator behaves like the
operator CreateBlackImage.

All other operator parameters and LUT entries of this operator have no influence on the
simulated image (i.e., during simulation, operator ImageTimingGenerator behaves like
operator CreateBlackImage).

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

Library Debugging 869

VisualApplets User Documentation Release 3

24.6.1. I/O Properties

Property Value
Operator Type M
Input Links TriggerLineI (optional), optional external line

trigger signal input. Tie to ground if not used.
TriggerFrameI (optional), optional external frame
trigger signal input. Tie to ground if not used.

Output Link O, Image data output

24.6.2. Supported Link Format

Link Parameter Input Link
TriggerLineI
(optional)

Input Link
TriggerFrameI
(optional)

Output Link O

Bit Width 1 1 1
Arithmetic none none unsigned
Parallelism none none any
Kernel Columns none none 1
Kernel Rows none none 1
Img Protocol SIGNAL SIGNAL {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

Color Format none none GRAY
Color Flavor none none none
Max. Img Width none none any
Max. Img Height none none any

24.6.3. Parameters

MaxImageSequenceLength
Type static write parameter
Default 1
Range [1, (2^14)-1]

Defines the LUT size for ImageHeightLUT, ImageWidthLUT, FrameGapLUT, and LineGapLUT.

ImageSequenceLength
Type dynamic write parameter
Default 1
Range [1, (2^MaxImageSequenceLength)-1]

Sets the number of entries used from the LUTs. If set to one, only the first entry of each LUT is
used. If set to, e.g., four, while the MaxImageSequenceLength is set to, e.g., 7, only the first four
entries in all LUTs will be used in round robin fashion.

ImageHeightLUT
Type dynamic write parameter
Default 1024
Range [1, MaxImageHeight]

This LUT stores image height values to be used for output image generation. During generation the
LUT values are read in round robin fashion.

Library Debugging 870

VisualApplets User Documentation Release 3

ImageHeightJitter
Type dynamic write parameter
Default 0
Range [0, MaxImageHeightBitwidth-2]

Number of least significant bits of an ImageHeightLUT value that will be allowed to jitter during
image generation. Only used while parameter FrameGenerationMode is set to JitterMode.

ImageWidthLUT
Type dynamic write parameter
Default 1024
Range [1, MaxImageWidth]

This LUT stores image width values to be used for output image generation. During generation the
LUT values are read in round robin fashion.

ImageWidthJitter
Type dynamic write parameter
Default 0
Range [0, MaxImageWidthBitwidth-2]

Number of least significant bits of an ImageWidthLUT value that will be allowed to jitter during
image generation. Only used while parameter LineGeneration Mode is set to JitterMode.

PixelDutyCycle
Type dynamic write parameter
Default 100
Range [1, 100]

Pixel duty cycle for the output stream. 100 % means that every clock cycle corresponds to an
output pixel. If 20% pixel duty cycle is set then every fifth clock cycle an output pixel is generated.

FrameGenerationMode
Type dynamic write parameter
Default FreeRun
Range {FreeRun, JitterMode, FixedFrequency, ExternalTrigger}

Selects the frame generation mode.

FreeRun: Fastest image generation mode based on ImageHeight and FrameGap. Parameter
FrameRate is ignored.

JitterMode: Same as FreeRun but using the FrameGapJitter parameter.

FixedFrequency: Generation of a fixed frequency image rate set through the FrameRate
parameter.

ExternalTrigger: Optional external trigger input TriggerFrameI is used to trigger the start of a new
image frame generation. Only available if port FrameTriggerI was enabled.

When a new image start is triggered before a current image generation has ended, this request is
ignored an the SkippedFrame counter is incremented. This applies to all frame generation modes.

FrameRate
Type dynamic write parameter
Default 10
Range [0.5, 1048576.0]

Library Debugging 871

VisualApplets User Documentation Release 3

FrameRate
Target image frequency in Hz. Only used when parameter FrameGenerationMode is set to
FixedFrequency. Maximum FrameRate is limited by the LineRate and the ImageHeight.

FrameGapLUT
Type dynamic write parameter
Default 1024
Range [1, 67108863]

Lookup table entries define the gap between two image frames. The frame gap value defines the
gap as number of clock cycles. This parameter is ignored in FixedFreqency generation mode .

FrameGapJitter
Type dynamic write parameter
Default 0
Range [0, FrameGapBitwidth-2]

Number of least significant bits of an FrameGapLUT value that will be allowed to jitter during image
generation. Only used during JitterMode frame generation.

LineGenerationMode
Type dynamic write parameter
Default FreeRun
Range {FreeRun, JitterMode, FixedFrequency, ExternalTrigger}

Selects the line generation mode.

FreeRun: Fastest image generation mode based on ImageWidth and LineGap. Parameter LineRate
is ignored.

JitterMode: Same as FreeRun except the use of LineGapJitter parameter.

FixedFrequency: Generation of a fixed frequency line rate set through the LineRate parameter.

ExternalTrigger: Optional external trigger input TriggerLineI is used to trigger the start of a new
line generation. Only available if port LineTriggerI was enabled.

If current line generation has not ended and a new line start is triggered then this request is
ignored an the SkippedLine counter is incremented. This applies to all line generation modes.

LineRate
Type dynamic write parameter
Default 10
Range [0.5, 1048576.0]

Target line frequency in Hz. Only used in FixedFrequency line generation mode. Maximum LineRate
is limit by the LineGap and the ImageWidth.

LineGapLUT
Type dynamic write parameter
Default 1024
Range [1, 67108863]

Lookup table entries define the gap between two lines. The line gap value defines the gap as
number of pixels between two lines. This parameters is ignored in FixedFreqency line generation
mode.

LineGapJitter
Type dynamic write parameter

Library Debugging 872

VisualApplets User Documentation Release 3

LineGapJitter
Default 0
Range [0, LineGapBitwidth-2]

TNumber of least significant bits of an LineGapLUT value that will be allowed to jitter during image
generation. Only used during JitterMode line generation.

SkippedLine
Type dynamic read parameter
Default 0
Range [0, 65535]

This is an error counter used to indicate conflicting settings in the line generation mode.

If current line generation has not ended and a new line start is triggered then this request is
ignored an the SkippedLine counter is incremented. This applies to all line generation modes.

SkippedFrame
Type dynamic read parameter
Default 0
Range [0, 65535]

This is an error counter used to indicate conflicting settings in the frame generation mode.

If current image generation has not ended and a new image start is triggered then this request is
ignored an the SkippedFrame counter is incremented. This applies to all frame generation modes.

LinesToSimulate
Type static write parameter
Default 1
Range [1, (2^32) - 1]

If the output link image protocol is set to VALT_LINE1D, it is required to specify the number of
lines for simulation. This parameter is used to specify the simulation image height. See 'Simulation'
for more information on 1D simulations. This parameter can only be changed if the output image
protocol is set to VALT_LINE1D.

PixelsToSimulate
Type static write parameter
Default 1
Range [1, (2^32) - 1], step size = output parallelism

If the output link image protocol is set to VALT_PIXEL0D, it is required to specify the size of the
pixel stream for simulation. This parameter is used to specify the simulation pixel stream width.
See 'Simulation' for more information on 0D simulations. This parameter can only be changed if the
output image protocol is set to VALT_PIXEL0D.

24.6.4. Examples of Use

The use of operator ImageTimingGenerator is shown in the following examples:

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

Library Debugging 873

VisualApplets User Documentation Release 3

Library Debugging 874

VisualApplets User Documentation Release 3

24.7. Operator ImageFlowControl

Operator Library: Debugging

With operator ImageFlowControl, you can control the data flow that is received from infinite sources.

Availability

To use the ImageFlowControl operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

Operator ImageFlowControl is especially helpful if your design

• is fed by unstoppable (infinite) sources and does not make use of RAM-based image buffers.

• contains loops and you want to detect and prevent data loss in loops.

Using this operator, you make sure that no overflows of FIFOs occur in the following pipeline.

The operator works similar to operator ImageFifo - it has a built-in FIFO.

In addition, the operator provides a specific overflow control mechanism. In case of overflow

• Images are cut (and only the first part of the image is forwarded).

• Images are discarded as long as the overflow situation is there. (When the overflow situation is over,
the transfer starts with the first pixel of the next frame.)

This way, the operator ensures the design can be run.

Specific count parameters inform you how many frames were lost and how many frames were
forwarded incomplete due to cutting them in an overflow situation. This allows you to track the data
loss in your design (or, for example, in a loop).

Additionally, lost frames can be compensated with dummy frames of selectable width and height.
This feature allows to keep the rate of incoming and outgoing frames constant in case of a temporal
bandwidth restriction at the output link. However, this will only work as long as the generated dummy
frames are small enough in size compared to the lost frames.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.7.1. I/O Properties

Property Value
Operator Type M
Input Links TerminateI (optional), external terminate signal

input. If set to one, the current input image is
terminated, i.e., the operator acts as a sink.
Compensation of lost frames can be enabled
through the CompensateLostFrames parameter.
I, image data input

Output Links O, image data output

Library Debugging 875

VisualApplets User Documentation Release 3

Property Value
StatusO (optional), statusO port is synchronous
to image data output port O. This port is two
bit wide. Bit 0: Signals truncation of the current
frame if set. Bit 1: Signals a dummy frame if set.
Only the last data word inside a frame must be
evaluated.

24.7.2. Supported Link Format

Link Parameter Input Link TerminateI
(optional)

Input Link I

Bit Width 1 [1, 64]
Arithmetic none {unsigned, signed}
Parallelism none any
Kernel Columns none any
Kernel Rows none any
Img Protocol SIGNAL VALT_IMAGE2D
Color Format none any
Color Flavor none any
Max. Img Width none any
Max. Img Height none any

Link Parameter Output Link O Output Link StatusO
(optional)

Bit Width as I 2
Arithmetic as I as I
Parallelism as I as I
Kernel Columns as I as I
Kernel Rows as I as I
Img Protocol as I as I
Color Format as I GRAY
Color Flavor as I none
Max. Img Width as I as I
Max. Img Height as I as I

24.7.3. Parameters

EntitiesToStore
Type static write parameter
Default 8
Range [1, (2^32)-1]

Number of fifo entities to store.

EntitiesType
Type static write parameter
Default LINE
Range {FRAME, LINE, PIXEL}

Library Debugging 876

VisualApplets User Documentation Release 3

EntitiesType
Defines the storage entity.

ImplementationType
Type static write parameter
Default AUTO
Range {AUTO, BRAM, LUTRAM}

Defines the fifo implementation type.

FifoFillLevel
Type dynamic write parameter
Default 0%
Range [0%, 100%]

Actual fifo fill level in percent.

MaxFifoFillLevel
Type dynamic write parameter
Default 0%
Range [0%, 100%]

Stores the maximum fifo fill level ever reached.

CounterWidth
Type static write parameter
Default 16
Range [8, 32]

Sets the bit width of all counters inside this operator.

LostFrameCount
Type dynamic read parameter
Default 16
Range [0, (2^CounterWidth)-1]

Counts whole frames which were lost due blocking of the output link or the optional TerminateI
input.ra>

IncompleteFrameCount
Type dynamic read parameter
Default 16
Range [0, (2^CounterWidth)-1]

Counts incomplete frames which where prematurely terminated.

FullFrameCount
Type dynamic read parameter
Default 16
Range [0, (2^CounterWidth)-1]

Counts full frames which were passed through to the output link.

ClearStatus
Type dynamic write parameter

Library Debugging 877

VisualApplets User Documentation Release 3

ClearStatus
Default No
Range {Yes, No}

If set to "yes" all counters are cleared.

CompensateLostFrame
Type dynamic write parameter
Default No
Range {Yes, No}

If set to Yes all lost frame are compensated through the insertion of dummy frames.

DummyFrameWidth
Type dynamic write parameter
Default 1024
Range [2, MaxImageWidth]

Width of the dummy frame to be generated.

DummyFrameHeight
Type dynamic write parameter
Default 1
Range [1, MaxImageHeight]

Height of the dummy frame to be generated.

DummyFrameCount
Type dynamic read parameter
Default 0
Range [0,(2^CounterWidth)-1]

Counts all generated dummy frames.

EofDifferenceFrameCount
Type dynamic read parameter
Default 0
Range [-(2^CounterWidth), (2^CounterWidth)-1]

Difference between the number of outgoing and incoming frames: OutgoingEofCounter-
IncomingEofCounter.

24.7.4. Examples of Use

The use of operator ImageFlowControl is shown in the following examples:

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

Library Debugging 878

VisualApplets User Documentation Release 3

24.8. Operator StreamControl
Operator Library: Debugging

This operator you can use to manipulate the blocking behavior on the image link. You can suppress
the blocking status as well as create blocking pulses towards the input link.

Availability

To use the StreamControl operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

Blocking: You can use the operator to test how the design reacts to blocking situations.

Suppressing: When you suppress a blocking situation, you can test the preceding part of the design
even though the subsequent parts cause a blocking situation. Those subsequent parts of the pipeline
will typically not work properly due to data loss. Data loss is monitored by parameter LostDataWords.

Example: If you place the operator directly in front of the DmaToPC operator and suppress blocking,
you can find out about the maximum speed of your design (since you suppress limitations merely due
to the data width of a potential DMA bus).

You can use external input signals to control the blocking behavior.

Data Loss while Blocking is Supressed

While an inhibit (blocking) is in suppressed state, all incoming data is lost since the output
link is not ready to accept new data.

Use Carefully

This operator must be used with caution as it can disturb the inherent handshaking
protocol between operators.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.8.1. I/O Properties

Property Value
Operator Type M
Input Links I, Image data input

ExtI, external signal input (optional)
Output Link O, Image data output

24.8.2. Supported Link Format

Link Parameter Input Link I Input Link ExtI Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} none as I

Library Debugging 879

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link ExtI Output Link O
Parallelism any none as I
Kernel Columns any none as I
Kernel Rows any none as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
SIGNAL as I

Color Format any none as I
Color Flavor any none as I
Max. Img Width any none as I
Max. Img Height any none as I

24.8.3. Parameters

ClearMode
Type dynamic write parameter
Default ClearWithProcessStart
Range {NoClearing, ClearWithProcessStart, ClearWithProcessReset, SendClearPulse}

This parameter defines the reset behavior for all read parameters.

NoClearing: Values of all read parameters are held. ProcessEnable and ProcessReset have no
influcence on these values.

ClearWithProcessStart: Values of all read parameters are only cleared with rising edge of
ProcessEnable.

ClearWithProcessReset: Values of all read parameters are only cleared with rising edge of
ProcessReset.

SendClearPulse: On-demand clearing of all read parameter values.

InhibitMode
Type dynamic write parameter
Default FlowThrough
Range {FlowThrough, OverridePulseHi, OverridePulseLow, OverrideExtHi, OverrideExtLow,

PulsHi, PulsLow, StaticHi, StaticLow, Ext}

FlowThrough: Inhibit (blocking) passes from O to I.

OverridePulseHi: Creates a one clock cycle wide Inhibit (blocking) signal towards I when selected.
Otherwise, same behavior as in FlowThrough mode.

OverridePulseLow: Suppresses the Inhibit (blocking) signal for one clock cycle. Otherwise, same
behavior as in FlowThrough mode.

OverrideExtHi: Only high level input from external signal input ExtI is passed as an Inhibit
(blocking) to I. Otherwise, same behavior as in FlowThrough mode.

OverrideExtLow: Only low level input from external signal input ExtI is used to suppress Inhibit
(blocking) towards I. Otherwise, same behavior as in FlowThrough mode.

PulsHi: Creates exactly one Inhibt (blocking) cycle while Inhibit (blocking) is set permanently to
zero.

PulsLow: Supresses exactly one Inhibt (blocking) cycle while Inhibit (blocking) is set permanently.

StaticHi: Forces Inhibt (blocking) to be active permanently.

StaticLow: Deactivates Inhibt (blocking) permanently.

Library Debugging 880

VisualApplets User Documentation Release 3

InhibitMode
Ext: ExtI input signal sets the Inhibit (blocking) state directly.

LostDataWords
Type dynamic read parameter
Default 0
Range

Counts image data that are lost due to suppressed Inhibit (blocking).

GeneratedInhibits
Type dynamic read parameter
Default 0
Range

Counts generated Inhibits (blockings) while no Inhibit (blocking) was present at ouput O.

Library Debugging 881

VisualApplets User Documentation Release 3

24.9. Operator ImageMonitor
Operator Library: Debugging

Operator ImageMonitor fetches images for you from any spot of the inner pipeline you define. You can
see what happened to the image until it reached this spot, and use this information for debugging.

Availability

To use the ImageMonitor operator, you need either an Expert license, a Debugging
Module license, or the VisualApplets 4 license.

Operator ImageMonitor works like a Simulation Probe you use when simulating a design in
VisualApplets - only that operator ImageMonitor is used for testing during runtime.

The operator provides a very simple image readout register interface. When parameter Mode is set to
image monitoring, whole images can be read by only reading the PixelData register.

This is very helpful as you can monitor image data without using one of the (limited) DMA channels.

The number of ImageMonitor operator instances in a design is theoretically unlimited. However, you
should use the operator carefully to save resources as additional FPGA logic is introduced for pausing
the data flow during read-out. This also means that the operator cannot be used for monitoring infinite
sources.

Supported pixel width is limited to 61 bits since the last three bits of PixelData carry the Valid,
EndOfLine, and EndOfFrame flags.

The CurrXPos and CurrYPos parameters point to the currently active pixel position. This information
can be used to filter the output pixels, e.g., to analyze only each second or third pixel.

Runtime Testing

This operator is designed for testing and analyzing your design during runtime: You need
to build (synthesize) the design, load it onto the target hardware, and start actual image
processing, before you can use the operator for debugging.

The operator is not intended for design simulation within VisualApplets.

24.9.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input

24.9.2. Supported Link Format

Link Parameter Input Link I
Bit Width [1, 61]
Arithmetic {unsigned, signed}
Parallelism any
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D}
Color Format any

Library Debugging 882

VisualApplets User Documentation Release 3

Link Parameter Input Link I
Color Flavor any
Max. Img Width any
Max. Img Height any

24.9.3. Parameters

Mode
Type dynamic write parameter
Default UnlimitedSink
Range {UnlimitedSink, Monitor, MonitorFromLineStart, MonitorFromFrameStart}

This parameter sets the working mode.

UnlimitedSink = No monitoring as all input is discarded.

Monitor = Switches to monitoring mode immediately.

MonitorFromLineStart = Switches to monitoring mode after the end of current line.

MonitorFromFrameStart = Switches to monitoring mode after the end of current frame.

ReadyForMonitoring
Type dynamic read parameter
Default no
Range {yes, no}

Indicates readiness to read PixelData parameter. PixelData must be read only if set to yes.

PixelData
Type dynamic read parameter
Default
Range [1, 64]

Includes the current pixel value and three pixel flags. When valid flag is not set, the pixel value is
discarded.

PixelValue = PixelData[1, LinkBitWidth]

ValidFlag = PixelData[LinkBitWidth+1]

EndOfLineFlag =

PixelData[LinkBitWidth+2]

EndOfFrameFlag =

PixelData[LinkBitWidth+3]

CurrXPos
Type dynamic read parameter
Default 0
Range [0, MaxImageWidth-1]

Displays current line position.

CurrYPos
Type dynamic read parameter

Library Debugging 883

VisualApplets User Documentation Release 3

CurrYPos
Default 0
Range [0, MaxImageHeight-1]

Displays current image height position.

24.9.4. Examples of Use

The use of operator ImageMonitor is shown in the following examples:

• Section 12.6.5, 'Image Monitoring'

Example - For debugging purposes image transfer states on links can be investigated.

Library Filter 884

VisualApplets User Documentation Release 3

25. Library Filter

The Filter library includes filter operators for any kind of image filters and kernel operations.

The following list summarizes all Operators of Library Filter

Operator Name Short Description available
since

DILATE Performs a binary dilation of the image, which can
be used to close gaps in images. Version 1.1

ERODE Performs a binary erosion of the image, which can
be used to separate touching objects. Version 1.1

FIRkernelNxM Creates rectangular kernel window around each
pixel, which includes the neighbor pixels. Version 1.1

FIRoperatorNxM Calculates the sum of the multiplication of the input
kernel elements with parameterizable coefficients. Version 1.1

HitOrMiss
Implements the morphological image processing
operator hit-or-miss as matching element with
defined structure.

Version 1.2

LineNeighboursNx1 Creates a kernel window of N rows and 1 column. Version 1.2

MAX Identifies and outputs the maximum value of an
input kernel-stream. Version 1.1

MEDIAN Identifies and outputs the median of an input
kernel-stream. Version 1.1

MIN Identifies and outputs the minimum value of an
input kernel-stream. Version 1.1

NumberOfHits Counts the number of matches of the input kernel
with a defined structure. Version 1.2

PixelNeighbours1xM Creates a kernel window of 1 row and M columns. Version 1.2

Library Filter 885

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

SORT Sorts all elements of an input kernel-stream by
their gray values. Version 1.2

Table 25.1. Operators of Library Filter

Library Filter 886

VisualApplets User Documentation Release 3

25.1. Operator DILATE
Operator Library: Filter

The operator DILATE performs a binary dilation of the image, which can be used to close gaps in
images. The input of the operator is a kernel image data stream. At the output, the dilation result of the
central pixel is provided. A structuring element for the dilate operation is given by the parameterizable
binary matrix StructElement. The matrix has the size of the input kernel. Dilation is a fundamental
operation in morphological image processing. The operator output is set to '1', if any matrix element
of value '1' matches with its corresponding kernel element.

25.1.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, result output

25.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.1.3. Parameters

StructElement
Type static parameter
Default 1
Range {0, 1}

Structuring element is a shape, used to probe or interact with a given image, with the purpose of
drawing conclusions on how this shape fits or misses the shapes in the image.

• A '0' in the struct element has to match with a '0' in the respective kernel input.

• A '1' in the struct element has to match with a '1' in the respective kernel input.

If the input kernel size of the operator is changed, the coefficients will also change. Check the
coefficients after changing the input kernel size.

25.1.4. Examples of Use

The use of operator DILATE is shown in the following examples:

Library Filter 887

VisualApplets User Documentation Release 3

• Section 12.8.2.1, 'Close'

Examples - Shows the implementation of a morphological close applied to binary images.

• Section 12.8.2.3, 'Open'

Examples - Shows the implementation of a morphological open applied to binary images.

Library Filter 888

VisualApplets User Documentation Release 3

25.2. Operator ERODE

Operator Library: Filter

The operator ERODE performs a binary erosion of the image, which can be used to separate touching
objects. The input of the operator is a kernel image data stream. At the output the erosion result of the
central pixel is provided. A structuring element for the erode operation is given by a parameterizable
binary matrix StructElement. The matrix has the size of the input kernel. Erosion is a fundamental
operation in morphological image processing. In erosion, the output is set to '1', if all matrix elements
of value '1' match with their corresponding kernel elements. In other words, the kernel matrix has
to fully fit into the image.

25.2.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, result output

25.2.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.2.3. Parameters

StructElement
Type static parameter
Default 1
Range {0, 1}

Structuring element is a shape, used to probe or interact with a given image, with the purpose of
drawing conclusions on how this shape fits or misses the shapes in the image.

• A '0' in the struct element has to match with a '0' in the respective kernel input.

• A '1' in the struct element has to match with a '1' in the respective kernel input.

If the input kernel size of the operator is changed, the coefficients will also change. Check the
coefficients after changing the input kernel size.

Library Filter 889

VisualApplets User Documentation Release 3

25.2.4. Examples of Use

The use of operator ERODE is shown in the following examples:

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

• Section 12.8.2.1, 'Close'

Examples - Shows the implementation of a morphological close applied to binary images.

• Section 12.8.2.3, 'Open'

Examples - Shows the implementation of a morphological open applied to binary images.

Library Filter 890

VisualApplets User Documentation Release 3

25.3. Operator FIRkernelNxM
Operator Library: Filter

The operator FIRkernelNxM creates rectangular kernel window around each pixel, which includes the
neighbor pixels. The size of the kernel can be defined by editing the output link. N represents the
number of kernel rows and M the number of kernel columns.

No FIR filter

In contrast to its name, the operator has nothing to do with a FIR filter. It can be used
to produce the filter input data.

Other operators to generate kernels are the operators LineNeighboursNx1 and PixelNeighbours1xM.

The central element of a kernel always represents the original input pixel of the respective position.
The output image O with pixel indices x and y and kernel indices m and n is derived from the input by:

O(x;y;m;n) = I(x+m¤;y+ n¤)

with m¤ = m¡
»
M

2

¼
+ 1 and n¤ = n¡

»
N

2

¼
+ 1

At image edges, no neighbored pixels are defined. The operator allows the definition of the required
edge handling algorithm using the parameter EdgeHandling.

For kernels of even size, there is no central pixel. In this case, the central pixel is displaced to the
upper left corner, e.g. for a kernel of size 4x4 defines the central pixel at (1,1) as can be seen in the
following table.

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Kernels are described by the number of rows and columns. In VisualApplets, N represents the number
of rows, and M represents the number of columns. Often, kernel elements are addressed by their index
instead of their coordinate. In this case, the order is row by row as shown in the following table.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The following example shows the resulting composition for three kernel rows and three kernel columns.
The 3x3 matrix in the depicted operator provides the relative addressing that defines the content of
the respective kernels. Each 3x3 cluster on the output shows the different kernel values per pixel.

FIR_kernel_NxM

Input I

EdgeMirrored

5

10

15

1 2 3

6 7 8

4

9

11 12 13 14

2016 17 18 19

Output O
-1/-1 -1/0 -1/1

0/-1 0/0 0/1

1/-1 1/0 1/1

21

9

4

7 6 7

2 1 2

8

3

1412 11 12 13

5

15

3

6 7 8

4

9

11 12 14

2016 17 18 19

10

97 6 7 8

10

5

10

6 7 8

1 2 3

9

4

6 7 8 9

1511 12 13 14

9 9

4

9

7 8

2 3 4

10

5

7 8 9 10

1412 13 14 15

9

14

19

7 6 7

12 11 12

8

13

17 16 17 18

1412 11 12 13

9

14

19

7 8 9

12 13 14

10

15

17 18 19 20

1412 13 14 15

13

10

15

20

6 7 8

11 12 13

9

14

16 17 18 19

1511 12 13 14

4

9

14

2 1 2

7 6 7

3

8

12 11 12 13

1917 16 17 18

4

9

14

2 3 4

7 8 9

5

10

12 13 14 15

1917 18 19 20

Instead of kernel configurations per pixel, this example shows the resulting subkernels: the first kernel
at index 0 and the last kernel at index 8.

Library Filter 891

VisualApplets User Documentation Release 3

FIR_kernel_NxM

Input I

EdgeMirrored

-1/-1 -1/0 -1/1

0/-1 0/0 0/1

1/-1 1/0 1/1

5

10

15

1 2 3

6 7 8

4

9

11 12 13 14

2016 17 18 19

9

4

9

7 6 7

2 1 2

8

3

7 6 7 8

1412 11 12 13

Output O

9

14

19

7 8 9

12 13 14

10

15

17 18 19 20

1412 13 14 15

Subkernel 0

Subkernel 8

…

The following example shows the resulting composition for two kernel rows and two kernel columns.
As the relative addresses only reference neighbors on the right hand side or below, no edge handling
needs to be performed for content to the left or at top.

FIR_kernel_NxM

Input I

EdgeMirrored

5

10

15

1 2 3

6 7 8

4

9

11 12 13 14

2016 17 18 19

Output O0/0 0/1

1/0 1/1

21 5

15

3

6 7 8

4

9

11 12 14

2016 17 18 19

10

10

15

20

7 8 9

12 13 14

10

15

17 18 19 20

2017 18 19 20

13

10

15

20

6 7 8

11 12 13

9

14

16 17 18 19

2016 17 18 19

5

10

15

2 3 4

7 8 9

5

10

12 13 14 15

2017 18 19 20

Comparing the last two examples with odd and even kernel sizes shows a noticeable behavior of the
edgeHandling feature in edgeMirroring mode. While edgeMirroring for even and odd kernel sizes is
treated identically on top and left borders, it produces slightly different results on the bottom and the
right hand side. Due to the large output image size only the resulting configurations for the first, upper
right, and last, lower right, input pixel with their resulting values per kernel are presented:

FIR_kernel_NxM

Input I

EdgeMirrored

5

10

15

1 2 3

6 7 8

4

9

11 12 13 14

2016 17 18 19

Output O

-1/-1 -1/0 -1/1

0/-1 0/0 0/1

1/-1 1/0 1/1

1

7

14

20

6

15

7

15

7

19

7

20

6

20

2

19

2

20

3

8

11 12 13

8

12

0/2

1/2

2/0 2/1 2/2

-1/2

2/-1

14

19

19

14 1515 14

EdgeMirroring for odd kernel sizes fills regions with missing data from equidistant regions with data.
The border is preserved and not replicated. The same principle is valid for filling regions to the top or to
the left for even kernel sizes. In contrast to this, filling regions to the bottom or to the right replicates
the border during mirroring. Again, this only occurs for even kernel sizes.

EdgeMirroring for even kernel sizes

For even kernel sizes, filling regions to the bottom or to the right replicates the border
during mirroring.

Technically, the operator waits and buffers the required pixels of the kernel until they can be output
in parallel. Therefore, the operator will cause a delay as pixels can only be output after all required
respective neighbor pixels were processed at the input. The line delay is:

LineDelay = bKernelRows=2c

Operator Restrictions

• ImageWidth < 2*Parallelism is not allowed.

• Empty images, i.e. images with no pixels, are not allowed.

• Empty lines or varying line lengths are not allowed.

25.3.1. I/O Properties

Property Value
Operator Type M

Library Filter 892

VisualApplets User Documentation Release 3

Property Value
Input Link I, data input
Output Link O, kernel output

25.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width any as I
Arithmetic {unsigned, signed} as I
Parallelism {1, 2, 4, 8, 16, 32, 64} as I
Kernel Columns 1 any
Kernel Rows 1 any
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].
If VALT_LINE1D image protocol is used, the operator is of type P instead of type M.
OutputKernelColumns <= ImageWidth
OutputKernelRows <= ImageHeight

25.3.3. Parameters

EdgeHandling
Type static parameter
Default EdgeMirrored
Range {EdgeMirrored, EdgeConstant}

At image edges, no neighbors exist to generate a kernel. In this case, the operator can be used in
two edge handling modes:

In mode EdgeMirrored, mirrored pixels are used at the image edges.

In mode EdgeConstant, the missing kernel elements at the edges are filled by a constant value.
This value can be defined using the parameter Constant.

Constant
Type static parameter
Default 0
Range range of input link I

If the parameter EdgeHandling is set to EdgeConstant, this parameter defines the default value for
a pixel outside the image borders.

Library Filter 893

VisualApplets User Documentation Release 3

Constant
For color formats, the value is an unsigned integer combining the binary representations of all color
components.

25.3.4. Examples of Use

The use of operator FIRkernelNxM is shown in the following examples:

• Section 3.6.6, 'Timing Synchronization'

Synchronization - Avoiding deadlocks.

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.4.1.1, 'Nearest Neighbor Demosaicing'

Examples - Nearest Neighbor Bayer Demosaicing

• Section 12.4.1.2, 'Bayer 3x3 Demosaicing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter.

• Section 12.4.1.3, 'Bayer 5x5 Demosaicing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter.

• Section 12.4.1.4, 'Bayer 3x3 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 3x3 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.5, 'Bayer 5x5 Demosacing with White Balancing'

Examples - The example shows the demosaicing of a Bayer RAW pattern using a 5x5 filter. Moreover,
a white balancing for color correction is added.

• Section 12.4.1.6, 'Edge Sensitive Bayer Demosaicing Algorithm'

Examples - Edge Sensitive Laplace Bayer Demosaicing filter

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.4.1.9, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern Red/
BlueFollowedByGreen GreenFollowedByBlue/Red '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByGreen_GreenFollowedByBlue/Red

• Section 12.4.1.10, 'Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern
RedFollowedByBlue GreenFollowedByGreen '

Examples - The example shows the demosaicing of a Bayer RAW pattern of a bilinear line scan
camera with color pattern Red/BlueFollowedByBlue/Red_GreenFollowedByGreen

Library Filter 894

VisualApplets User Documentation Release 3

• Section 12.4.1.11, 'Bayer Demosaicing a Line Scan Camera with 8 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a Bayer 8 bit RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.12, 'Bayer Demosaicing a Line Scan Camera with 10 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.4.1.13, 'Bayer Demosaicing a Line Scan Camera with 12 Bit BiColor Bayer Pattern'

Examples - This example shows the demosaicing of a 10 bit Bayer RAW pattern of a CXP-12 line scan
camera with BiColor Bayer pattern: BiColorRGBG, BiColorGRGB, BiColorBGRG and BiColorGBGR, for
example for the racer 2 L camera. In addition, the example contains a line scan trigger module and
a white balancing module.

• Section 12.5.1, 'Co-Processor Median Filter'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a median
filter is calculated.

• Section 12.5.2, 'Co-Processor Large Filter Calculation'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a large
filter kernel is calculated.

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.2.1, 'Close'

Examples - Shows the implementation of a morphological close applied to binary images.

• Section 12.8.2.3, 'Open'

Examples - Shows the implementation of a morphological open applied to binary images.

• Section 12.8.3.1, 'Averaging 3x3'

Examples - A simple 3x3 box filter.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.3.3, 'Median Filter 5x5'

Examples - Applet applies a 5x5 median filter on the image.

• Section 12.8.4.1, 'Filter Basics'

Library Filter 895

VisualApplets User Documentation Release 3

Examples - Explains the implementation of filters.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.8.5.1, 'High Boost Sharpening Filter'

Examples - A high boost Laplace filter for sharpening

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

• Section 12.13.4, 'Normalized Cross Correlation'

Examples-

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Filter 896

VisualApplets User Documentation Release 3

25.4. Operator FIRoperatorNxM
Operator Library: Filter

The operator FIRoperatorNxM calculates the sum of the multiplication of the input kernel elements with
parameterizable coefficients. The coefficients can be defined using parameter Coefficients.

Lets have a look at an example. Assume the following Sobel filter coefficients H to detect vertical edges

H(i; j) =

24¡1 0 1
¡2 0 2
¡1 0 1

35
This filter is applied to the following image I

I(x;y) =

266664
20 25 32 89 103 120
25 27 32 87 108 126
25 29 31 85 101 115
18 23 36 85 108 112
21 25 35 89 102 120
25 29 38 77 95 99

377775
For the pixel at position I(2,2) = 31 we get the following result at output O

O(2;2) =

i=2X
i=0

j=2X
j=0

I(2¡ 1 + i;2¡ 1 + j) ¤H(i; j) = 27 ¤ ¡1 + 32 ¤ 0 + 87 ¤ 1 + 29 ¤ ¡2 + 31 ¤ 0 + 85 ¤ 2 + 23 ¤ ¡1 + 36 ¤ 0 + 85 ¤ 1 = 235

To generate the required input kernel use operators such as FIRkernelNxM, LineNeighboursNx1 or
PixelNeighbours1xM.

Operator Restrictions

• ImageWidth < 2*Parallelism are not allowed

• Empty images i.e. images with no pixels are not allowed.

• Empty lines or varying line lengths are not allowed.

25.4.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 63] signed auto
Arithmetic {unsigned, signed} auto
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I

Library Filter 897

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Max. Img Width any as I
Max. Img Height any as I

The required output bit width is automatically determined from the input bit width, arithmetic and
coefficients.

The output bit width must not exceed 64 bit.
The output arithmetic is automatically determined from the input arithmetic and the coefficients.
The output is signed if either the input is signed or at least one coefficient is signed.

25.4.3. Parameters

Coefficients
Type static parameter
Default identity
Range

£
¡215;215 ¡ 1

¤
This parameter defines the coefficients of the filter kernel. Signed and unsigned integer values are
allowed.

If the input kernel size of the operator is changed, the coefficients will also change. Check the
coefficients after changing the input kernel size.

The coefficient values may not cause the output bit width to exceed 64 bit.

25.4.4. Examples of Use

The use of operator FIRoperatorNxM is shown in the following examples:

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.4.1.6, 'Edge Sensitive Bayer Demosaicing Algorithm'

Examples - Edge Sensitive Laplace Bayer Demosaicing filter

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.5.2, 'Co-Processor Large Filter Calculation'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a large
filter kernel is calculated.

• Section 12.7.2, 'Noise Reduction'

Examples - The average of two acquired images is calculated to reduce noise.

• Section 12.8.1.2, 'Kirsch Filter'

Library Filter 898

VisualApplets User Documentation Release 3

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

• Section 12.8.1.4, 'Sobel Gradient X'

Examples - A Sobel filter in x-direction only.

• Section 12.8.1.5, 'Sobel Multi Gradient'

Examples - A Sobel filter in all 4 directions.

• Section 12.8.3.1, 'Averaging 3x3'

Examples - A simple 3x3 box filter.

• Section 12.8.3.2, 'Gaussian Filter 5x5'

Examples - A Gauss filter using a 5x5 kernel.

• Section 12.8.4.1, 'Filter Basics'

Examples - Explains the implementation of filters.

• Section 12.8.4.2, 'Parallel Filters'

Examples - An example of the use of two filters in parallel.

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.8.5.1, 'High Boost Sharpening Filter'

Examples - A high boost Laplace filter for sharpening

• Section 12.8.5.2, 'Laplace Filter 3x3'

Examples - A 3x3 Laplace filter.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

• Section 12.13.4, 'Normalized Cross Correlation'

Examples-

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Filter 899

VisualApplets User Documentation Release 3

25.5. Operator HitOrMiss
Operator Library: Filter

The operator HitOrMiss performs a morphological hit-or-miss operation of the binary image, which can
be used to identify structures or objects. The input is a kernel-stream (see e.g. FIRkernelNxM). The
output link gives the calculated value for the center pixel. A structuring element for the hit-or-miss
operation is given by a parameterizable matrix. The matrix has the size of the input kernel.

The output is set to '1' for a pixel if the kernel neighborhood of the pixel exactly matches with the
pattern defined in the parameter StructElement. The output is set to '0' if there are one or more
mismatches. The search pattern defined with parameter StructElement can be either 0 or 1 to define
the match. Moreover, value -1 is allowed, too. It defines a don't care value for ignored parts in the
structuring element.

Let's have a look at an example. The following struct element is given.

H(i; j) =

241 ¡1 0
1 ¡1 0
1 ¡1 0

35
We will match it with the following image I

I(x;y) =

266664
1 1 1 1 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 1 0 0

377775
If we match the structuring element with the image the output O is

O(x;y) =

266664
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

377775
To generate the required input kernel use operators such as FIRkernelNxM, LineNeighboursNx1 or
PixelNeighbours1xM.

25.5.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Library Filter 900

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.5.3. Parameters

StructElement
Type static parameter
Default -1
Range {-1, 0, 1}

This parameter defines the shape of the structuring element.

• A '0' in the struct element has to match with a '0' in the respective kernel input.

• A '1' in the struct element has to match with a '1' in the respective kernel input.

• A '-1' in the struct element marks the position as don't care and will be ignored.

If the input kernel size of the operator is changed, the coefficients will also change. Check the
coefficients after changing the input kernel size.

25.5.4. Examples of Use

The use of operator HitOrMiss is shown in the following examples:

• Section 12.8.2.2, 'Hit or Miss'

Examples - The implementation can detect four simple patterns in a binary image. For every match,
the output will be set to one.

Library Filter 901

VisualApplets User Documentation Release 3

25.6. Operator LineNeighboursNx1

Operator Library: Filter

The operator LineNeighboursNx1 creates kernel window of N rows and 1 column. The N pixel are
located on the top of each input image pixel.

The operator is comparable to FIRkernelNxM but comprises other functionality. The key feature of this
operator is that it is of O-type what strongly simplifies synchronizations in the design process. However,
the price to pay for the O-type functionality are some restrictions.

The first difference to FIRkernelNxM is that the operator does not center the current pixel in the kernel.
Suppose a kernel of size 3x1 is defined. At kernel index 0 of the output image O(x, y), the current
pixel at position I(x, y) is provided. At kernel index 1 of the output image, the pixel of the input image
at input position I(x, y-1) is provided. Thus, at kernel row index n the output image is

O(x;y;n) = I(x;y¡ n)

In other words, the operator cannot output pixel of 'future' lines i.e. pixels which have not been
processed yet. That's the reason why the operator is of O-type and will not cause line or pixel delays.

Because the operator cannot provide information prior to the current line, there is no mirrored edge
handling like in FIRkernelNxM. Instead all pixels in the output link which origin is outside image borders
are set to the value of parameter Constant.

To generate a two dimensional kernel, use this operator together with a successive module of operator
PixelNeighbours1xM in the image processing pipeline.

25.6.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, kernel output

25.6.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width any as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows 1 any
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Filter 902

VisualApplets User Documentation Release 3

25.6.3. Parameters

Constant
Type static parameter
Default 0
Range range of input link I

This parameter defines the default value for pixel outside the image borders.

The value is always unsigned. If you want to set the parameter to a signed value you need
to reinterpret the value as unsigned. For color formats, the value is a combined value for all
components.

25.6.4. Examples of Use

The use of operator LineNeighboursNx1 is shown in the following examples:

• Section 12.9.7, 'Shear of an Image'

Example - Line Shear example with linear interpolation.

Library Filter 903

VisualApplets User Documentation Release 3

25.7. Operator MAX
Operator Library: Filter

The operator MAX identifies and outputs the maximum value of an input kernel-stream. This maximum
value is output at O. The operator will not output the kernel index of the maximum value.

25.7.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.7.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.7.3. Parameters

None

25.7.4. Examples of Use

The use of operator MAX is shown in the following examples:

• Section 12.8.1.2, 'Kirsch Filter'

Examples - The Kirsch filter is a good edge detection filter for non directional edges.

Library Filter 904

VisualApplets User Documentation Release 3

25.8. Operator MEDIAN
Operator Library: Filter

The operator MEDIAN identifies and outputs the median value of an input kernel-stream. The kernel
size is limited to 3x3 and 5x5.

25.8.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns {3, 5} 1
Kernel Rows as kernel columns 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.8.3. Parameters

None

25.8.4. Examples of Use

The use of operator MEDIAN is shown in the following examples:

• Section 12.5.1, 'Co-Processor Median Filter'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a median
filter is calculated.

• Section 12.8.3.3, 'Median Filter 5x5'

Examples - Applet applies a 5x5 median filter on the image.

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Filter 905

VisualApplets User Documentation Release 3

25.9. Operator MIN
Operator Library: Filter

The operator MIN identifies and outputs the minimum value of an input kernel-stream. This minimum
value is output at O. The operator will not output the kernel index of the minimum value.

25.9.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.9.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64] signed as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.9.3. Parameters

None

25.9.4. Examples of Use

The use of operator MIN is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Filter 906

VisualApplets User Documentation Release 3

25.10. Operator NumberOfHits
Operator Library: Filter

The operator NumberOfHits counts the number of matches in the binary image of kernel size N x M
in the input link I and in the matching matrix. The result is output at the link O. The matching matrix
is defined using parameter StructElement. An entry of '1' in the StructElement indicates that the pixel
must contain the value '1' in the kernel to be included in the counting. A value '0' in the structuring
element indicates that the pixel must be value '0' to be included in the counting. An entry '-1' marks
don't care kernel pixels. Such pixels will be ignored during counting.

Let's have a look at an example. The following structuring element is given.

H(i; j) =

"¡1 0 ¡1
0 1 0
1 1 1

#

We will apply the operator to the following image I

I(x;y) =

266664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1
1 1 1 1 1 1

377775
The resulting output O is

O(x;y) =

266664
3 3 3 3 3 3
3 3 4 4 4 3
3 4 4 7 4 5
5 4 6 4 6 4
4 6 4 4 4 5
4 3 4 4 4 4

377775
Assume that the kernel was generated using operator FIRkernelNxM with parameter EdgeHandling =
EdgeMirrored

25.10.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.10.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 auto
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I

Library Filter 907

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Max. Img Height any as I

The output bit width is automatically determined from the input kernel size by

OutputBitWidth = dlog2(InputKernelColumns£ InputKernelRows+ 1)e

25.10.3. Parameters

StructElement
Type static parameter
Default -1
Range {-1, 0, 1}

This parameter defines the shape of the structuring element.

• A '0' in the struct element has to match with a '0' in the respective kernel input to increment the
hit counter.

• A '1' in the struct element has to match with a '1' in the respective kernel input to increment the
hit counter.

• A '-1' in the struct element marks the position as don't care and will be ignored.

If the input kernel size of the operator is changed, the coefficients will also change. Check the
coefficients after changing the input kernel size.

25.10.4. Examples of Use

The use of operator NumberOfHits is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Filter 908

VisualApplets User Documentation Release 3

25.11. Operator PixelNeighbours1xM

Operator Library: Filter

The operator PixelNeighbours1xM creates kernel window of 1 row and M columns. The M pixel are
located on the left of each input image pixel.

The operator is comparable to FIRkernelNxM but comprises other functionality. The key feature of this
operator is that it is of O-type what strongly simplifies synchronizations in the design process. However,
the price to pay for the O-type functionality are some restrictions.

The first difference to FIRkernelNxM is that the operator does not center the current pixel in the kernel.
Suppose a kernel of size 1x3 is defined. At kernel index 0 of the output image O(x, y), the current
pixel at position I(x, y) is provided. At kernel index 1 of the output image, the pixel of the input image
at input position I(x-1, y) is provided. Thus, at kernel column index m the output image is

O(x;y;m) = I(x¡m;y)

In other words, the operator cannot output 'future' pixel, i.e., pixels which have not been processed
yet. That's the reason why the operator is of O-type and will not cause line or pixel delays.

Because the operator does not provide information prior to the current pixel, there is no mirrored edge
handling like in FIRkernelNxM. Instead all pixels in the output link which origin is outside image borders
are set to the value of parameter Constant.

To generate a two dimensional kernel, use this operator together with an antecedent module of operator
LineNeighborsNxM in the image processing pipeline.

Operator PixelNeighbours1xM supports variable line lengths.

25.11.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, kernel output

25.11.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width any as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 any
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Filter 909

VisualApplets User Documentation Release 3

25.11.3. Parameters

Constant
Type static parameter
Default 0
Range range of input link I

This parameter defines the default value for pixel outside the image borders.

The value is always unsigned. If you want to set the parameter to a signed value you need
to reinterpret the value as unsigned. For color formats, the value is a combined value for all
components.

25.11.4. Examples of Use

The use of operator PixelNeighbours1xM is shown in the following examples:

• Section 12.9.8, 'Scaling a Line Scan Image'

Examples - Scaling A Line Scan Image

Library Filter 910

VisualApplets User Documentation Release 3

25.12. Operator SORT
Operator Library: Filter

The operator SORT sorts all elements of an input kernel-stream depending on their gray values. Input
link I and output link O both have a kernel field of of size N rows times M columns (I [N, M] and O
[N, M]). This kernel field is sorted by the pixel values. The pixel with the maximum gray value will be
found on O [0, 0], the 2nd biggest value on O [0, 1], the minimum gray scale value at O [N - 1, M -
1]. Mind that O [N / 2, M / 2] will output the median of kernel of arbitrary size.

25.12.1. I/O Properties

Property Value
Operator Type O
Input Link I, kernel input
Output Link O, data output

25.12.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

25.12.3. Parameters

None

25.12.4. Examples of Use

The use of operator SORT is shown in the following examples:

• Section 12.13.2, 'Print Inspection Example- Position Correction and Defect Detection Using Blob
Based Template Matching'

Examples- Geometric Transformation and Defect Detection

Library Logic 911

VisualApplets User Documentation Release 3

26. Library Logic

The Logic library includes operators for logic operations such as comparisons and Boolean operations.

The following list summarizes all Operators of Library Logic

Operator Name Short Description available
since

AND Performs a bitwise AND operation. Version 1.1

CASE Multiplexes multiple input links of identical formats. Version 1.1

CMP_AgeB Checks if input link A is greater or equal to the
value at the input link B Version 1.1

CMP_AgtB Checks if input link A is greater than the value at
the input link B Version 1.1

CMP_AleB Checks if input link A is less or equal to the value at
the input link B Version 1.1

CMP_AltB Checks if input link A is less than the value at the
input link B Version 1.1

CMP_Equal Checks if both input links are equal. Version 1.1

CMP_NotEqual Checks if both input links are not equal. Version 1.1

IF Forwards an input to the output if it's corresponding
condition input is true. Version 1.1

IS_Equal Compares if the input link value is equal to
parameter "Number". Version 1.1

IS_GreaterEqual Compares if the input link value is grater or equal
than parameter "Number". Version 1.1

IS_GreaterThan Compares if the input link value is grater than
parameter "Number". Version 1.1

Library Logic 912

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

IS_InRange Compares if the input link value is within the
interval defined by parameters "From" and "To". Version 1.1

IS_LessEqual Compares if the input link value is less or equal
than parameter "Number". Version 1.1

IS_LessThan Compares if the input link value is less than
parameter "Number". Version 1.1

IS_NotEqual Compares if the input link value is not equal to
parameter "Number". Version 1.1

NOT Performs a bitwise NOT of the input bits. Version 1.1

OR Performs a bitwise OR operation. Version 1.1

XNOR Performs a bitwise XNOR operation. Version 1.1

XOR Performs a bitwise XOR operation. Version 1.1

Table 26.1. Operators of Library Logic

Library Logic 913

VisualApplets User Documentation Release 3

26.1. Operator AND

Operator Library: Logic

The operator AND performs a bitwise logical AND operation. Each output bit is set to a logical "1" if
the corresponding bits at all input links are "1", otherwise the output is "0". The number of input links
has to be selected at the instantiation of the module.

Thus the output bit i of N inputs is

O[i] = I0[i] ^ I1[i] ^ ::: ^ IN¡1[i]

All IN links of the AND operator need to have the same link format as port I[000]. Therefore, you need
to configure all IN links accordingly.

You find the link format of port I[000] in the link properties of any IN link connected to operator AND:
They are displayed in column "Destination Port", fields "Bit Width" and "Parallelism".

To configure the link format of your IN links to operator AND correctly, you simply enter the values of bit
width and parallelism you find in column "Destination Port" into the according fields of column "Value".

The coloring of the link informs you, as always in VisualApplets, about the correctness of your link
configuration.

Incorrect configuration of IN link:

Correct configuration of IN link:

Library Logic 914

VisualApplets User Documentation Release 3

26.1.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..IN-1, data input
Output Link O, data output

26.1.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..IN-1 Output Link O
Bit Width [1, 64] as I as I
Arithmetic {unsigned, signed} as I as I
Parallelism any as I as I
Kernel Columns any as I as I
Kernel Rows any as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I as I

Color Format any as I as I
Color Flavor any as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

Library Logic 915

VisualApplets User Documentation Release 3

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.1.3. Parameters

None

26.1.4. Examples of Use

The use of operator AND is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

Library Logic 916

VisualApplets User Documentation Release 3

26.2. Operator CASE
Operator Library: Logic

The CASE operator multiplexes multiple input links of identical formats. The number of input links
has to be selected at the instantiation of the module and determines the bit width of the input link
"Switch". The value at input link Switch decides which input link is selected and forwarded to the
output. When the Switch input selects a non-existent input link, the output of the operator becomes
zero. The operator can be used with kernels. Each kernel component is selected independently.

26.2.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..In-1, data input
Switch, data input

Output Link O, data output

26.2.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..In-1
Bit Width [1, 64] as I0
Arithmetic {unsigned, signed} as I0
Parallelism any as I0
Kernel Columns any as I0
Kernel Rows any as I0
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I0

Color Format any as I0
Color Flavor any as I0
Max. Img Width any as I0
Max. Img Height any as I0

Link Parameter Input Link Switch Output Link O
Bit Width auto as I0
Arithmetic unsigned as I0
Parallelism as I0 as I0
Kernel Columns as I0 as I0
Kernel Rows as I0 as I0
Img Protocol as I0 as I0
Color Format VAF_GRAY as I0
Color Flavor FL_NONE as I0
Max. Img Width as I0 as I0
Max. Img Height as I0 as I0

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
If image protocol VALT_SIGNAL is used, only 2 inputs can be addressed and used.
The bit width of the switch input is automatically determined from the number if input links n

SwitchBitWidth = dlog2(n)e

Library Logic 917

VisualApplets User Documentation Release 3

26.2.3. Parameters

None

26.2.4. Examples of Use

The use of operator CASE is shown in the following examples:

• Section 12.9.7, 'Shear of an Image'

Example - Line Shear example with linear interpolation.

Library Logic 918

VisualApplets User Documentation Release 3

26.3. Operator CMP_AgeB

Operator Library: Logic

The operator CMP_AgeB (compare A greater or equal B) sets the output to a logical "1" if the value at
the input link A is greater or equal to the value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_GreaterEqual instead.

26.3.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.3.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.3.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 919

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.3.4. Examples of Use

The use of operator CMP_AgeB is shown in the following examples:

• Section 12.2.1, 'Adaptive Threshold'

A binarization example for local adaptive thresholding. A kernel size of 8 by 8 pixel is used.

• Section 12.2.2, 'Auto Threshold Mean'

Determines the mean value of an image and used the value as threshold value for the next image
processed.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.8.4.3, 'Filter Sub Kernels'

Examples - Shows how to extract a sub kernel from a filter to obtain the original image data. This
example performs a simple local adaptive binarization.

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Logic 920

VisualApplets User Documentation Release 3

26.4. Operator CMP_AgtB

Operator Library: Logic

The operator CMP_AgeB (compare A greater than B) sets the output to a logical "1" if the value at the
input link A is greater than the value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_GreaterThan instead.

26.4.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.4.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.4.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 921

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.4.4. Examples of Use

The use of operator CMP_AgtB is shown in the following examples:

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Logic 922

VisualApplets User Documentation Release 3

26.5. Operator CMP_AleB

Operator Library: Logic

The operator CMP_AleB (compare A less or equal B) sets the output to a logical "1" if the value at the
input link A is less or equal to the value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_LessEqual instead.

26.5.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.5.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.5.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 923

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.5.4. Examples of Use

The use of operator CMP_AleB is shown in the following examples:

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Logic 924

VisualApplets User Documentation Release 3

26.6. Operator CMP_AltB

Operator Library: Logic

The operator CMP_AltB (compare A less than B) sets the output to a logical "1" if the value at the input
link A is less than the value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_LessThan instead.

26.6.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.6.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.6.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 925

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.6.4. Examples of Use

The use of operator CMP_AltB is shown in the following examples:

• Section 13.1, 'Functional Example for Specific Operators of Library Accumulator and Library Logic'

Examples - Demonstration of how to use the operator

Library Logic 926

VisualApplets User Documentation Release 3

26.7. Operator CMP_Equal

Operator Library: Logic

The operator CMP_Equal sets the output to a logical "1" if the value at the input link A is equal to the
value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_Equal instead.

26.7.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.7.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.7.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 927

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.7.4. Examples of Use

The use of operator CMP_Equal is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Logic 928

VisualApplets User Documentation Release 3

26.8. Operator CMP_NotEqual

Operator Library: Logic

The operator CMP_NotEqual sets the output to a logical "1" if the value at the input link A is not equal
to the value at the input link B, otherwise the output is "0".

To compare the value of input A with a dynamic parameter value use operator IS_NotEqual instead.

26.8.1. I/O Properties

Property Value
Operator Type O
Input Links A, data input

B, data input
Output Link O, data output

26.8.2. Supported Link Format

Link Parameter Input Link A Input Link B Output Link O
Bit Width [1, 64] unsigned, [2,

64] signed
[1, 64] unsigned, [2,
64] signed

1

Arithmetic {unsigned, signed} as A unsigned
Parallelism any as A as I
Kernel Columns any as A as I
Kernel Rows any as A as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as A as I

Color Format VAF_GRAY as A as I
Color Flavor FL_NONE as A as I
Max. Img Width any as A as I
Max. Img Height any as A as I

26.8.3. Parameters

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Library Logic 929

VisualApplets User Documentation Release 3

ImplementationType

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.8.4. Examples of Use

The use of operator CMP_NotEqual is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Logic 930

VisualApplets User Documentation Release 3

26.9. Operator IF

Operator Library: Logic

The IF operator checks if a condition input is true and forwards the corresponding values of the data
input. The operator is equipped with a parameterizable number of input links I0..In-1. With each
input link comes a conditional input Condition. If a condition is true, the data of its corresponding
input is forwarded to the output. If all condition inputs are false, the Else input is used. If more than
one condition input is true, all corresponding input links are forwarded to the output and combined
using a logic OR operation. The operator can be used with kernels. Each kernel component is selected
independently.

26.9.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..In-1, data input
Else, data input
Condition0..n-1, data input

Output Link O, data output

26.9.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..In-1 Input Link Else
Bit Width [1, 64] as I0 as I0
Arithmetic {unsigned, signed} as I0 as I0
Parallelism any as I0 as I0
Kernel Columns any as I0 as I0
Kernel Rows any as I0 as I0
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I0 as I0

Color Format any as I0 as I0
Color Flavor any as I0 as I0
Max. Img Width any as I0 as I0
Max. Img Height any as I0 as I0

Link Parameter Input Link Condition0..n-1 Output Link O
Bit Width 1 as I0
Arithmetic unsigned as I0
Parallelism as I0 as I0
Kernel Columns as I0 as I0
Kernel Rows as I0 as I0
Img Protocol as I0 as I0
Color Format VAF_GRAY as I0
Color Flavor FL_NONE as I0
Max. Img Width as I0 as I0
Max. Img Height as I0 as I0

Library Logic 931

VisualApplets User Documentation Release 3

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.9.3. Parameters

None

26.9.4. Examples of Use

The use of operator IF is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.1.1, 'Nearest Neighbor Demosaicing'

Examples - Nearest Neighbor Bayer Demosaicing

• Section 12.4.1.6, 'Edge Sensitive Bayer Demosaicing Algorithm'

Examples - Edge Sensitive Laplace Bayer Demosaicing filter

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

Library Logic 932

VisualApplets User Documentation Release 3

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

• Section 12.14.2, 'Grid Overlay Fading'

Examples - A grid is overlayed to the input images. The grid pixel value is determined from the
input pixel value.

Library Logic 933

VisualApplets User Documentation Release 3

26.10. Operator IS_Equal
Operator Library: Logic

The operator IS_Equal sets the output to a logical "1" if the value at the input link I is equal to the
value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_Equal instead.

26.10.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.10.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.10.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range Same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 934

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.10.4. Examples of Use

The use of operator IS_Equal is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.14.2, 'Grid Overlay Fading'

Examples - A grid is overlayed to the input images. The grid pixel value is determined from the
input pixel value.

Library Logic 935

VisualApplets User Documentation Release 3

26.11. Operator IS_GreaterEqual
Operator Library: Logic

The operator IS_GreaterEqual sets the output to a logical "1" if the value at the input link I is greater
or equal than the value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_AgeB instead.

26.11.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.11.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.11.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 936

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.11.4. Examples of Use

The use of operator IS_GreaterEqual is shown in the following examples:

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.4, 'Simple Threshold Binarization'

Simple thresholding for binarization.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

• Section 12.14.1, 'Dead Pixel Replacement'

Examples - The examples shows an automatic dead pixel detection and replacement.

Library Logic 937

VisualApplets User Documentation Release 3

26.12. Operator IS_GreaterThan
Operator Library: Logic

The operator IS_GreaterThan sets the output to a logical "1" if the value at the input link I is greater
than the value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_AgtB instead.

26.12.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.12.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.12.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 938

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.12.4. Examples of Use

The use of operator IS_GreaterThan is shown in the following examples:

• Section 9.2, ' Multiple DMA Channel Designs '

Threshold binarization

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

• Section 12.8.2.1, 'Close'

Examples - Shows the implementation of a morphological close applied to binary images.

• Section 12.8.2.3, 'Open'

Examples - Shows the implementation of a morphological open applied to binary images.

Library Logic 939

VisualApplets User Documentation Release 3

26.13. Operator IS_InRange
Operator Library: Logic

Library: Logic

The operator IS_InRange sets the output to a logical "1" if the value at the input link I is within the
interval defined by parameters From and To, otherwise the output is "0".

O =

½
1 if from · I · to

0 otherwise

26.13.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.13.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.13.3. Parameters

from
Type dynamic write parameter
Default 0
Range Same as range of input link I

Smallest value in range.

to
Type dynamic write parameter
Default 255
Range Same as range of input link I

Biggest value in range.

ImplementationType
Type static write parameter

Library Logic 940

VisualApplets User Documentation Release 3

ImplementationType
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.13.4. Examples of Use

The use of operator IS_InRange is shown in the following examples:

• Section 12.13.2, 'Print Inspection Example- Position Correction and Defect Detection Using Blob
Based Template Matching'

Examples- Geometric Transformation and Defect Detection

Library Logic 941

VisualApplets User Documentation Release 3

26.14. Operator IS_LessEqual
Operator Library: Logic

The operator IS_LessEqual sets the output to a logical "1" if the value at the input link I is less or equal
than the value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_AleB instead.

26.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.14.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.14.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 942

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.14.4. Examples of Use

The use of operator IS_LessEqual is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.2, 'Blob 2D'

Examples - Shows the usage of operator Blob_Analysis_2D. The applet binarizes the input data and
determines the blob analysis results. The results as well as the original image are output using two
DMA channels.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

Library Logic 943

VisualApplets User Documentation Release 3

26.15. Operator IS_LessThan
Operator Library: Logic

The operator IS_LessThan sets the output to a logical "1" if the value at the input link I is less than
the value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_AltB instead.

26.15.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.15.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.15.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 944

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.15.4. Examples of Use

The use of operator IS_LessThan is shown in the following examples:

• Section 12.1.6, 'Laser Pointer Detection'

Examples - A convolution with high intensity spot coefficients is made. For results above threshold,
the respective pixels are dyed in red.

Library Logic 945

VisualApplets User Documentation Release 3

26.16. Operator IS_NotEqual
Operator Library: Logic

The operator IS_NotEqual sets the output to a logical "1" if the value at the input link I is not equal
to the value of parameter Number, otherwise the output is "0".

To compare the values of two input links use operator CMP_NotEqual instead.

26.16.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.16.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 63] unsigned, [2, 64] signed 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

26.16.3. Parameters

Number
Type static/dynamic read/write parameter
Default 0
Range same as range of input link I

Value to compare the input link value with.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, EmbeddedALU, LUT)

Parameter ImplementationType allows you to influence the implementation of the operator, i.e., to
define which logic elements are used for implementing the operator.

You can select one of the following values:

AUTO: When the operator is instantiated, the optimal implementation strategy for the given FPGA
architecture is selected automatically, based on the parametrization of the operator.

Library Logic 946

VisualApplets User Documentation Release 3

ImplementationType
EmbeddedALU: The operator uses the embedded ALU elements of the FPGA.

LUT: The operator uses the LUT elements of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values EmbeddedALU and/or LUT.

26.16.4. Examples of Use

The use of operator IS_NotEqual is shown in the following examples:

• Section 9.2, ' Multiple DMA Channel Designs '

Remove 9 out of 10 images.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Logic 947

VisualApplets User Documentation Release 3

26.17. Operator NOT
Operator Library: Logic

The operator NOT inverts the input bits. It performs a bitwise logical inversion. Each output bit is set
to a logical "1" if the corresponding input bit is "0", otherwise the output is "0". The number of input
links has to be selected at the instantiation of the module.

Thus the output bit i is

O[i] = I[i]

26.17.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

26.17.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.17.3. Parameters

None

26.17.4. Examples of Use

The use of operator NOT is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

Library Logic 948

VisualApplets User Documentation Release 3

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

Library Logic 949

VisualApplets User Documentation Release 3

26.18. Operator OR
Operator Library: Logic

The operator OR performs a bitwise logical OR operation. Each output bit is set to a logical "1" if any of
the corresponding bits is "1", otherwise the output is "0". The number of input links has to be selected
at the instantiation of the module.

Thus the output bit i of n inputs is

O[i] = I0[i] _ I1[i] _ ::: _ In¡1[i]

26.18.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..In-1, data input
Output Link O, data output

26.18.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..In-1 Output Link O
Bit Width [1, 64] as I as I
Arithmetic {unsigned, signed} as I as I
Parallelism any as I as I
Kernel Columns any as I as I
Kernel Rows any as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I as I

Color Format any as I as I
Color Flavor any as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.18.3. Parameters

None

26.18.4. Examples of Use

The use of operator OR is shown in the following examples:

• Section 12.8.2.2, 'Hit or Miss'

Examples - The implementation can detect four simple patterns in a binary image. For every match,
the output will be set to one.

• Section 12.14.2, 'Grid Overlay Fading'

Library Logic 950

VisualApplets User Documentation Release 3

Examples - A grid is overlayed to the input images. The grid pixel value is determined from the
input pixel value.

Library Logic 951

VisualApplets User Documentation Release 3

26.19. Operator XNOR
Operator Library: Logic

The operator XNOR performs a bitwise logical XNOR (not exclusive or) operation. Each output bit is set
to a logical "1" if the sum of the corresponding input bit values is even, otherwise the output is "0".
The number of input links has to be selected at the instantiation of the module.

Thus the output bit i of n inputs is

O[i] = (I0[i] XOR I1[i] XOR ::: XOR In¡1[i])

26.19.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..In-1, data input
Output Link O, data output

26.19.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..In-1 Output Link O
Bit Width [1, 64] as I as I
Arithmetic {unsigned, signed} as I as I
Parallelism any as I as I
Kernel Columns any as I as I
Kernel Rows any as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I as I

Color Format any as I as I
Color Flavor any as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.19.3. Parameters

None

26.19.4. Examples of Use

The use of operator XNOR is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Logic 952

VisualApplets User Documentation Release 3

26.20. Operator XOR
Operator Library: Logic

The operator XOR performs a bitwise logical XOR (exclusive OR) operation. Each output bit is set to
a logical "1" if the sum of the corresponding input bit values is odd, otherwise the output is "0". The
number of input links has to be selected at the instantiation of the module.

Thus the output bit i of n inputs is

O[i] = I0[i] XOR I1[i] XOR ::: XOR In¡1[i]

26.20.1. I/O Properties

Property Value
Operator Type O
Input Links I0, data input

I1..In-1, data input
Output Link O, data output

26.20.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1..In-1 Output Link O
Bit Width [1, 64] as I as I
Arithmetic {unsigned, signed} as I as I
Parallelism any as I as I
Kernel Columns any as I as I
Kernel Rows any as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D,
VALT_SIGNAL}

as I as I

Color Format any as I as I
Color Flavor any as I as I
Max. Img Width any as I as I
Max. Img Height any as I as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

26.20.3. Parameters

None

26.20.4. Examples of Use

The use of operator XOR is shown in the following examples:

• Section 12.8.1.1, 'Morphological Edge'

Examples - A binary eroded image is compared with the original. An edge is detected if both differ.

Library Memory 953

VisualApplets User Documentation Release 3

27. Library Memory

The Memory library includes operators for buffering data, resorting data, and random access to data.
Many different operators exist. They all implement their own idea of memory access.

The operators are either using frame grabber RAM (DRAM), FPGA-internal block RAM (BRAM or URAM),
or FPGA distributed RAM (LUT RAM). The following table shows an overview of which memory type
is used by the individual operators.

Name Memory Type
CoefficientBuffer Frame grabber RAM (DRAM)

FrameBufferMultiRoiDyn Frame grabber RAM (DRAM)

FrameBufferRandomRead Frame grabber RAM (DRAM)

FrameMemory FPGA-internal block RAM

FrameMemoryRandomRd FPGA-internal block RAM

ImageBuffer Frame grabber RAM (DRAM)

ImageBufferMultiRoI Frame grabber RAM (DRAM)

ImageBufferMultiRoIDyn Frame grabber RAM (DRAM)

ImageBufferSC Frame grabber RAM (DRAM)

ImageBufferSpatial Frame grabber RAM (DRAM)

ImageFifo FPGA-internal RAM

ImageSequence Frame grabber RAM (DRAM)

KneeLUT FPGA-internal block RAM

LineBuffer Frame grabber RAM (DRAM)

LineMemory FPGA-internal RAM

LineMemoryRandomRd FPGA-internal block RAM

LUT FPGA-internal block RAM

RamLUT Frame grabber RAM (DRAM)

ROM FPGA-internal block RAM

Table 27.1. Memory Types of Operators in the Library Memory

Operators might require additional FPGA-internal RAM for buffering even if they are using frame
grabber RAM (DRAM).

The delay, i.e., latency of a memory operator, depends on the operator's implementation. Some
operators only have a short pixel delay, while others have a line or frame delay. The following table
lists the delay of the individual memory operators.

Name Latency
CoefficientBuffer None: Will always output data if output is not blocked.

FrameBufferMultiRoiDyn Minimum 1 frame: Reading using coordinate inputs starts after
frame has been fully written into the buffer. If output is blocked,
operator buffers input data.

FrameBufferRandomRead Minimum 1 frame: As soon as frame is fully written reading starts
using address inputs. If output is blocked, operator buffers input
data. Latency also depends on presence of read address data.

Library Memory 954

VisualApplets User Documentation Release 3

Name Latency
FrameMemory 1 frame: Reading starts after frame has been fully written into the

buffer.

FrameMemoryRandomRd 1 frame: Reading can start after frame has been fully written into
the buffer. Latency depends on presence of read address data.

ImageBuffer Minimum 1 line: Output starts reading a line as soon as it is fully
written into the buffer. If output is blocked, operator buffers input
data.

ImageBufferMultiRoI Minimum 1 frame: Reading starts after frame has been fully
written into the buffer. If output is blocked, operator buffers input
data.

ImageBufferMultiRoIDyn Minimum 1 frame: Reading using coordinate inputs starts after
frame has been fully written into the buffer. If output is blocked,
operator buffers input data.

ImageBufferSC Minimum 1 line: Output starts reading a line as soon as it is fully
written into the buffer. If output is blocked, operator buffers input
data.

ImageBufferSpatial Minimum 1 line: Output starts reading a line as soon as it is fully
written into the buffer. If output is blocked, operator buffers input
data.

ImageFifo No latency. Only if output is blocked, operator buffers and delays
input data.

ImageSequence Minimum SequenceLength frames: Reading starts after all frames
of a sequence have been fully written into the buffer. If output is
blocked, operator buffers input data.

KneeLUT No latency

LineBuffer 1 line: Reading starts after line has been fully written into the
buffer.

LineMemory 1 line: Reading starts after line has been fully written into the
buffer.

LineMemoryRandomRd 1 line: Reading can start after line has been fully written into the
buffer. Latency depends on presence of read address data.

LUT No latency

RamLUT Latency of some clock cycles only. Depends on addresses.

ROM No Latency

Table 27.2. Individual Latencies of the Operators in Library Memory

The following list summarizes all Operators of Library Memory

Operator Name Short Description available
since

CoefficientBuffer Allows the upload of image files from PC to frame
grabber and uses them as image source. Version 1.1

FrameBufferMultiRoiDyn
Buffers the input images in the Frame Grabber RAM
(DRAM) and reads out multiple dynamic regions of
interest (ROI) for each buffered image.

Version 3.5

FrameBufferRandomReadFrameBufferRandomRead is a memory buffer with
random read access. Version 1.3

Library Memory 955

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

FrameBufferRandomRead
(imaFlex)

FrameBufferRandomRead (imaFlex) is a memory
buffer for the imaFlex CXP-12 Quad and the
imaFlex CXP-12 Penta platforms with random read
access.

Version 3.3

FrameMemory FrameMemory is a small memory block with
random write access. Version 1.1

FrameMemoryRandomRdFrameMemoryRandomRd is a small memory block
with random read access. Version 1.3

ImageBuffer Buffers an image in Frame Grabber RAM (DRAM)
with ROI selection. Version 1.1

ImageBufferMultiRoI
Buffers the input image stream in Frame Grabber
RAM (DRAM) and outputs an arbitrary number of
ROIs from each input image.

Version 1.1

ImageBufferMultiRoIDyn
Buffers the input images in Frame Grabber RAM
(DRAM) and transfers an arbitrary number of
dynamic ROIs out of each image.

Version 1.1

ImageBufferSC Buffers an image in Frame Grabber RAM (DRAM)
with sensor correction and ROI selection. Version 1.1

ImageBufferSpatial Buffers the image in the Frame Grabber RAM
(DRAM) and computes a spatial correction of lines. Version 1.3

ImageFifo Buffers a limited number of pixels in the FPGA
internal RAM. Version 1.1

ImageSequence Buffers a sequence of images and output them
simultaneously. Version 1.1

KneeLUT Implements an approximation of a Lookup table by
a series of nodes. Version 1.1

LineBuffer (imaFlex)

Buffers image data line-by-line in the Frame
Grabber RAM (DRAM) with region-of-interest (ROI)
support. This operator is only available for the
imaFlex CXP-12 Quad and the imaFlex CXP-12
Penta platform.

Version 3.3

LineMemory LineMemory is a small memory block with random
write access. Version 1.1

LineMemoryRandomRd LineMemoryRandomRd is a small memory block
with random read access. Version 1.3

Library Memory 956

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

LUT Implements a Lookup table of dynamic content. Version 1.1

RamLUT
Implements a large lookup table of dynamic
content based on FPGA-external RAM (i.e., the
Frame Grabber RAM (DRAM)).

Version 1.3

RamLUT (imaFlex) Implements a large lookup table of dynamic
content based on FPGA-external RAM. Version 3.3

ROM Implements a Lookup table of dynamic content. Version 1.1

Table 27.3. Operators of Library Memory

Library Memory 957

VisualApplets User Documentation Release 3

27.1. Operator CoefficientBuffer
Operator Library: Memory

The operator allows the upload of image files from the host PC to the frame grabber which will be
continuously output and used as image source. An image file is used here as a universal data container.
Therefore, uploaded images can contain any data such as coefficients. All coefficient images must
have the same pixel width and height but can be in completely different formats. For example, link 0
coefficient image can be in GRAY 8 bit format. Link 1 could provide an image in RGB16 format. And link
2 could be a binary image. All coefficient images are stored in the Frame Grabber RAM (DRAM). One
VisualApplets resource of type RAM is required. Check Section 3.8, 'Allocation of Device Resources' for
more information. For information on the latency of the operator, see Table 27.2, 'Individual Latencies
of the Operators in Library Memory'.

CoefficientBuffer Is Not Available for imaFlex CXP-12 Quad and imaFlex
CXP-12 Penta Platforms

CoefficientBuffer is not supported on imaFlex CXP-12 Quad and imaFlex CXP-12 Penta
platforms. The example Section 11.4, 'Functional Example for Loading Test Images Using
ImageInjector ' shows how you can substitute the functionality of the CoefficientBuffer
operator as test image source on imaFlex CXP-12 Quad or imaFlex CXP-12 Penta using
the ImageInjector operator. Note that for the ImageInjector operator you need either an
Expert license, a Debugging Module license, or the VisualApplets 4 license.

The example Section 12.14.4, '2D Shading Correction / Flat Field Correction Using
Operator RamLUT' shows how you can a RamLUT instead of the CoefficientBuffer for 2D
shading correction.

The number of links corresponds to the number of coefficient images stored in CoefficientBuffer. The
coefficient images can only be uploaded into the FPGA buffer via software while no image acquisition
is running. This is done by writing to parameter LoadCoefficients.

The output ports of the operator work synchronously. The transfer of the first image pixel starts exactly
at the same moment on all output ports. If all images have been transferred to the receiving operator,
CoefficientBuffer starts to synchronously output the images again.

Behavior during simulation

The images on the operator's links are output simultaneously. In one simulation step,
the operator outputs maximally one image on each link. If during a simulation step all
of the stored images (one per link) have been forwarded to the receiving operator, i.e.,
if there occurred no blocking, the same output (one image per link) will be forwarded
in the following simulation step.

CoefficientBuffer also supports a region of interests (RoI) management. The RoI is defined by the 4
parameters XOffset, XLength, YOffset and YLength. XOffset and YOffset define the upper left corner of
the RoI, i.e., the start coordinate in pixels. The dimensions of the RoI must not exceed the dimensions
of the stored coefficient images defined by the parameters BufferWidth and BufferHeight. The RoI
can be updated dynamically during acquisition or, when no acquisition is running, by setting all 4 RoI
coordinate parameters to new values and writing to the parameter UpdateROI. Note that XLength must
also fulfill the granularity of the link parallelism, i.e., XLength modulo LinkParallelism = 0.

For each output link, a coefficient image file is stored in the buffer, i.e., coefficient image 0 will be
provided on link 0. The coefficient images must be loaded into CoefficientBuffer before the acquisition
starts. The coefficient images must be stored in the files specified by the parameters CoefficientFile N.
N stands for the link number respectively for the coefficient image number. The coefficient files must
be encoded in TIF format.

BufferWidth specifies the width of all coefficient images stored in CoefficientBuffer in pixels.

BufferHeight specifies the height of all coefficient images managed by CoefficientBuffer in pixels.
BufferWidth and BufferHeight determine the output maximal image dimensions of all output links.

Library Memory 958

VisualApplets User Documentation Release 3

For grayscale links, grayscale image files have to be used. For color links, RGB image files have to
be used.

If the bit width of a link is higher than the bit width of the image file, the operator will use multiple image
file pixel to generate the output pixels. For example, a link of 22 bit will require 3 pixel in an 8 bit image
file. Thus, the image width of the image file has to be 3 times higher than parameter BufferWidth.

If the bit width of a link is less than the bit width of the image file, the operator will use the lower
bits of the input image file only. For example, an 8 bit image file and a 3 bit link will use bits 0, 1
and 2 of the file.

16 bit TIF files should only be used with care.

Parameter LoadCoefficients is used to start loading of coefficient images into the buffer before the
image acquisition starts. The loading is triggered by a write cycle or value 1 to this parameter. Writing
value 0 has no effect.

Parameter UpdateROI is used to update the current RoI dynamically while the image acquisition is
running or when no images are grabbed. The new RoI must be specified by the 4 RoI coordinate
parameters before writing to this parameter. The written value does not affect the updating process,
only the write cycle triggers it, i.e., the written value can be either 0 or 1.

Parameter XOffset specifies the offset in horizontal direction from the left image border to the 1st
column of the RoI. The specified value is measured in pixels and must not exceed BufferWidth-1 value.

Parameter XLength specifies the length of the RoI in horizontal direction in pixels. The specified value
must not exceed BufferWidth and must be divisible by the output link parallelism. Also the following
constraint must be met: XOffset + XLength <= BufferWidth.

Parameter YOffset specifies the offset in vertical direction from the top image border to the 1st line of
the RoI. YOffset must be specified in pixels and must not exceed BufferHeight-1.

Parameter YLength specifies the length of the RoI in vertical direction in pixels. The length must
not exceed BufferHeight. Furthermore, the following constraint must be met: YOffset + YLength <=
BufferHeight.

Parameter CoefficientFile N specifies the file name of the coefficient image for link N stored in TIF
format.

Note

1. The parallelism of link 0 determines the parallelism of all other links.

2. Setting of the parallelism for the link 0 corrects XLength value to be divisible by the
new parallelism. This might be handled differently in future VA versions. This means
that when using the up/down buttons in the spinbox of the parallelism attribute
of the link XLength might be modified. Therefore a check on XLength setting is
recommended after all links are connected and specified.

3. Setting the parameter BufferWidth and BufferHeight corrects the RoI coordinates
in case any of them exceeds the new image dimensions. The coordinates will be
corrected to the closest possible valid values.

4. CoefficientBuffer supports 2D, 1D and 0D images. In case of 1D and 0D images
the operator will provide the coefficient images - that are stored as 2D images -
continuously without generating end of frame respectively end of line markers.

5. The operator is using 1 DDRRAM bank. Thus, the storage space for coefficient images
is limited to the capacity of one RAM bank (e.g., 128MByte on mE4 boards, 256MByte
on mE5 boards) per 1 operator. Furthermore, due to the internal formatting of the
DDRRAM, the actual storage space might be a bit less than the physical storage
space. The used storage space is related to the link formats respectively to the pixel
width of each link. In an optimal case the sum of all link pixel widths is divisible by the
capacity of one RAM bank (i.e., by 128 on me4, or by 256 on mE5). In this case all

Library Memory 959

VisualApplets User Documentation Release 3

coefficient images can be stored together in one memory bank. In any other case the
storage will be used sub-optimally. Check Appendix A, 'Device Resources' for more
information on hardware platforms.

Recommended Setting Order for using this Operator

1. Connect all links of CoefficientBuffer.

2. Specify the link formats for all links.

3. Set BufferWidth and BufferHeight parameters.

4. Set RoI coordinates.

5. Set the coefficient file names.

27.1.1. Using the Operator with Maximum Performance

Internally, the CoefficientBuffer operator generates one cumulative pixel from all coefficient image
pixels. This is the so-called super-pixel.

• If the RAM data width is less than the super-pixel bit width, the super-pixel is distributed over multiple
RAM cells.

• If the super pixel is less than the RAM data width, only one super-pixel is stored in each RAM cell,
even if multiple super-pixels would fit into a RAM cell.

Therefore, a RAM cell will only be occupied by one super-pixel or is part of a super-pixel.

The operator internally stores a pixel of the output bit width in a RAM-data-width wide block, e.g., if
the output bit width is set to 8bit on a marathon VCL platform (RAM data width is 256bit), only 8 bit
of each RAM cell are used. The rest is wasted.

Increasing the bandwidth by simply increasing the parallelism will NOT help in this case.

You can look up the RAM data width of the frame grabber you are using in the Platform Resources
section of this documentation:

Appendix A, 'Device Resources'

Find below some ideas to increase the bandwidth/ RAM-efficiency:

Tip 1:

To increase the bandwidth, you may define the bitwidth of a pixel to be bigger, and
later on use a CastParallel operator to correct this.

Example: You need an image in Gray 8bit but with the bandwidth of parallelism 8.
For that you can define the output bit width to be 64 (parallelism 1) and later on use
operator CastParallel to shift the link back to 8 bit and parallelism 8.

This way, your image will also consume less RAM as more than 1 pixel are stored in
1 RAM cell. If used directly - without operator CastParallel - the memory needed to
store the image will be 8 times bigger.

Tip 2:

If the bit width of the combined link would exceed 64 bit, you can split your image to
multiple images and use more than one link of operator CoefficientBuffer. Later on you
can combine all links since all outputs are O-synchronous.

Example: You want to send an RGB24 image in parallelism 4. The accumulated pixel
would be 4*24 = 96Bit - which is too big. So the idea to solve this would be to split
the image into 4 sub images, each having ¼ of the pixel.

Library Memory 960

VisualApplets User Documentation Release 3

Internally, the operator will accumulate the pixel of each input to one super-pixel of
96bit.

This way, the efficiency of the ram is also increased. If we take a 1024x1024 image
on an Ironman mE5VQ8-CXPD platform (128 Bit wide RAM data interface), the image
stored in simple 1 link CoefficientBuffer is

1024 * 1024 * 128 / 8 Byte = 16MB.

If the 4-link setup is applied, the size is

1024 * 1024 * (128 / 4) / 8 = 4MB

27.1.1.1. Example for microEnable IV frame grabbers with a RAM cell
width of 64 bit.

Suppose that the Coefficientbuffer is used with a single coeffcient image file only, the pixel bit width is 8
bit per pixel and the parallelism is 1. In this case, the buffer will dramatically loose performance. That's
because only 1/8th of the bandwidth is used. Moreover, the buffer reads its its values with doubled
design clock frequency, i.e., only 1/16th of the full bandwidth is used.

To use the buffer with maximum performance, the pixel data has to be reinterpreted. In out example,
the buffer output link has to be parameterized to 64 bit per pixel and parallelism two has to be used.
This will cause the buffer to read 128 bit per design clock. Use a CastParallel operator to reinterpret the
64 bit data values to a bit width of eight and a parallelism of 16. Moreover, the parameter BufferWidth
has to be set to 1/8th of the image width of the coefficient image.

In conclusion, the maximum bandwidth can only be obtained if the output bit width is high, e.g., 64
bit. Using a high output parallelism will not increase the bandwidth.

27.1.2. Using the Operator as Simulation Source

The operator can be used as a simulation source. In this case, the operator will try to load and use the
image files specified by the Coefficient File N parameters. Note that this will only work properly if the
image files exactly match with the link format. If you have a link format of e.g. 64 Bit, the image width
of your image file has to be 8 times the maximum image width of the link as the image will have 8 bit
per pixel. The height has to exactly match with the maximum image height specified at the link, too.

27.1.3. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width x 2 (true for read-only parameters).

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

Library Memory 961

VisualApplets User Documentation Release 3

27.1.4. I/O Properties

Property Value
Operator Type M
Output Link O[n], data output

27.1.5. Supported Link Format

Link Parameter Output Link O[n]
Bit Width [1, 64]
Arithmetic {unsigned, signed}
Parallelism any
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D, VALT_PIXEL0D}
Color Format any
Color Flavor any
Max. Img Width BufferWidth
Max. Img Height BufferHeight

The range of the output bit width is [1, 64] for unsigned inputs. For signed inputs, the range is
[2, 64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The product of the bit width and the parallelism must not exceed the native ram data width. Check
Appendix A, 'Device Resources' for more information.

27.1.6. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of RAM address bits available.

BufferWidth
Type static parameter
Default 1024
Range [1, 65535]

This parameter defines coefficient images width in pixels. Moreover, this parameter defines the
maximum image width of all output links. The range of this parameter depends on the used frame
grabber and its RAM.

BufferHeight
Type static parameter

Library Memory 962

VisualApplets User Documentation Release 3

BufferHeight
Default 1024
Range [1, 65535]

This parameter defines the coefficient images height in pixels. Moreover, this parameter defines the
maximum image height of all output links. The range of this parameter depends on the used frame
grabber and its RAM.

LoadCoefficients
Type dynamic write parameter
Default 0
Range {0, 1}

This parameter is used to start loading of coefficient images into the buffer before the image
acquisition starts. The loading is triggered by a write cycle of value one to this parameter. Writing
value 0 does not cause the loading of the coefficient files.

UpdateROI
Type dynamic write parameter
Default 1
Range {1}

The parameter is used to update the ROI settings in hardware. The values defined by the 4 ROI
coordinate parameters are used. An update can be done at any time, even during a running
acquisition.

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI. Changing the value
does not directly change the ROI settings. You have to write to parameter UpdateROI to apply new
settings.

The step size is the parallelism.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [parallelism, Max.Img Width - XOffset]

This parameter defines the width of the ROI. Changing the value does not directly change the ROI
settings. You have to write to parameter UpdateROI to apply new settings.

The step size is the parallelism.

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, BufferHeight - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI. Changing the value
does not directly change the ROI settings. You have to write to parameter UpdateROI to apply new
settings.

YLength
Type dynamic/static read/write parameter

Library Memory 963

VisualApplets User Documentation Release 3

YLength
Default 1024
Range [1, BufferHeight - YOffset]

This parameter defines the height of the ROI. Changing the value does not directly change the ROI
settings. You have to write to parameter UpdateROI to apply new settings.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in 25% steps.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

Coefficient File N
Type dynamic read/write parameter
Default coefficients_N.tif
Range any filename of a tif file with optional path

This parameter defines the file name of the coefficient image for the link N.

27.1.7. Examples of Use

The use of operator CoefficientBuffer is shown in the following examples:

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.6.5, 'Image Monitoring'

Example - For debugging purposes image transfer states on links can be investigated.

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Memory 964

VisualApplets User Documentation Release 3

27.2. Operator FrameBufferMultiRoiDyn
Operator Library: Memory

This operator buffers input image data in the frame grabber RAM (DRAM) and reads out multiple
dynamic regions of interest (ROI) for each buffered image. The coordinates of the ROIs to be read out
are defined by using additional input links. The following image shows an overview of the operator's
behavior for one input frame and four ROIs.

One VisualApplets resource of type RAM is required (see Section 3.8, 'Allocation of Device Resources').
Multiple resources of type RAM use the same physical RAM with the Section A.3, ' Shared Memory
Concept '. Documentation for how to use the shared memory is available in the Application Note:
Shared Memory [https://docs.baslerweb.com/visualapplets/application-note-shared-memory].

All ROIs are read sequentially as individual images: ROI 0, ROI 1, ROI 2,.. until ROI N-1. N is the
number of ROIs to be read out for one input frame, that is the image size on the coordinate inputs.
All possible rectangular regions are supported as long as the maximum input frame dimensions are
not exceeded, i.e. a single pixel, a single line, a single column, a rectangular region, or the complete
frame can be defined as an ROI.

Different ROIs do not need to have the same size.

Each ROI can be defined individually.

ROIs can overlap each other.

If the ROI image is empty, i.e. it doesn't contain any pixels, the operator provides an empty image
on its output. An empty image contains no pixels.

A negative ROI width (XTopLeft > XBottomRight) or ROI height (YTopLeft > YBottomRight) also
leads to an empty ROI on the output. The maximum amount of supported ROIs is determined by
the maximum number of pixels per image on the XTopLeft input link: XTopLeft.MaxImageWidth *
XTopLeft.MaxImageHeight .

ROI coordinates are provided on four separate coordinate input links as images containing the ROI
coordinates: XTopLeft, YTopLeft, XBottomRight, YBottomRight. Each pixel in these images is treated
by the operator as a valid ROI coordinate set. Thus, the size of the ROI input images define the number
of output ROIs. EoLs (End of Lines) and varying line lengths can be used but are ignored as only valid
pixels and EoFs (End of Frames) are evaluated for the ROI inputs of the operator. For each input image
at input link I, a new ROI coordinate image set is required. The ROIs are defined by the X,Y coordinates
for the top left corner and the X,Y coordinates for the bottom right corner.

Note that ROI X-coordinates are transformed to meet the X-granularity of the input link I defined by
its parallelism, i.e., the operator FrameBufferMultiRoiDyn can only cut lines with the granularity of the
parallelism. When addressing a pixel that isn't the first pixel of a parallel component for XTopLeft, or
a pixel that isn't the last pixel of a parallel component for XBottomRight, the coordinates are rounded
up or down and the resulting ROI still contains all pixels of the parallel component.

The following section describes an example to explain the operator's behavior:

In this example, the parallelism = 4 at the input link I.

Therefore, XTopLeft is rounded down to the first pixel of a parallel component: 0, 4, 8, 12, ... and
XBottomRight is rounded up to the last pixel of a parallel component 3, 7, 11, 15, ...

For example, with the ROI X-coordinates 3 and 7, the first column of the ROI is column number 3
and the last column is column number 7 of the input image. The operator rounds down XTopLeft to
0; XBottomRight remains 7. Thus, the width becomes 8. The ROI height is not dependent on the
parallelism and thus can be of any legal value.

Formula:

XTopLeft* = floor(XTopLeft / Parallelism) * Parallelism

https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory

Library Memory 965

VisualApplets User Documentation Release 3

XBottomRight* = ceil((XBottomRight + 1) / Parallelism) * Parallelism - 1

Examples:

With a parallelism of 4 at the input link I:

• 112 to 551 becomes 112 to 551. Therefore, the width becomes = 551 - 112 + 1 = 440

• 101 to 540 becomes 100 to 543. Therefore, the width becomes = 543 - 100 + 1 = 444

All 4 ROI inputs are synchronous to each other, i.e., the images on these links must be of the same
size and provided at the same time synchronously. This is always the case when they are sourced by
the same M type module through an arbitrary network of O-type modules. For more information, see
the section Section 3.6.4, 'M-type Operators with Multiple Inputs'.

The ROI coordinates are asynchronous to the input link I. You can use the CreateBlankImage operator
to generate ROI coordinates.

The operator provides ROI images at its output as soon as the correspondent input frame is completely
buffered, i.e. the input frame's EoF (End of Frame) signal is received, and the first pixel on each
of the ROI image definition input links XTopLeft, YTopLeft, XBottomRight, YBottomRight is received.
If enough space is available in the DRAM, the next input frames can be written to the DRAM while
ROIs are read. The RAM bandwidth is shared between writing and reading but reading can only start
after the corresponding input frame is written. After reading the last ROI for the input frame, which
is defined by the last pixel on each of the ROI image definition input links (i.e. the ROI images EoF
(End of Frame) is received), the current frame is discarded and the next ROI images address the next
input frame. For information about the latency of the operator, see Table 27.2, 'Individual Latencies
of the Operators in Library Memory'.

The operator supports two modes for buffering image data to the DRAM, which you can configure via
the parameter MaxFrameSizeMode:

• For MaxFrameSizeMode = AUTO, the DRAM buffers an image that has the size of the maximum
image dimension, which is I.MaxImgWidth * I.MaxImgHeight.

Images that are smaller than the maximum image dimension are buffered without modifications.
However, reading out ROIs is always done on a buffered frame with the maximum possible image
dimension. In this case, the missing frame pixels are filled with random data and should be treated
in further processing as undefined.

• For MaxFrameSizeMode = CUSTOM, the maximum dimensions of the buffered input frame are defined
by the parameters MaxFrameWidth and MaxFrameHeight. Even if the actual input frame is bigger, the
data that exceeds the specified parameter dimensions is discarded (similar to an ROI without offsets).
In that case, the DRAM reserves memory for the frame size MaxFrameWidth * MaxFrameHeight.

In both cases, there is no check whether the input link ROI coordinates are located in the input image.
As the coordinates can be set to any pixel of the maximum input frame. If they are located outside of
the actual input image data, the operator reads random dummy values, but the ROI size is not altered.

The operator supports empty frames, empty lines and varying line lengths on all input links.

27.2.1. Overflow Management with InfiniteSource

In the InfiniteSource mode, images might get lost or become corrupted. This happens either, because
the RAM is full and it can't accept any further data, or the input bandwidth is too high for the shared
memory interface. As soon as the operator reaches the overflow state, all incoming data is discarded.
This leads to lost or corrupted frames. Corrupted images only occur, if the input bandwidth is too high,
since the fill level is counted in full entities. A corrupted image occurs when part of the image has
already been written to the RAM, but part of the image is discarded because the input bandwidth is
too high and the RAM can't accept the write data fast enough. As a result, reading a corrupted image

Library Memory 966

VisualApplets User Documentation Release 3

leads to undefined output data. As soon as there is enough space in the RAM again and the shared
memory interface allows data to be written to the RAM again, the operator recovers from the overflow
and stops discarding the input data. The Overflow parameter indicates when an overflow occurred.
With the OverflowClearMode parameter, you can define whether the Overflow is reset immediately
after overflow recovery or whether you reset the overflow manually.

27.2.2. Operator Restrictions

• The parallelism of the input link must be a power of 2.

• The operator supports empty frames on input link I but the output ROIs for that frame are filled
with random dummy values.

• If the input image is smaller than the frame that is written to DRAM, there is no check whether the
ROI coordinates are inside the input image. In this case, the operator reads random dummy values
from the memory.

• The maximum link properties differ depending on the usage of the operator. Refer to the section
Supported Link Format below for more information.

27.2.3. Bandwidth Optimization

For optimal performance, the used number of data bits should match as closely as possible the
number provided in the module parameter RamDataWidth. The maximum bandwidth going through
the operator is reached, if the product of bit width, kernel size and parallelism is equal to the internal
RAM port width RamDataWidth. Note that the internal bit width can be increased by the usage of
kernels, but a full kernel will still be addressed as a single pixel.

DataWidthoptimal = BitWidth ¢KernelColumns ¢KernelRows ¢ Parallelism = RamDataWidth

27.2.4. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

XTopLeft, coordinate data input
YTopLeft, coordinate data input
XBottomRight, coordinate data input
YBottomRight, coordinate data input

Output Link O, data input

Synchronous and Asynchronous Inputs

• The 4 ROI coordinate inputs XTopLeft, YTopLeft, XBottomRight and YBottomRight are synchronous
to each other.

• The ROI coordinate inputs XTopLeft, YTopLeft, XBottomRight and YBottomRight are asynchronous
to input link I.

27.2.5. Supported Link Format

Link Parameter Input Link I Input Link XTopLeft Input Link YTopLeft
Bit Width [1, 64] auto auto
Arithmetic {unsigned, signed} unsigned unsigned
Parallelism 2^N, with N =

{0,1,2...}
1 1

Library Memory 967

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link XTopLeft Input Link YTopLeft
Kernel Columns [1, RamDataWidth /

BitWidth / Parallelism /
KernelRows]

1 1

Kernel Rows [1, RamDataWidth /
BitWidth / Parallelism /
KernelColumns]

1 1

Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format any VAF_GRAY VAF_GRAY
Color Flavor any FL_NONE FL_NONE
Max. Img Width 2^31 - 1 2^31 - 1 as XTopLeft
Max. Img Height 2^RamAddressWidth 2^31 - 1 as XTopLeft

Link Parameter Input Link
XBottomRight

Input Link
YBottomRight

Output Link O

Bit Width auto auto as I
Arithmetic unsigned unsigned as I
Parallelism 1 1 as I
Kernel Columns 1 1 as I
Kernel Rows 1 1 as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D as I
Color Format VAF_GRAY VAF_GRAY as I
Color Flavor FL_NONE FL_NONE as I
Max. Img Width as XTopLeft as XTopLeft as I
Max. Img Height as XTopLeft as XTopLeft as I

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].

The input bit width must not exceed the native RAM data width RamDataWidth.
The product of bit width, parallelism and kernel size must not exceed the native RAM data width.

BitWidth ¢KernelColumns ¢KernelRows ¢ Parallelism · RamDataWidth
The bit width of the X-coordinate inputs is:

BitWidth = dlog2(MaxImageWidth(I)¡ 1)e
The bit width of the Y-coordinate inputs is:

BitWidth = dlog2(MaxImageHeight(I)¡ 1)e
The maximum image width and image height of the input link I differ depending on the operator
use:

• For MaxFrameSizeMode = AUTO, the product of I.MaxImageWidth and I.MaxImageHeight must
fit into the available RAM size.

I:MaxImgWidth

I:Parallelism
¢ I:MaxImgHeight · 2RamAddressWidth

• For MaxFrameSizeMode = CUSTOM, both I.MaxImageWidth and I.MaxImageHeight are limited
to the maximum RAM size. The product can exceed the total RAM size as only the sub-image
selected by the parameters MaxFrameWidth and MaxFrameHeight is written into the RAM.

Library Memory 968

VisualApplets User Documentation Release 3

I:MaxImgHeight · 2RamAddressWidth

As I.Parallelism pixels are written per RAM vector, I.MaxImageWidth can exceed
2^RamAddressWidth but it can never be greater than 2^31 - 1.

I:MaxImgWidth

I:Parallelism
· 2RamAddressWidth

The sum of the bit widths of I.MaxImageWidth and I.MaxImageHeight must be smaller than
48 bit.

log2(I:MaxImageWidth) + log2(I:MaxImageHeight) < 48

27.2.6. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the maximum data width that can be used in the RAM.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits that can be used. The number of available RAM
slots is defined by 2^RamAddressWidth. The current RamAddressWidth depends on the hardware
platform as well as on the current number of memory operators (i.e. operators that use a resource
of type RAM) in the design.

MaxFrameSizeMode
Type dynamic write parameter
Default Auto
Range {Auto, Custom}

This parameter defines whether the parameters MaxFrameWidth and MaxFrameHeight should
automatically follow the max. image dimension at input I (mode=Auto) or whether these
parameters can be adjusted (mode=Custom). Custom mode enables setting a maximum frame
dimension, which is customized for the application and may be much smaller than the limits
defined by the input link. This way, more frames can be stored in the RAM. In mode Auto, the link
properties (Max.Img Width and Max.Img Height) of I, must not define a maximum image that
is greater than the number of available slots in the memory (2^RamAddressWidth). If the link
properties Max.Img Width and Max.Img Height of I define a maximum image that is bigger than
the available memory space and you are in mode Custom, the MaxFrameSizeMode parameter can't
be edited anymore until the maximum image on the input link is defined smaller. This parameter
can't be written when the acquisition is running.

MaxFrameWidth
Type dynamic write parameter
Default 1024
Range [1, Max. Image Width at I]

This parameter sets the max. image width for the current image processing configuration.
The lines of input frames that exceed this limit are cut to MaxFrameWidth. Reducing this
number below the max. image width saves memory space and allows storing more frames.
This parameter can only be edited when MaxFrameSizeMode is set to Custom. The product of

Library Memory 969

VisualApplets User Documentation Release 3

MaxFrameWidth
MaxFrameHeight and MaxFrameWidth must not be greater than the number of available memory
slots 2^RamAddressWidth multiplied with the input parallelism. This parameter can't be edited
when the acquisition is running.

MaxFrameHeight
Type dynamic write parameter
Default 1024
Range [1, Max. Image Height at I]

This parameter sets the max. image height for the current image processing configuration.
Input frames exceeding this height limit are cut to MaxFrameHeight. Reducing this number
below the max. image height saves memory space and allows to store more frames. This
parameter can only be edited when MaxFrameSizeMode is set to Custom. The product of
MaxFrameHeight and MaxFrameWidth must not be greater than the number of available memory
slots 2^RamAddressWidth multiplied with the input parallelism. This parameter cannot be edited
when the acquisition is running.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of the DRAM in percent.

MaxFrameCount
Type dynamic read parameter
Default 2^RamAddressWidth / (MaxFrameHeight * (MaxFrameWidth / I.Parallelism))
Range [1, 2^RamAddressWidth]

This parameter provides the maximum number of frames that currently fit into the memory.
The maximum number of frames that fit into the memory depends on the parameters
RamAddressWidth, MaxFrameHeight, I.Parallelism and MaxFrameWidth.

MaxFrameCount = 2^RamAddressWidth / (MaxFrameHeight * (MaxFrameWidth / I.Parallelism))

FrameCount
Type dynamic read parameter
Default 0
Range [0, MaxFrameCount]

This parameter provides the current number of frames in the memory.

InfiniteSource
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The operator can be placed directly behind a camera operator in the design. In this case, the
InfiniteSource parameter must be set to ENABLED. The operator will then perform active overflow
management and make sure the operator can properly recover from overflows. The overflow can
occur either when the data sink behind the operator stops or pauses the transmission and the
buffer fill level reaches its maximum or when the input bandwidth is too high so the write data can't
be transferred to the external RAM. When InfiniteSource is set to DISABLED, an inhibit signal is
generated that stops the proceeding operator from transferring data, if the buffer fill level or input
bandwidth get too high.

See Section 3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

Library Memory 970

VisualApplets User Documentation Release 3

Overflow
Type dynamic read parameter
Default 0
Range [0, 3]

This parameter indicates a buffer overflow. It's a 2-bit bitmap, where each bit indicates a different
type of overflow. Bit 0 indicates a fill level overflow and bit 1 indicates a write bandwidth overflow.
The display time of an Overflow depends on the selected OverflowClearMode.

OverflowClearMode
Type dynamic write parameter
Default AutoClear
Range {AutoClear, ManualClear, ClearAfterRead, ClearWithProcessReset}

OverflowClearMode determines how the Overflow parameter is cleared when the operator has
recovered from an overflow. You can only reset the overflow status with this parameter, if the
operator is not in overflow state anymore.

Clear modes:

• AutoClear: When the operator recovers from an overflow, the Overflow parameter is reset
automatically.

• ManualClear: When the operator recovers from an overflow, the Overflow parameter still shows
the overflow until it is manually reset by writing ManualClear into the OverflowClearMode
parameter. In this mode, a process reset (e.g. acquisition stop) doesn't clear the Overflow
parameter, which means the overflow is still visible after the acquisition stopped.

• ClearAfterRead: When the operator recovers from an overflow, the Overflow parameter still
shows the overflow until the Overflow parameter is read or a process reset occurs (e.g. when the
acquisition is stopped).

• ClearWithProcessReset: When the operator recovers from an overflow, the Overflow parameter
still shows the overflow until a reset occurs (e.g. when the acquisition is stopped).

Library Memory 971

VisualApplets User Documentation Release 3

27.3. Operator FrameBufferRandomRead
Operator Library: Memory

This operator facilitates the random read of the buffered data. The frame data is transferred into
the operator via link I. The random read of the data can be performed by transferring addresses
to ports RColA (read column address) and RRowA (read row address). The operator will use the
addresses to read the frame data by the given coordinates. The resulting output frame will have the
image dimensions of the address inputs. One VisualApplets resource of type RAM is required. Check
Section 3.8, 'Allocation of Device Resources' for more information. For information on the latency of
the operator, see Table 27.2, 'Individual Latencies of the Operators in Library Memory'.

The FrameBufferRandomRead (frame buffer random read) operator buffers the image stream in the
Frame Grabber RAM (DRAM). One VisualApplets resource of type RAM is required.

The operator has two states:

1. Write State: Input images are stored in the buffer. The operator works like a FIFO. If enough
memory is available, multiple images can be stored in the buffer.

2. Read State: After an image has been fully stored in the memory, the memory is read-out using
the addresses given at the inputs RColA and RRowA. The number of addresses and address link
image dimensions define the image output width and height.

The image data input and the address inputs are not synchronous to each other. They may have
different image dimensions. Both address inputs RColA and RRowA have to be O-synchronous.

Please note the timing of the input links. The address inputs must not be sourced by the same operator
as the data link input I without buffering. This is because while writing the image data into the operator,
no addresses to read the current frame can be accepted. Only if the frame is fully stored into the buffer,
addresses can be accepted. In many cases, the operator CreateBlankImage is used to generate the
images for the addresses.

The operator uses large non-FPGA memory. If only small frames or lines have to be stored consider
using operators FrameMemoryRandomRd or LineMemoryRandomRd.

To measure the fill level of the buffer the operator provides 2 parameters: FillLevel and Overflow.
FillLevel shows the percentage fill level of the RAM. The Overflow parameter is set to 1 when FillLevel
is close to or is 100% and the next image to be stored in the buffer will exceed the RAM capacity.
In case of an overflow, input frames are discarded. Users have to poll for the overflow parameter. As
the duration of the overflow state can be very short it is possible that it is in between of a polling
cycle of the operator.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames are not supported.

• Images with varying line lengths are not supported.

• The parallelism on the address ports has to be set to 2.

• I.MaxImgWidth * I.MaxImgHeight must not exceed the available RAM size: 2^RamAddressWidth.

27.3.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

Library Memory 972

VisualApplets User Documentation Release 3

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.3.2. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

RColA, read column address for the pixel at I
RRowA, read row address for the pixel at I

Output Link O, data input

Synchronous and Asynchronous Inputs

• Synchronous Group: RColA and RRowA

• Input I is asynchronous to the group.

27.3.3. Supported Link Format

Link Parameter Input Link I Input Link RColA
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} unsigned
Parallelism 1 {1, 2}
Kernel Columns [1, Ram Data Width / Bit

Width / Kernel Rows]
1

Kernel Rows [1, Ram Data Width / Bit
Width / Kernel Columns]

1

Img Protocol VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link RRowA Output Link O
Bit Width auto as I
Arithmetic unsigned as I
Parallelism as RColA as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol as I as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width as RColA as RColA
Max. Img Height as RColA as RColA

Library Memory 973

VisualApplets User Documentation Release 3

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].

The input bit width must not exceed the native ram data width. Check Appendix A, 'Device
Resources' for more information.
The bit width of the column address is:

ColABitWidth = dlog2 (InputMax:ImageWidth)e
The bit width of the row address is:

RowABitWidth = dlog2 (InputMax:ImageHeight)e
The parallelism on the address ports has to be set to 2 in order to use the operator in an efficient
way.
I.BitWidth x I.Kernel Columns x I.Kernel Rows <= RamDataWidth.
I.MaxImgWidth * I.MaxImgHeight must not exceed the available RAM size: 2^RamAddressWidth.

27.3.4. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface. It's the
maximum number of bits for input and output.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits available. This helps to calculate the maximum
allowed image dimensions and the maximum address width.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of RAM.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter
Default ENABLED

Library Memory 974

VisualApplets User Documentation Release 3

InfiniteSource
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.3.5. Examples of Use

The use of operator FrameBufferRandomRead is shown in the following examples:

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.9.3.2.1, 'Geometric Transformation Using FrameBufferRandomRead'

Examples- Geometric Transformation using FrameBufferRandomRead

• Section 12.9.3.2.4, 'Geometric Transformation and Distortion Correction'

Examples- Geometric Transformation and Distortion Correction using PixelReplicator

• Section 12.9.3.2.5, 'Distortion Correction'

Examples- Distortion Correction

• Section 12.9.8, 'Scaling a Line Scan Image'

Examples - Scaling A Line Scan Image

• Section 12.9.9, 'Tap Geometry Sorting'

Examples - Scaling A Line Scan Image

• Section 12.10.3, 'Image Composition Using Exposure Fusion'

Examples - ExposureFusion

Library Memory 975

VisualApplets User Documentation Release 3

27.4. Operator FrameBufferRandomRead (imaFlex)
Operator Library: Memory

This operator facilitates the random read of the buffered data. The frame data is transferred into the
operator via link I. The random read of the data can be performed by transferring addresses to ports
RColA (read column address) and RRowA (read row address). The operator uses the addresses to read
the frame data by the given coordinates. The resulting output frame has the image dimensions of the
address inputs. One VisualApplets resource of type RAM is required. Check Section 3.8, 'Allocation of
Device Resources' for more information.

The FrameBufferRandomRead operator buffers the image stream in the Frame Grabber RAM (DRAM).
One VisualApplets resource of type RAM is required. Multiple resources of type RAM use the same
physical RAM with the shared memory concept. Documentation for how to use the shared memory
is available in the Application Note: Shared Memory [https://docs.baslerweb.com/visualapplets/
application-note-shared-memory].

The operator has two states:

• Write state: Input images are stored in the buffer. The operator works like a FIFO. If enough memory
is available, multiple images can be stored in the buffer.

• Read state: After an image has been fully stored in the memory, the memory is read-out using the
addresses given at the inputs RColA and RRowA. The number of addresses and address link image
dimensions define the output image's width and height.

The image data input and the address inputs are not synchronous to each other. They may have
different image dimensions. Both address inputs RColA and RRowA have to be O-synchronous.

Note the timing of the input links: The address inputs must not be sourced by the same operator as the
data link input I without buffering. This is, because while writing the image data into the operator, no
addresses to read the current frame can be accepted. Only if the frame is fully stored into the buffer,
addresses can be accepted. In many cases, the operator CreateBlankImage is used to generate the
images for the addresses.

The operator uses large non-FPGA memory. If only small frames or lines have to be stored, consider
using operators FrameMemoryRandomRd or LineMemoryRandomRd.

The operator can handle both, a two-dimensional image (Img Protocol = VALT_IMAGE2D), as well as
a one-dimensional sequence of lines (Img Protocol = VALT_LINE1D). In the two-dimensional mode,
full frames are processed, which means that reading can only start when a full frame has been written.
Once the address ports (RColA and RRowA) receive the end of a frame, the frame's memory is available
again and the next read addresses the next frame. The one-dimensional mode processes lines. As a
result, reading can start as soon as one line has been written. The end of a line on the address port
RColA releases the line's memory and the next RColA value will address the next line. RRowA is not
used in the one-dimensional line mode and should be set to any constant value (CONST).

All pins allow empty frames, empty lines and varying line lengths.

The dimensions of input frames may exceed the dimension of the internal frames. The operator then
cuts the incoming frames to the dimensions defined by MaxFrameWidth and MaxFrameHeight.

The maximum dimensions of the input images on port I can be defined bigger than there is actual
storage in the RAM available. This allows for a flexible usage that can switch between very wide and
very high images. The parameters MaxFrameWidth and MaxFrameHeight define the size of the image in
storage. As a result, those two parameters must not define an image that is greater than the available
storage.

27.4.1. Overflow Management with InfiniteSource

In the InfiniteSource mode images might get lost or become corrupted. This happens either, because
the RAM is full and it can't accept any further data. Or the input bandwidth is too high for the shared
memory interface. As soon as the operator reaches the overflow state, all incoming data is discarded.

https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory

Library Memory 976

VisualApplets User Documentation Release 3

This leads to lost or corrupted entities (i.e. frames in 2D mode or lines in 1D mode). Corrupted images
only occur, if the input bandwidth is too high, since the fill level is counted in full entities. The corrupted
image occurs when part of the image has already been written to the RAM, but part of the image is
discarded due to the overflow. As a result, reading a corrupted image leads to undefined output data.
As soon as there is enough space in the RAM again and the shared memory interface allows data to be
written to the RAM again, the operator recovers from the overflow and stops discarding the input data.
The Overflow parameter indicates when an overflow occurred. With the OverflowClearMode parameter,
you can define whether the Overflow is reset immediately after overflow recovery or whether you reset
the overflow manually.

27.4.2. Operator Restrictions

• There is no validity check on the read addresses. If the RColA is greater than or equal to
MaxFrameWidth or if RRowA is greater than or equal to MaxFrameHeight (only in 2D mode), the
operator reads random dummy values from the memory.

• The restrictions for the link properties are always a maximum of 2^24-1 for the Max. Image Width
and 2^17-1 for the Max. Image Height. However, if MaxFrameSizeMode is set to Auto, the following
restrictions apply additionally:

• In 2D-mode, if MaxFrameSizeMode is set to Auto, then I.MaxImgWidth * I.MaxImgHeight <=
2^RamAddressWidth.

• In 1D-mode, if MaxFrameSizeMode is set to Auto, then I.MaxImgWidth <= 2^RamAddressWidth.

• The parallelism of all input ports is 1.

27.4.3. Bandwidth Optimization

For optimal performance the used number of data bits should match as closely as possible the
number provided in the module parameter RamDataWidth. The maximum bandwidth going through
the operator is reached, if the product of bit width and kernel size is equal to the internal RAM port
width RamDataWidth. Note that the internal bit width can be increased by the usage of kernels, but
a full kernel will still be addressed as a single pixel.

To enable the operator to handle long bursts of write data that exceed the available maximum
bandwidth of the RAM, enable the WritePriority parameter. This is recommended with infinite data
sources, such as cameras (InfiniteSource = ENABLED). If the WritePriority parameter is enabled,
reading is inhibited when the available bandwidth of the RAM is exceeded due to a write burst. This
allows temporarily more frequent write accesses to the RAM. If a camera delivers a burst of write
data, it is expected that said burst is followed by a gap in the write data (otherwise the available RAM
bandwidth is exceeded), which then can be used to temporarily ramp up the read bandwidth.

Available for Hardware Platform
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

27.4.4. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

RColA, read column address for the pixel at I
RRowA, read row address for the pixel at I

Output Link O, image data output

Synchronous and Asynchronous Inputs

• Synchronous Group: RColA and RRowA

Library Memory 977

VisualApplets User Documentation Release 3

• Input I is asynchronous to the group.

27.4.5. Supported Link Format

Link Parameter Input Link I Input Link RColA
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} unsigned
Parallelism 1 1
Kernel Columns [1, Ram Data Width / Bit

Width / Kernel Rows]
1

Kernel Rows [1, Ram Data Width / Bit
Width / Kernel Columns]

1

Img Protocol VALT_LINE1D / VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width 2^24-1 any
Max. Img Height 2^17-1 any

Link Parameter Input Link RRowA Output Link O
Bit Width auto as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol as I as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width as RColA as RColA
Max. Img Height as RColA as RColA

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].

The input bit width must not exceed the native RAM data width RamDataWidth.
The bit width of the column address is:

ColABitWidth = dlog2 (InputMax:ImageWidth)e
The bit width of the row address is:

RowABitWidth = dlog2 (InputMax:ImageHeight)e
BitWidth * Columns * Rows <= RamDataWidth
BitWidth * Columns * Rows <= RamDataWidth
The restrictions for the link properties are always a maximum of 2^24-1 for the Max. Image
Width and 2^17-1 for the Max. Image Height. However, if MaxFrameSizeMode is set to Auto, the
following restrictions apply additionally:

• In 2D-mode, if MaxFrameSizeMode is set to Auto, then I.MaxImgWidth * I.MaxImgHeight <=
2^RamAddressWidth.

Library Memory 978

VisualApplets User Documentation Release 3

• In 1D-mode, if MaxFrameSizeMode is set to Auto, then I.MaxImgWidth <= 2^RamAddressWidth.

27.4.6. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits that can be used. The number of available RAM
slots is defined by 2^RamAddressWidth. The current RamAddressWidth depends on the hardware
platform as well as on the current number of memory operators (i.e. operators that use a resource
of type RAM) in the design.

MaxFrameSizeMode
Type dynamic write parameter
Default Auto
Range {Auto, Custom}

This parameter defines whether the parameters MaxFrameWidth and MaxFrameHeight should
automatically follow the max. image dimension at input I (mode=Auto) or whether these
parameters can be adjusted (mode=Custom). Custom mode enables setting a maximum frame
dimension, which is customized for the application and may be much smaller than the limits from
the input link. This way, more frames can be stored in the RAM. In mode Auto the link properties
(Max.Img Width and Max.Img Height) of I, must not define a maximum image that is greater than
the number of available slots in the memory (2^RamAddressWidth). If the link properties Max.Img
Width and Max.Img Height of I define a maximum image that is bigger than the available memory
space and you are in mode Custom, the MaxFrameSizeMode parameter cannot be edited anymore
until the maximum image on the input link is defined smaller. This parameter cannot be written
when the acquisition is running. In 1D-mode MaxFrameHeight and Max.Img Height of input I can
be considered to be 1.

MaxFrameWidth
Type dynamic write parameter
Default 1024
Range [1, Max. Image Width at I]

This parameter sets the max. image width for the current image processing configuration.
The lines of input frames that exceed this limit are cut to MaxFrameWidth. Reducing this
number below the max. image width saves memory space and allows storing more frames.
This parameter can only be edited when MaxFrameSizeMode is set to Custom. The product of
MaxFrameHeight and MaxFrameWidth must not be greater than the number of available memory
slots: 2^RamAddressWidth. In 1D-mode MaxFrameHeight can be considered to be 1. This
parameter cannot be edited when the acquisition is running.

MaxFrameHeight
Type dynamic write parameter
Default 1024
Range [1, Max. Image Height at I]

Library Memory 979

VisualApplets User Documentation Release 3

MaxFrameHeight
This parameter sets the max. image height for the current image processing configuration. Input
frames exceeding this height limit are cut to MaxFrameHeight. Reducing this number below
the max. image height saves memory space and allows to store more frames. This parameter
can only be edited when MaxFrameSizeMode is set to Custom and the Image Protocol is set
to VALT_IMAGE2D. In 1D-mode MaxFrameHeight can be considered to be 1. The product of
MaxFrameHeight and MaxFrameWidth must not be greater than the number of available memory
slots: 2^RamAddressWidth. This parameter cannot be edited when the acquisition is running.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of the DRAM in percent.

MaxFrameCount
Type dynamic read parameter
Default 2^RamAddressWidth / (MaxFrameHeight * MaxFrameWidth)
Range [1, 2^RamAddressWidth]

This parameter provides the maximum number of frames that currently fit into the memory.
The maximum number of frames that fit into the memory depends on the parameters
RamAddressWidth, MaxFrameHeight and MaxFrameWidth.

MaxFrameCount = 2^RamAddressWidth / (MaxFrameHeight * MaxFrameWidth)

This parameter is inactive in 1D mode.

FrameCount
Type dynamic read parameter
Default 0
Range [0, MaxFrameCount]

This parameter provides the current number of frames in the memory.

This parameter is inactive in 1D mode.

InfiniteSource
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The operator can be inserted directly behind a camera operator. In this case, the InfiniteSource
parameter must be set to ENABLED. The operator will then perform active overflow management
and make sure the operator can properly recover from overflows. The overflow can occur either
when the data sink behind the operator stops or pauses the transmission and the buffer fill level
reaches its maximum or when the input bandwidth is too high so the write data can't be transferred
to the external RAM. When InfiniteSource is set to DISABLED, an inhibit signal is generated that
stops the proceeding operator from transferring data, if the buffer fill level or input bandwidth get
too high.

The write prioritization is recommended for any operator that is used with the InfiniteSource.
Consequently, it is recommended to set the WritePriority parameter to ENABLED, when the
InfiniteSource parameter is set to ENABLED.

See Section 3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

Library Memory 980

VisualApplets User Documentation Release 3

WritePriority
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The Section A.3, ' Shared Memory Concept ' concept usually distributes the bandwidth equally
amongst all connected memory operators (, i.e. all operators that use a resource of type RAM). If
the WritePriority parameter is DISABLED), the FrameBufferRandomRead operator assigns the same
priority to reading and writing. By setting WritePriority to ENABLED), the FrameBufferRandomRead
operator prioritizes writing over reading, but only while the temporary memory data rate is higher
than the available bandwidth. The temporary prioritization of write data leads to a temporary slow
down of the read process. Consequently, the average bandwidth must not exceed the available
bandwidth for the FrameBufferRandomRead operator. The write prioritization is recommended
for any operator that is used with the InfiniteSource parameter set to ENABLED. When using the
write prioritization with a stoppable source, make sure that the write bandwidth isn't constantly
high, otherwise reading from the LineBuffer operator is stopped until the buffer is full. Since the
write prioritization is a configuration for an individual operator, the effect of the write prioritization
decreases with each additional memory operator in the design.

Overflow
Type dynamic read parameter
Default 0
Range [0, 3]

This parameter indicates a buffer overflow. It's a 2-bit bitmap, where each bit indicates a different
type of overflow. Bit 0 indicates a fill level overflow and bit 1 indicates a write bandwidth overflow.
How long the Overflow parameter shows an overflow, depends on the OverflowClearMode.

OverflowClearMode
Type dynamic write parameter
Default AutoClear
Range {AutoClear, ManualClear, ClearAfterRead, ClearWithProcessReset}

OverflowClearMode determines how the Overflow parameter is cleared when the operator has
recovered from an overflow. You can only reset the overflow status with this parameter, if the
operator is not in overflow state anymore.

Clear modes:

• AutoClear: When the operator recovers from an overflow, the Overflow parameter is reset
automatically.

• ManualClear: When the operator recovers from an overflow, the Overflow parameter still shows
the overflow until it is manually reset by writing ManualClear into the OverflowClearMode
parameter. In this mode, a process reset (e.g. acquisition stop) doesn't clear the Overflow
parameter, which means the overflow is still visible after the acquisition stopped.

• ClearAfterRead: When the operator recovers from an overflow, the Overflow parameter still
shows the overflow until the Overflow parameter is read or a process reset occurs (e.g. when the
acquisition is stopped).

• ClearWithProcessReset: When the operator recovers from an overflow, the Overflow parameter
still shows the overflow until a reset occurs (e.g. when the acquisition is stopped).

Library Memory 981

VisualApplets User Documentation Release 3

27.5. Operator FrameMemory
Operator Library: Memory

The FrameMemory operator is a memory block which stores input images using random write access.
The write addresses are specified with input links row address RowA and column address ColA. Thus,
for each input pixel value, a row and column address has to be specified.

After a frame has been written to the memory, it is read and output using link O. The output image
dimension is defined with parameters and is independent of the input image dimension. The memory
is pre-initialized with values zero.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The memory size is defined by parameters FrameWidth and FrameHeight.

The operator can be implemented in two variants. Namely, a single buffer implementation and a double
buffer implementation. The first implementation saves RAM, but does not allow a timely overlap of
writing and reading. Thus the input link I is stopped during the read state. The latter implementation
doubles the RAM and allows to output a frame while accepting the next frame at the input link I.

The operator has two states:

1. Write State: The value of Link I is stored at the address specified with ColA and RowA. This is done
only if link WriteI is one. If link WriteI is zero, the current pixel is skipped. Writing to any address
of the valid address range is possible. It is not necessary to write to each memory cell.

2. Read State: The memory is read out sequentially and produces a line of the parameterized width.
By use of parameters XOffset, XLength, YOffset and YLength it is possible to define the read address
range i.e. a ROI. Reading the memory resets the content of the read addresses to zero. Thus if a
memory cell is read which has not been written before, a zero will be output.

The toggling between these two states is triggered by an end-of-frame at the input link I. Please note,
that the frame width and height at the output link is fixed to the size defined by parameters XOffset,
XLength, YOffset and YLength and is independent from the line width and frame height of the input link.

The operator can be useful for mirroring or sensor correction.

The operator uses the FPGA's internal block RAM memory. Thus, no VisualApplets frame grabber
resources of type RAM are used. The FPGA-internal block RAM is limited. Full resolution frames might
not fit into the FPGA-internal block RAM. Consider using operator FrameBufferRandomRead instead.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

27.5.1. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

WriteI, write enable input
ColA, write column address for the pixel at I
RowA, write row address for the pixel at I

Output Link O, data input

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

Library Memory 982

VisualApplets User Documentation Release 3

27.5.2. Supported Link Format

Link Parameter Input Link I Input Link WriteI Input Link ColA
Bit Width [1, 64] 1 auto
Arithmetic {unsigned, signed} unsigned unsigned
Parallelism 1 as I as I
Kernel Columns any 1 1
Kernel Rows any 1 1
Img Protocol VALT_IMAGE2D as I as I
Color Format any VAF_GRAY VAF_GRAY
Color Flavor any FL_NONE FL_NONE
Max. Img Width any as I as I
Max. Img Height any as I as I

Link Parameter Input Link RowA Output Link O
Bit Width auto as I
Arithmetic unsigned as I
Parallelism as I as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol as I as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width as I parameter FrameWidth
Max. Img Height as I parameter FrameHeight

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The bit width of the column address is:

ColABitWidth = dlog2 (FrameHeight)e
The bit width of the row address is:

RowABitWidth = dlog2 (FrameWidth)e

27.5.3. Parameters

Implementation
Type static parameter
Default SingleBuffer
Range {SingleBuffer, DoubleBuffer}

This parameter selects the implementation of the FrameMemory (see above).

FrameWidth
Type static parameter
Default 1024
Range [0, 65534]

This parameter selects the image width of the output link in pixels.

Library Memory 983

VisualApplets User Documentation Release 3

FrameHeight
Type static parameter
Default 1024
Range [0, 65534]

This parameter selects the image height of the output link in lines.

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Width - XOffset]

This parameter defines the width of the ROI.

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Height - YOffset]

This parameter defines the height of the ROI.

27.5.4. Examples of Use

The use of operator FrameMemory is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Memory 984

VisualApplets User Documentation Release 3

27.6. Operator FrameMemoryRandomRd

Operator Library: Memory

The FrameMemoryRandomRd (frame memory random read) operator buffers an image in memory
with random read access. The frame data is transferred into the operator via link I. The random read
of the data can be performed by transferring addresses to ports RColA (read column address) and
RRowA (read row address). The operator will use the addresses to read the frame data by the given
coordinates. The resulting output frame will have the image dimensions of the address inputs.

The required memory size is defined by the image dimension of the input frame (Max. Img Width and
Max. Img Height).

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The operator can be implemented in two variants. Namely, a single buffer implementation and a double
buffer implementation. The first implementation saves RAM, but does not allow a timely overlap of
writing and reading. Thus the address input links RColA and RRowA are stopped during the write state.
The latter implementation doubles the RAM and allows to random read the last frame while accepting
the next frame at the input link I.

The operator has two states:

1. Write State: The pixels of link I are stored linear in the buffer i.e. the coordinates of the pixels
form the addresses in the buffer.

2. Read State: The memory is read-out using the addresses given at the inputs RColA and RRowA.
The number of addresses and address link image dimensions define the image output width and
height. For example, if a frame consisting of only one pixel is input at the address inputs, the
output frame will only consist of one pixel. The other pixels of the input frame are discarded.

The image data input and the address inputs are not synchronous to each other. They may have
different image dimensions. Both address inputs RColA and RRowA have to be O-synchronous.

Please not the timing of the input links. The address inputs must not be sourced by the same operator
as the data link input I without buffering. This is because while writing the image data into the operator,
no addresses to read the current frame can be accepted. Only if the frame is fully stored into the buffer,
addresses can be accepted. In many cases, the operator CreateBlankImage is used to generate the
images for the addresses.

The timing is visualized in the following figure.

Library Memory 985

VisualApplets User Documentation Release 3

The operator uses the FPGA's internal block RAM memory. Thus, no VisualApplets frame grabber
resources of type RAM are used. The FPGA-internal block RAM is limited. Full resolution frames might
not fit into the FPGA-internal block RAM. Consider using operator FrameBufferRandomRead instead.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

27.6.1. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

RColA, read column address for the pixel at I
RRowA, read row address for the pixel at I

Output Link O, data input

Synchronous and Asynchronous Inputs

• Synchronous Group: RColA and RRowA

• Input I is asynchronous to the group.

27.6.2. Supported Link Format

Link Parameter Input Link I Input Link RColA
Bit Width [1, 64] auto
Arithmetic {unsigned, signed} unsigned

Library Memory 986

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link RColA
Parallelism 1 as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link RRowA Output Link O
Bit Width auto as I
Arithmetic unsigned as I
Parallelism as I as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol as I as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width as RColA as RColA
Max. Img Height as RColA as RColA

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The bit width of the column address is:

RowABitWidth = dlog2 (InputMax:ImageWidth)e
The bit width of the row address is:

ColABitWidth = dlog2 (InputMax:ImageHeight)e

27.6.3. Parameters

Implementation
Type static parameter
Default SingleBuffer
Range {SingleBuffer, DoubleBuffer}

This parameter selects the implementation of the FrameMemoryRandomRd (see above).

27.6.4. Examples of Use

The use of operator FrameMemoryRandomRd is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Memory 987

VisualApplets User Documentation Release 3

27.7. Operator ImageBuffer
Operator Library: Memory

This operator buffers the image stream in the Frame Grabber RAM (DRAM). One VisualApplets resource
of type RAM is required. Check Section 3.8, 'Allocation of Device Resources' for more information.
The operator additionally features region-of-interest (ROI) support. The total number of bits (bit width
times parallelism) must not exceed the memory limitations of the respective frame grabber.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The operator works like a FIFO. Any input data is immediately forwarded to the output. However, if the
output is blocked, for example, because the following operators cannot process the input bandwidth,
the operator will store the data. Thus, the memory will only be filled if the operator cannot output the
data. Often, the operator is used to compensate peak input bandwidths.

Internally, the image buffer operates on image lines. This internal line buffer feature results in a very
short memory latency. Of course, latency increases if the buffer is filled with more lines. For example,
images which are transfered into the memory will be immediately forwarded to the output. In an
application, partial camera images can be forwarded to the PC while the camera still transfers the
remaining image lines.

Using the parameters XOffset, XLength, YOffset and YLength you can define the ROI size. If the
input image width is less than the sum of the XOffset and XLength, the operator will still read the
parameterized XLength. In this case, the operator will output undefined memory content for the
additional pixels. If the input image height is less than the requested output image height, the operator
will only output the available lines.

In Line1D application mode, the YOffset and YLength settings do not affect the buffer.

To measure the fill level of the buffer, the operator provides 2 parameters: FillLevel and Overflow.
FillLevel shows the fill level of the RAM in 25% steps. The Overflow parameter is set to 1 when FillLevel
is close to or equal to 100% and the next image to be stored in the buffer will exceed the RAM capacity.
In case of an overflow, input data is discarded and the input image height is reduced. Thus, incomplete
images are stored in the memory. Users have to poll for the overflow parameter. As the duration of the
overflow state can be very short, it is possible that it occurs within the polling cycle of the operator.

The parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames are not supported.

Available Memory Space

The operator needs additional memory space for internal data. Thus, not the full amount
of the used RAM resource can be used for buffering image data. The space actually
available for buffered image data depends on the hardware platform (Platform RAM
Size and Platform RAM Interface Width) and on the link configuration. For information
on Platform RAM Size and Platform RAM Interface Width, see Appendix A, 'Device
Resources'.)

You can calculate the available capacity of the RAM resource using the following formulas:

• Utilized RAM Size [in Bytes] = ((PRS * 2^20 / (PRIW / 8 bit)) / RLS) * MIW * BW / 8

• Utilized RAM Size [in Lines] = ((PRS * 2^20 / (PRIW / 8 bit)) / RLS)

• Utilized RAM Size [in Frames] = ((PRS * 2^20 / (PRIW / 8 bit)) / RLS) / MIH

Abbrevations used in the formulas and units of measure:

• PRS: Platform RAM Size [in MB, 1MB = 2^20 Byte]

Library Memory 988

VisualApplets User Documentation Release 3

• PRIW: Platform RAM Interface Width [in bit]

• MIW: MaxImageWidth [in pixel]

• MIH: MaxIMageHeight [in lines]

• P: Parallelism

• BW: BitWidth [in bit]

• RLS: Raw Line Size: 2 ^ ceil(log2n(MIW / P + 4))

27.7.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.7.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, data input

27.7.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width 65535 as I
Max. Img Height 65535 as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Memory 989

VisualApplets User Documentation Release 3

The product of the bit width and the parallelism must not exceed the native ram data width. Check
Appendix A, 'Device Resources' for more information.

27.7.4. Parameters

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

The step size is the parallelism.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [2*parallelism, Max.Img Width - XOffset]

This parameter defines the width of the ROI.

The step size is the parallelism.

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Height - YOffset]

This parameter defines the height of the ROI.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in 25% steps.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

Library Memory 990

VisualApplets User Documentation Release 3

InfiniteSource
This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.7.5. Examples of Use

The use of operator ImageBuffer is shown in the following examples:

• 2. Getting Started

Getting Started

• Figure 3.1, 'Simple VisualApplets Design'

Basic Principles - Learn the Idea of VisualApplets

• Section 3.5, 'Data Flow '

Data Flow - Learn about the Pipeline Structure used in VisualApplets

• Section 3.6.2, 'O-Type Networks'

Synchronization Rules - The use of the operator in an O-type Network.

• Section 3.6.9, 'Infinite Sources / Connecting Cameras'

Infinite Sources - Connecting operators to cameras. (DRC2 Latency Error)

• Section 3.7.1, 'Module Properties'

Design Parameterization

• Disabled Parameters

Design Parametrization - Disabled Parameters

• Section 3.7.1.5, 'Illegal Parameter Value States'

Design Parametrization - Illegal Parameter Value

• Section 3.8, 'Allocation of Device Resources'

Learn the allocation of the device resources of the operator.

• Figure 9.4, 'Illegal Condition after Link Property Change'

Tutorial Basic Acquisition - Illegal Condition at ImageBuffer operator

• Section 12.1.2, 'JPEG Encoder Gray'

Examples - A simple example which shows the usage of the JPEG operators.

• Section 12.1.4, 'JPEG Compression Using Operator JPEG_Encoder'

Examples - Simple examples which show the usage of the operator JPEG_Encoder.

• Section 12.1.5, 'JPEG Color Compression Using User Library Elements'

Examples - Simple examples which shows the usage of the JPEG user library elements for color JPEG
compression.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

Library Memory 991

VisualApplets User Documentation Release 3

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.3.3, 'Blob2D ROI Selection'

Examples - The blob analysis operator is applied to an input camera image. The applet shows the
usage of the blob data in the applet. In this case, the object with the maximum are is localized and
the coordinates are used to cut out the object from the original image.

• Section 12.6.2, 'Image Dimension Test'

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Memory 992

VisualApplets User Documentation Release 3

27.8. Operator ImageBufferMultiRoI

Operator Library: Memory

This operator provides support for multiple regions of interest (ROI) for each buffered image. All ROIs
are read out sequentially. Each ROI is a new and independent output image: ROI 0, ROI 1, ROI 2 and
so on until ROI N-1. N is the number of ROIs specified by the parameter NumRoI. Supported are all
possible rectangular regions as long as the frame dimensions are not exceeded, i.e., a single pixel,
a single line, a single column, a rectangular region, or the complete frame can be defined as a ROI.
Different ROIs can be of different size. Each ROI can be defined individually. ROIs can overlap each
other. However, all ROIs must meet the restriction of the maximal image size defined by the input
and output links, i.e. ROI widths must not exceed the maximal image width and ROI heights must not
exceed the maximal image height.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The operator buffers the image stream in the frame grabber on board RAM. One VisualApplets resource
of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

ImageBufferMultiRoI operates on images of fixed size defined by the input link maximal image width
and height parameters. This implies input frame dimension control performed by the operator.

Images that are smaller than the maximal image dimension will be buffered without modifications.
However the reading of ROIs could cause the read of undefined pixel values i.e. pixel values outside
of the input image dimension. The missing frame pixels contain random data and should be treated
in further processing as undefined.

In case of an overflow, i.e. the buffer cannot store any more images due to being full, all incoming
images will be dropped until there is enough free space in the buffer to store at least one frame. An
overflow can occur because the reading of the ROIs is to slow in comparison to the writing. This can
either be because to many ROIs are defined or because successive operators block the output. In
normal situations of balanced designs an overflow will never occur.

The operator provides ROI images on its output as soon as the correspondent frame is completely
buffered. The type of reading out is defined by the parameter Mode.

The parameter MaxNumRoI specifies the maximal number of ROIs. The actual number of ROIs used
can be less and is defined using parameter NumRoI.

The parameter NumRoI specifies the number of ROIs the operator will provide at the output for each
buffered image. This number mus not exceed MaxNumRoI when set to the dynamic type.

The parameter Mode specifies the operator behavior for processing images. FreeRun defines the buffer
to provide ROIs at its output as soon as possible, i.e. as soon as the correspondent frame is completely
buffered. This mode is also called free running mode. The operator is controlled only by the pipeline
flow control mechanisms. WaitAfterImage mode forces the operator to hold on after all ROIs of a frame
were provided on its output. To restart reading of the ROIs of the next frame, the parameter Unlock
has to be written. WaitAfterRoI is similar to WaitAfterImage except that the operator stops after
each ROI of each frame. To restart further processing a write cycle to the parameter Unlock is required.

The parameter Unlock is used for the modes WaitAfterImage and WaitAfterRoI to unlock the operator
and to start further read out operations. In mode FreeRun this parameter has no effect.

XOffset, XLength, YOffset and YLength specify a set of ROIs. These parameters are field parameters.
The parameter type of these parameters can be set to dynamic or static, this means adjustable or
not adjustable during runtime. The parameter type of all ROI parameters is automatically adapted
accordingly, when the parameter type of one ROI parameter is set. The size of the field is defined
by parameter MaxNumRoI. The operator will read NumRoI ROIs in sequential order. Learn on how to
configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

All ROIs can be updated dynamically. However, the updating can be performed for the modes FreeRun,
WaitAfterImage and WaitAfterRoI only if no image acquisition is started. Additionally in the modes

Library Memory 993

VisualApplets User Documentation Release 3

WaitAfterImage and WaitAfterRoI, ROIs can be updated if the corresponded frame / all ROIs of the
frame were transmitted and the operator is waiting for a write cycle to the Unlock parameter.

Updating ROIs during image acquisition can lead to temporarily non-rectangular ROIs and should be
avoided.

If the operator is used with image protocol VALT_LINE1D, the Y coordinate parameters are disabled.
In 1D operation, the operator will read one ROI as one line. The output of the operator will then be
an infinite 1D image stream, where each line is represented by one ROI e.g. line 0 = ROI 0, line 1 =
ROI 1, line N = ROI N, line N+1 = ROI 0, ...

To measure the fill level of the buffer the operator provides 2 registers: FillLevel and Overflow. FillLevel
shows the percental fill level of the RAM. The Overflow parameter is set to 1 when FillLevel is close or
is 100% and the next image to be stored in the buffer will exceed the RAM capacity.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames are not supported.

• Images with varying line lengths are not supported.

ImageBufferMultiRoI Is Not Available for imaFlex CXP-12 Quad and
imaFlex CXP-12 Penta Platforms

ImageBufferMultiRoI is not supported on imaFlex CXP-12 Quad and imaFlex CXP-12 Penta
platforms, but you can use an equivalent user library element for imaFlex CXP-12 Quad
and imaFlex CXP-12 Penta platforms instead. See Section 4.2.8, 'Delivered User Libraries'
for instructions how to work with user library elements.

Example: Optimization of Memory Usage

A cumstomer feeds an image with the dimensions 10000 x 7096 pixels (link property on
input port). The parallelism is set to 4. The pixel width is set to 8bpp.

The platform used in this example is mE4, i.e. the platform provides 128 Mbyte RAM
banks. To use all 128 MB, the operator should be fed with 64 bit. But with parallelism 4,
only 32 bits (4 x 8 bits) are fed, i.e., the user can only use 64 MB of the RAM. To save
an image with the dimensions of 10000 x 7096 pixels, ca. 70.960.000 Bytes (ca. 70 MB)
are required, which is more than the available 64 MB. This is detected by VisualApplets,
and the link is highlighted in red.

Solution: Parup (to 8) in front of the operator ImageBufferMultiRoi.

27.8.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

Library Memory 994

VisualApplets User Documentation Release 3

27.8.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, data input

27.8.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The product of the bit width and the parallelism must not exceed the native ram data width
(RamDataWidth). Check Appendix A, 'Device Resources' for more information.
Maximum image dimensions for I:

• I.Img.Protocol = VALT_IMAGE2D: 2^RamAddressWidth >= (I.Max.Img.Width *
I.Max.Img.Height) / I.Parallelism

• I.Img.Protocol = VALT_LINE1D: 2^RamAddressWidth >= I.Max.Img.Width / I.Parallelism

27.8.4. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface. It's the
maximum number of bits for input and output.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits available. This helps to calculate the maximum
allowed image dimensions.

MaxNumRoI
Type static parameter

Library Memory 995

VisualApplets User Documentation Release 3

MaxNumRoI
Default 1
Range [1, 65535]

This parameter defines the maximum number of ROIs which the operator is capable to store.

NumRoI
Type dynamic/static read/write parameter
Default 1
Range [1, MaxNumRoI]

This parameter defines the number of ROIs actually used. The operator will read NumRoI ROIs from
each input image and provide them on its output. If the parameter is set to static the range is [1,
65536] and MaxNumRoI is disabled.

Mode
Type static parameter
Default FreeRun
Range {FreeRun, WaitAfterImage, WaitAfterRoI}

This parameter defines the operation mode of the read out algorithm. In FreeRun mode the
operator provides ROI images as soon as the correspondent frame is completely buffered. In
WaitAfterImage mode the operator will provide all ROIs within a single frame, then stop and wait
for a software access to write on Unlock parameter to enable reading out of the next frame ROIs. In
WaitAfterRoI mode the operator will stop after each ROI of each frame. To restart the reading out
operation, the software has to write to the Unlock parameter.

Unlock
Type dynamic write parameter
Default 1
Range {1}

This parameter implements the handshake for the mode WaitAfterImage and WaitAfterRoI. Writing
to this parameter value 1 will cause the operator to continue reading out of the next ROI / all ROIs
of the next Frame.

This parameter can only be used of parameter Mode is set to WaitAfterImage or WaitAfterRoI.

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Width - XLength]

This field parameter defines the x-coordinate of the upper left corner of the ROI.

The step size is the parallelism.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [2*parallelism, Max.Img Width - XOffset]

This field parameter defines the width of the ROI.

The step size is the parallelism.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

Library Memory 996

VisualApplets User Documentation Release 3

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This field parameter defines the y-coordinate of the upper left corner of the ROI.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Height - YOffset]

This field parameter defines the height of the ROI.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.8.5. Examples of Use

The use of operator ImageBufferMultiRoI is shown in the following examples:

• Section 12.4.2.3, 'Color Plane Separation Option 3 - Sequential with Operator ImageBufferMultiRoI'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI.

• Section 12.4.2.4, 'Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI
and a pre-sort of the Color Planes'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI. An additional pre-sorting optimizes the bandwdith and resources.

Library Memory 997

VisualApplets User Documentation Release 3

27.9. Operator ImageBufferMultiRoIDyn
Operator Library: Memory

This operator provides support for multiple dynamic regions of interest (ROI) for each buffered image.
The ROI coordinates are defined using additional input links.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

All ROIs are read sequentially as individual images: ROI 0, ROI 1, ROI 2 and so on until ROI N-1. N
is the maximal number of allowed ROIs. Supported are all possible rectangular regions as long as the
frame dimensions are not exceeded, i.e., a single pixel, a single line, a single column, a rectangular
region, or the complete frame can be defined as a ROI. Different ROIs do not need to have the same
size. Each ROI can be defined individually. ROIs can overlap each other. ROIs violating the maximal
image dimensions are filtered out by the operator, i.e., they will be skipped. Also, all illegal ROIs are
skipped, e.g., ROIs with negative height or width.

The operator buffers the image stream in the Frame Grabber RAM (DRAM). One VisualApplets resource
of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

ROI coordinates are provided on separate operator input links as images containing the ROI
coordinates. Each pixel in these images is treated by the operator as a valid ROI coordinate set. Thus,
the size of the ROI input images define the number of ROIs. For each input image at input link I, a new
ROI coordinate image set is required. The ROI input consists of 4 coordinate input links. Respectively,
links for X and Y coordinates of the top left ROI corner as well as links for X and Y coordinates of the
bottom right ROI corner.

Note that ROI X-coordinates are transformed to meet the x-granularity of the input link I defined by
its parallelism, i.e., the operator ImageBufferMultiRoIDyn can only cut lines with the granularity of the
parallelism. The coordinate XTopLeft has to be the index of the first component in the parallel word.
The coordinate XBottomRight has to be the index of a last pixel in a parallel word.

Let's have a look at an example to explain the operator behavior: Suppose a parallelism of four at
the input link I. Therefore XTopLeft has to be: 0, 4, 8, 12, ... XBottomRight has to be 3, 7, 11,
15, ... If the coordinates do not match with these constraints, they are rounded down (XTopLeft) or up
(XBottomRight). For example, with the ROI x-coordinates 3 and 7, the first column of the ROI is column
number 3 and the last column is column number 7 of the input image. The operator rounds down
XTopLeft to 0; XBottomRight remains 7; Thus, the width becomes 8. The ROI height is not dependent
on the parallelism and thus can be of any legal value.

Formula:

XTopLeft* = floor(XTopLeft / Parallelism) * Parallelism

XBottomRight* = ceil((XBottomRight + 1) / Parallelism) * Parallelism - 1

Examples:

With a parallelism of four at the input link I:

• 112 to 551 becomes 112 to 551. Therefore the width becomes = 551 + 1 - 112 = 440

• 101 to 540 becomes 100 to 543. Therefore the width becomes = 543 + 1 - 100 = 444

All 4 ROI inputs are synchronous to each other, i.e., the images on these links must be of the same size
and provided at the same time synchronously. This is always the case when they are sourced by the
same M type module through an arbitrary network of O-type module. See the synchronization rules
for more information (Section 3.6.4, 'M-type Operators with Multiple Inputs'). The ROI coordinates are
asynchronous to the input link I.

The operator starts reading the ROIs as soon as the image and all ROI coordinates are fully transfered
into the buffer. In practice, the ROI coordinates can be calculated and determined from the input

Library Memory 998

VisualApplets User Documentation Release 3

image but there is no necessity. Users can also use for example operator CreateBlankImage for ROI
coordinate generation.

When the ROI image is empty, i.e. does not contain any pixels, the operator will provide an empty
image on its output. An empty image contains no pixels. If any ROI is illegal the operator will provide
an empty image for that ROI.

ImageBufferMultiRoIDyn operates on images of fixed size defined by the input link maximal image
width and height parameters. This implies input frame dimension control performed by the operator.

Images that are smaller than the maximal image dimension will be buffered without modifications.
However, the reading out of ROIs will be performed on a frame of maximal possible image dimension.
Missing frame pixels contain random data and should be treated in further processing as undefined.

Images that exceed either the maximal frame height or the maximal frame width will be cut to the
maximal frame dimension and buffered as such. Reading out of ROIs will be based again on the frame
of maximal dimension.

When an overflow occurs, i.e. the buffer cannot store more images due to being full, all incoming
images will be dropped until there is enough free space in the buffer to store at least one frame.
Overflow can occur due to different reasons but all of them result in the reading out of being performed
too slow in comparison to writing. This can either be because of defining too many ROIs or because
of a blocking condition caused by the further processing pipeline or because of a too fast input image
stream. In normal situations of balanced designs an overflow will never occur.

To measure the fill level of the buffer the operator provides 2 registers: FillLevel and Overflow. FillLevel
shows the percentage fill level of the RAM. The Overflow parameter is set to 1 when FillLevel is close
or is 100% and the next image to be stored in the buffer will exceed the RAM capacity.

The operator provides ROI images on its output as soon as the correspondent frame is completely
buffered and all ROI sets for the current image were received on the ROI inputs.

The maximal amount of supported ROIs is determined by the product of the maximal image width
and height settings of the XTopLeft input link. The maximal allowed number of ROIs is 2E20-1. The
buffering of the ROI coordinates requires FPGA-internal block RAM. Therefore, the number of ROIs is
limited by the available FPGA-internal block RAM.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames or empty lines on input link I are not supported.

• Images with varying line lengths on port I are fully supported.

• Empty frames or empty lines on ROI ports are fully supported.

• Images with varying line lengths on ROI ports are fully supported.

ImageBufferMultiRoiDyn Is Not Available for imaFlex CXP-12 Quad and
imaFlex CXP-12 Penta Platforms

ImageBufferMultiRoiDyn is not supported on imaFlex CXP-12 Quad and imaFlex CXP-12
Penta platforms, but you can use an equivalent user library element for imaFlex CXP-12
Quad and imaFlex CXP-12 Penta platforms instead. See Section 4.2.8, 'Delivered User
Libraries' for instructions how to work with user library elements.

27.9.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

Library Memory 999

VisualApplets User Documentation Release 3

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.9.2. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

XTopLeft, coordinate data input
YTopLeft, coordinate data input
XBottomRight, coordinate data input
YBottomRight, coordinate data input

Output Link O, data input

Synchronous and Asynchronous Inputs

• The 4 ROI inputs are synchronous to each other.

• The ROI inputs are asynchronous to input I.

27.9.3. Supported Link Format

Link Parameter Input Link I Input Link XTopLeft Input Link YTopLeft
Bit Width [1, 64] auto auto
Arithmetic {unsigned, signed} unsigned unsigned
Parallelism 2^N, with N

={0,1,2...}
1 1

Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_IMAGE2D VALT_IMAGE2D VALT_IMAGE2D
Color Format any VAF_GRAY VAF_GRAY
Color Flavor any FL_NONE FL_NONE
Max. Img Width any 2E20-1 as XTopLeft
Max. Img Height any 2E20-1 as XTopLeft

Link Parameter Input Link
XBottomRight

Input Link
YBottomRight

Output Link O

Bit Width auto auto as I
Arithmetic unsigned unsigned as I
Parallelism 1 1 as I
Kernel Columns 1 1 as I
Kernel Rows 1 1 as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D as I

Library Memory 1000

VisualApplets User Documentation Release 3

Link Parameter Input Link
XBottomRight

Input Link
YBottomRight

Output Link O

Color Format VAF_GRAY VAF_GRAY as I
Color Flavor FL_NONE FL_NONE as I
Max. Img Width as XTopLeft as XTopLeft as I
Max. Img Height as XTopLeft as XTopLeft as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The product of the bit width and the parallelism must not exceed the native RAM data width
(RamDataWidth). Check Appendix A, 'Device Resources' for more information.
The bit width is

BitWidth = CEIL(log2(MaxImageWidth(I)¡ 1))
The bit width is

BitWidth = CEIL(log2(MaxImageHeight(I)¡ 1))
The maximum image dimension must not exceed the size of the available RAM:
2^RamAddressWidth >= (I.Max.Img.Width * I.Max.Img.Height) / I.Parallelism
The maximum number of pixels for ROI images (consequenlty the maximum number of ROIs per
image) must not exceed 2^20-1: 2^20 > XTopLeft.Max.Img.Width * XTopLeft.Max.Img.Height

27.9.4. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface. It's the
maximum number of bits for input and output.

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits available. This helps to calculate the maximum
allowed image dimensions.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in 25% steps.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter

Library Memory 1001

VisualApplets User Documentation Release 3

InfiniteSource
Default ENABLED
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.9.5. Examples of Use

The use of operator ImageBufferMultiRoIDyn is shown in the following examples:

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Memory 1002

VisualApplets User Documentation Release 3

27.10. Operator ImageBufferSC
Operator Library: Memory

This operator features tap sorting (=sensor correction), which is often required if line scan cameras
are used. Moreover, a region-of-interest (ROI) support is included. The total number of bits (bit width
times parallelism) must not exceed the memory limitations of the respective frame grabber.

This operator buffers the image stream the in Frame Grabber RAM (DRAM). One VisualApplets resource
of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

The tap sorting feature enables transparent support for sensors, whose readout scheme does not follow
a sequential raster-scan format. Supported are the most popular readout schemes for dual tap base
cameras (when using a parallelism of 4) and quad tap medium cameras.

For other parallelism, the operator can be used in combination with other operators.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The operator works like a FIFO. Any input data is immediately forward to the output. However, if the
output is blocked for example because the following operators cannot process the input bandwidth,
the operator will store the data. Thus the memory will only be filled, if the operator cannot output the
data. Often, the operator is used to compensate peak input bandwidths.

Internally, the image buffer operates on image lines. This internal line buffer feature results in a very
short memory latency. Of course, latency increases if the buffer is filled with more lines. For example,
images which are transfered into the memory will be immediately forwarded to the output. In an
application, partial camera images can be forwarded to the PC while the camera still transfers the
remaining image lines.

Using parameters XOffset, XLength, YOffset and YLength the ROI size can be defined. If the input image
width is less than the sum of the XOffset and XLength, the operator will still read the parameterized
XLength. In this case, the operator will output undefined memory contend to the exceeding pixel. If
the input image height is less than the requested output image height, the operator will only output
the available lines.

In Line1D application mode, the YOffset and YLength settings do not affect the buffer.

To measure the fill level of the buffer the operator provides 2 parameters: FillLevel and Overflow.
FillLevel shows the percentaged fill level of the RAM in 25% steps. The Overflow parameter is set to
1 when FillLevel is close to or is 100% and the next image to be stored in the buffer will exceed the
RAM capacity. In case of an overflow, input data is discarded and the input image height is reduced.
Thus, incomplete images are stored in memory. Users have to poll for the overflow parameter. As the
duration of the overflow state can be very short it is possible that it is in between of a polling cycle
of the operator.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

The input line width has to be divisible by the number of taps multiplied with the parallelism.

27.10.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

Library Memory 1003

VisualApplets User Documentation Release 3

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.10.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, data input

27.10.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] unsigned, [2, 64]

signed
as I

Arithmetic {unsigned, signed} as I
Parallelism 4 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width 65535 as I
Max. Img Height any as I

The product of the bit width and the parallelism must not exceed the native RAM data width. Check
Appendix A, 'Device Resources' for more information.

27.10.4. Parameters

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

The step size is the parallelism.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [2*parallelism, Max.Img Width - XOffset]

Library Memory 1004

VisualApplets User Documentation Release 3

XLength
This parameter defines the width of the ROI.

The step size is the parallelism.

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Height - YOffset]

This parameter defines the height of the ROI.

SensorCorrection
Type dynamic read/write parameter
Default SMODE_UNCHANGED
Range

Available options are

The parameter specifies the sensor readout scheme of the connected camera. SMODE_UNCHANGED
and SMODE_REVERSE support single, dual and quad tap cameras. SMODE_TAPS2_x support dual
tap (base) cameras. SMODE_TAP4_x support quad tap (medium) cameras.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in 25% steps.

Overflow
Type dynamic read parameter

Library Memory 1005

VisualApplets User Documentation Release 3

Overflow
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.10.5. Examples of Use

The use of operator ImageBufferSC is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Memory 1006

VisualApplets User Documentation Release 3

27.11. Operator ImageBufferSpatial
Operator Library: Memory

Availability for Hardware Platforms
Please note that this operator is only available for target platforms of the microEnable 4 series
(including PixelPlant).

This operator computes a spatial correction of its color components. Moreover, a region-of-interest
(ROI) feature is included. The total number of bits (bit width x parallelism) must not exceed the memory
limitations of the respective frame grabber.

This operator buffers the image stream in the Frame Grabber RAM (DRAM). One VisualApplets resource
of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The operator's key feature is the correction of the spatial shift of tri-linear line scan color cameras.
For each color component red, green, and blue a relative shift can be defined using the parameters
DeltaRed, DeltaGreen, and DeltaBlue. A shift means the delay in lines between the input and the
resulting output image. A shift of 0 leaves the input image untouched. If for example DeltaRed =
0, DeltaGreen = 1, and DeltaBlue = 2, the first line of the output image consists in the following
components: Red component read from the first input image line, green component is read from the
second input image line, and blue component read from the third input image line. In order to switch
the readout direction from forward to backward, just change the parameters: DeltaRed = 2, DeltaGreen
= 1, and DeltaBlue = 0. Delta shifts can be negative, 0 or positive.

The buffer transforms delta values to relative deltas internally. The transformation implements this
formula:

delta¤ = delta¡Max(deltared;deltagreen;deltablue)

where delta is DeltaRed, DeltaGreen or DeltaBlue. This transformation is performed internally. The
delta parameters of the operator stay unchanged and show the specified values. The transformation to
relative deltas causes one delta offset to become 0 and the other two to become either 0 or negative,
e.g. the configuration [DeltaRed = 1, DeltaGreen = 2, DeltaBlue = 1] is equivalent to [DeltaRed = -1,
DeltaGreen = 0, DeltaBlue = -1]. The configuration [DeltaRed = -3, DeltaGreen = -3, DeltaBlue = -3]
and [DeltaRed = 1, DeltaGreen = 1, DeltaBlue = 1] are both equivalent to [DeltaRed = 0, DeltaGreen
= 0, DeltaBlue = 0]. A configuration like [DeltaRed = 1, DeltaGreen = 1, DeltaBlue = 1] indicates to
perform a spatial correction with the configuration [DeltaRed = 0, DeltaGreen = 0, DeltaBlue = 0] and
cut off the first line. Since the operator supports only relative delta shifts, the cut off of the first line
will not be performed by the operator. However it is relatively easy to achieve the cutting outside the
operator by using VA operators like CoordinateY and RemoveLine.

For each read out line the operator provides a line ID marker that is synchronous to the output link O.
The line ID is a global marker and can be used to detect when lines are lost due to an overflow in the
buffer. When an overflow occurs the buffer will discard input lines until the overflow condition is lifted,
i.e., the RAM has enough storage room for at least 1 RoI line. The difference between 2 consecutive
lines minus 1 is the amount of lines lost due to an overflow in the buffer.

The operator will continuously correct spatial shifts - a typical requirement for many line scan
applications. However when the acquisition starts the buffer needs at least a certain amount of lines
to output a corrected line. When this threshold is not reached no lines are output. The buffer outputs
only lines that were corrected. The start-up lines required for the 1st image line to be corrected are
not output. The threshold value depends on the specified delta shifts, e.g. DeltaRed = 0, DeltaGreen
= 1, DeltaBlue = -3 require 5 lines to perform a correction. Thus the threshold is 5. After the 5th
line, the buffer starts to output lines. In other words, the buffer starts to output lines as soon as it
can correct them.

In frame correction applications (VALT_IMAGE2D input) the spatial correction will be performed on
each frame individually, i.e. for every frame the spatial correction begins anew.

The first line output by the buffer owns always the line ID 0. In 2D application mode the line ID of the
1st frame line will show a gap to the last line of the previous frame. The gap size equals the amount

Library Memory 1007

VisualApplets User Documentation Release 3

of lines required to perform correction for this 1st output line. Not correctable lines are suppressed
by the buffer.

Using parameters XOffset and XLength the ROI size can be defined. If the XLength is not divisible by
the link parallelism the operator will insert dummy pixels to fill up the last parallel word, e.g. the link
parallelism is 2, XOffset is 0 and XLength is 7, the operator will output 4 parallel words each consisting
of 2 pixels. The last word will contain a dummy pixel. The value of that dummy pixel is undefined. In
VA simulation dummy pixels will be set to zero for better visibility. The sum of XOffset and XLength
parameters must not exceed the maximal link image width. If the input image width is less than the
sum of the x-offset and the x-length, the operator will still read the parameterized x-length. In this
case, the operator will output undefined memory contend to the exceeding pixel.

To measure the fill level of the buffer the operator provides 2 parameters: FillLevel and Overflow.
FillLevel shows the percentaged fill level of the RAM in 25% steps. The Overflow parameter is set to
1 when FillLevel is close to or is 100% and the next image to be stored in the buffer will exceed the
RAM capacity. In case of an overflow, input data is discarded and the input image height is reduced.
Thus, incomplete images are stored in memory. Users have to poll for the overflow parameter. As the
duration of the overflow state can be very short it is possible that it is in between of a polling cycle
of the operator.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

27.11.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.11.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Links O, data input

LinkID, data input

27.11.3. Supported Link Format

Link Parameter Input Link I Output Link O Output Link LinkID
Bit Width [3, 63] unsigned, [6,

63] signed
as I auto

Library Memory 1008

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O Output Link LinkID
Arithmetic {unsigned, signed} as I unsigned
Parallelism any as I as I
Kernel Columns 1 as I as I
Kernel Rows 1 as I as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I as I

Color Format VAF_COLOR as I VAF_GRAY
Color Flavor FL_RGB as I FL_NONE
Max. Img Width any as I as I
Max. Img Height any as I as I

The product of the bit width and the parallelism must not exceed the native ram data width. Check
Appendix A, 'Device Resources' for more information.

27.11.4. Parameters

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Width - XOffset]

This parameter defines the width of the ROI.

DeltaRed
Type dynamic/static read/write parameter
Default 0
Range any

This parameter defines the shift of the red component. The delta can be a positive or negative
integer value.

DeltaGreen
Type dynamic/static read/write parameter
Default 0
Range any

This parameter defines the shift of the green component. The delta can be a positive or negative
integer value.

DeltaBlue
Type dynamic/static read/write parameter
Default 0
Range any

This parameter defines the shift of the blue component. The delta can be a positive or negative
integer value.

Library Memory 1009

VisualApplets User Documentation Release 3

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in 25% steps.

Overflow
Type dynamic read parameter
Default 0
Range [0, 1]

This parameter indicates a buffer overflow.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

Library Memory 1010

VisualApplets User Documentation Release 3

27.12. Operator ImageFifo
Operator Library: Memory

This operator can be used to buffer a relatively small number of pixels in an FPGA based memory.
The operator does not require a VisualApplets resource of type RAM. Instead, the operator uses FPGA
internal memory. This can either be the FPGA-internal block RAM, the FPGA distributed RAM (LUT
RAM), or UltraRAM memory (URAM is only available for the imaFlex CXP-12 Quad and imaFlex CXP-12
Penta platforms). Which of the two is used can be set manually via Parameter ImplementationType or
is selected automatically by the operator depending on the operator's configuration.

The ImageFifo operator is often used to buffer lines or pixels before a synchronization. As the FPGA
internal memory is limited, it is unlikely that frames of full resolution can be buffered without exceeding
the available resources.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

Parameters EntitiesToStore and EntityType define the maximum available buffer size. The operator
is a first input, first output memory (FIFO). Any input data is immediately forward to the output.
However, if the output is blocked for example because the following operators cannot process the input
bandwidth, the operator will store the data. Thus the memory will only be filled, if the operator cannot
output the data.

To measure the fill level of the buffer the operator provides the parameter FillLevel. FillLevel shows
the percentage fill level of the Fifo.

Parameter InfiniteSource is used to specify if the operator is directly connected to a camera or is
sequenced with other memory operators. If InfiniteSource is disabled, the operator cannot get into an
overflow condition. Check Section 3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

Parameter ImplementationType allows to specify the hardware memory that is to be used by the
operator.

27.12.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, data input

27.12.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

Library Memory 1011

VisualApplets User Documentation Release 3

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

27.12.3. Parameters

EntitiesToStore
Type static parameter
Default 1
Range any

This parameter defines how many pixels, lines or frames have to be stored at maximum. The entity
type is defined using parameter EntityType.

EntityType
Type static parameter
Default FRAME
Range {FRAME, LINE, PIXEL}

This parameter defines the type of the entity to store. The parameter can buffer EntitiesToStore
units of EntityType.

FRAME can only be chosen of the input link image protocol is VALT_IMAGE2D. LINE can be selected
for protocols VALT_LINE2D and VALT_LINE1D, while PIXEL is always enabled.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, BRAM, LUTRAM, URAM)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
memory elements are used for implementing the operator.

You can select one of the following values:

AUTO: The optimal implementation strategy is selected automatically based on the parametrization
of the connected links.

BRAM: The operator uses the Block RAM of the FPGA.

LUTRAM: The operator uses the LUT RAM of the FPGA.
URAM: The operator uses the UltraRAM of the FPGA.

Availability and Limitations of URAM

The value URAM of the ImplementationType parameter is only available on the
imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

URAM has the following limitation:

• The FifoDepth of the operator must not exceed 4096. The FifoDepth depends on
the parallelism, the EntityType parameter and the value of the EntitiesToStore
parameter. If FifoDepth exceeds 4096, the ImplementationType parameter is in
illegal state, see Section 3.7.1.5, 'Illegal Parameter Value States'.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA resource runs short in a design, you can manually influence the FPGA resource

Library Memory 1012

VisualApplets User Documentation Release 3

ImplementationType
management using the values BRAM, LUTRAM, or URAM (URAM is only available for
the imaFlex CXP-12 Quad and the imaFlex CXP-12 Penta platforms).

AUTO only selects between BRAM and LUTRAM.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of buffer. The operator uses the FPGA resources efficiently. In
some configurations it is possible to store more than 100% in the buffer.

InfiniteSource
Type static parameter
Default ENABLED
Range {ENABLED, DISABLED}

This parameter activates support for infinite source operators like Camera operators. See Section
3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

27.12.4. Examples of Use

The use of operator ImageFifo is shown in the following examples:

• Section 3.6.6, 'Timing Synchronization'

Synchronization - Avoiding deadlocks.

• Section 9.3.1.4, 'Stitching of Two Cameras'

Tutorial - Use of the operator to buffer one line for line duplication.

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.4.2.4, 'Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI
and a pre-sort of the Color Planes'

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI. An additional pre-sorting optimizes the bandwdith and resources.

• Section 12.6.2, 'Image Dimension Test'

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

• Section 12.9.9, 'Tap Geometry Sorting'

Library Memory 1013

VisualApplets User Documentation Release 3

Examples - Scaling A Line Scan Image

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Memory 1014

VisualApplets User Documentation Release 3

27.13. Operator ImageSequence
Operator Library: Memory

Availability for Hardware Platforms
Please note that this operator is only available for target platforms of the microEnable 4 series
(including PixelPlant).

The main feature of this operator is that it buffers a sequence of SequenceLength successive input
images. This sequence is output simultaneously. Moreover, a region-of-interest (ROI) feature is
included.

This operator buffers the image stream in the Frame Grabber RAM (DRAM). One VisualApplets resource
of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The simultaneous output of the image sequence is performed by using a kernel of SequenceLength
columns. Each kernel component represents one image of the sequence i.e. corresponds to the image
sequence number. For example at a sequence length of three, input image 0 will be output at kernel
index 0, image 1 on kernel index 1, image 2 on kernel index 2. Next, the operator continuous with the
next sequence, i.e. input image 3 will be output on kernel index 0, etc.

The operator does not change the bandwidth. It keeps the bandwidth constant for reading and writing.
However the frame rate of the output images is 1/SequenceLength of the frame rate at the input.
However, the output image is N times larger (due to the kernel) than a single input image.

The operator works like a FIFO buffer. As soon as enough images are buffered to generate a sequence,
the operator will output the sequence. During this period, the next images are stored in the buffer.

Using parameters XOffset, XLength, YOffset and YLength the ROI size can be defined.

No Filllevel and Flow Control

The operator does not include parameters to check the fill level and no parameter to
check for overflows. Moreover, no InfiniteSource parameter is included. The operator
always assumes an infinite source at its input. It is not possible to check if the operator
is in an overflow condition. See Section 3.6.9, 'Infinite Sources / Connecting Cameras'
for more information on flow control.

Operator Restrictions

• Empty frames are not supported.

• Images with varying line lengths are not supported.

• All input images of a sequence must have the same width and the same height. Otherwise the
behavior of the operator is undefined.

• The minimum allowed input image width is XOffset + XLength and the minimum input image height
is YOffset + YLength.

• The used RAM size is limited. Moreover, due to the internal implementation, the available buffer might
be smaller than the physical space. The required memory is related to the maximum image width,
maximum image height and the SequenceLength. If the maximum image width is a power of two
value, the memory is efficiently used. Check Appendix A, 'Device Resources' for more information.

27.13.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

Library Memory 1015

VisualApplets User Documentation Release 3

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width.

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.13.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, data input

27.13.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 SequenceLength as I
Kernel Rows 1 as I
Img Protocol VALT_IMAGE2D as I
Color Format any as I
Color Flavor any as I
Max. Img Width 65535 as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The product of the bit width and the parallelism must not exceed the native ram data width. Check
Appendix A, 'Device Resources' for more information.

27.13.4. Parameters

SequenceLength
Type static parameter
Default 2
Range [2, possible with RAM size]

This parameter defines the number of images to be concatenated into a sequence. The value of
parameter SequenceLength defines the number of columns of the kernel.

XOffset
Type dynamic/static read/write parameter
Default 0

Library Memory 1016

VisualApplets User Documentation Release 3

XOffset
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

The step size is the parallelism.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [2*Parallelism, Max.Img Width - XOffset]

This parameter defines the width of the ROI.

The step size is the parallelism.

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [2, Max.Img Height - YOffset]

This parameter defines the height of the ROI.

27.13.5. Examples of Use

The use of operator ImageSequence is shown in the following examples:

• Section 12.7.2, 'Noise Reduction'

Examples - The average of two acquired images is calculated to reduce noise.

Library Memory 1017

VisualApplets User Documentation Release 3

27.14. Operator KneeLUT

Operator Library: Memory

The operator implements an approximation of a look up table through a set of base points. Thus the
name KneeLUT. The range of all representable values on the operator output is divided by Knee LUT
into N intervals defined by the base points. The amount of intervals N is representable as a number
of power of 2, i.e. N = 2^n, n is an integer number. Parameter BasePointPows defines n. The interval
distance is constant and equal for all intervals.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

Each interval is described by a start base point and an end base point. The start base point defines
the output value for the 1st interval step. The end base point defines the theoretical value for the end
point of the interval that cannot be reached which is equal to the start base point of the next interval.
All values inside the interval are approximated linearly. The end base point and the start base point of
the consecutive interval have the same X-coordinate, i.e. there is no interval steps in-between.

Base points values for each interval in the KneeLUT can be defined individually. It is possible to define
a discontinuous function over the entire output range. However, the sub functions inside each interval
are linear with a gradient/slope defined through the start and the end base points. All start base points
belong to the intervals. All end base points are excluded from the interval and can never be reached
by the linear approximation.

All base points are normalized to the maximal representable value at the output of the operator,
i.e. to 2OutputBitWidth ¡ 1 . All start base points will be in the range from 0 to 1. Zero corresponds to
the smallest representable value on the output. In this version of KneeLut it is equal to 0 because
the operator supports only unsigned values. One represents the maximal representable value on the
operator output, i.e. 2OutputBitWidth ¡ 1 . All end base points can exceed the range of 0 to 1 to allow the
last value included in the interval to be mapped to the highest and lowest numbers, i.e. to 0 and 1.
This implies that the end base point might be larger than 1 or smaller than 0. Using the same scaling
technique as for the start base points, the end points must be scaled to 2OutputBitWidth ¡ 1 .

Let's have a look at two examples to illustrate the behavior of the operator.

1. Identity

The first function of the KneeLUT is the identity. Suppose the following parameters of our KneeLUT:

• BasePointPows = 2

• Input Bit Width = 4

• Output Bit Width = 5
Thus we have to define four start base points and four end base points. For identity we define:

StartBasePoints = f0 0:2667 0:566 0:8g
EndBasePoints = f0:2667 0:566 0:8 1:0667g

These values are determined by:

BasePoint(x) = x£ 4£ 1

15
= x£ 2InputBitWidth¡BasePointPows £ 1

2OuputBitWidth ¡ 1

where x is the base point index.

The following plot shows these base points. Start base points are marked with a red square and
end base points are marked by a magenta circle. Moreover, a line is plot to illustrating the linear
functions of the intervals.

Library Memory 1018

VisualApplets User Documentation Release 3

The plot also shows the approximated values of the output (blue stars). Base points are normalized,
i.e. a 0 is output value 0 and 1 is output value 2OutputBitWidth ¡ 1 . The following plot shows the actual
used lookup table with the given base points. As can be seen, the values are rounded to the next
integer values.

Library Memory 1019

VisualApplets User Documentation Release 3

The lookup table will calculate the following values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 4 6 8 10 12 14 17 19 21 23 25 27 29 31

2. Discontinuous Function

In the next example we take a look on a discontinous function. Let's assume the same KneeLUT
parameters as give in the first example. This time, the base points are not defined by a function:

StartBasePoints = f0:9 0:5 0:8 0:1g
EndBasePoints = f1 0:7 0:3 0:6g

Again, the following plot shows these base points. Start base points are marked with a red square
and end base points are marked by a magenta circle. Moreover, a line is plot to illustrating the
linear functions of the intervals.

Library Memory 1020

VisualApplets User Documentation Release 3

The plot also shows the approximated values of the output (blue stars). Again, the plot is
normalized to 1.

The following plot shows the actual used lookup table with the given base points. As can be seen,
the values are rounded to the next integer values.

Library Memory 1021

VisualApplets User Documentation Release 3

The lookup table will calculate the following values from the given base points:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
28 29 29 30 16 17 19 20 25 21 17 13 3 7 11 15

These values can be calculated by using the slope m(x) and the offset b(x) of each interval

m(x) =
StartBasePoints

¡¥
x

2InputBitWidth¡BasePointPows

¦¢
¡ EndBasePoints

¡¥
x

2InputBitWidth¡BasePointPows

¦¢
2InputBitWidth¡BasePointPows

b(x) = StartBasePoints
³j x

2InputBitWidth¡BasePointPows

k´
The result LUT(x) is then

LUT(x) =
¡¡
x mod 2InputBitWidth¡BasePointPows

¢
£m(x) + b(x)

¢
£
¡
2OutputBitWidth ¡ 1

¢

Approximated Values out of Range

If the approximated values are out of the available output range, the operator will not
clip them to the maximum or minimum possible value. Values are undefined.

Operator Restrictions

• The following constraint is given:

InputBitWidth+OutputBitWidth¡BasePointPows < 60

Library Memory 1022

VisualApplets User Documentation Release 3

27.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, data input

27.14.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] [1, 60]
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

27.14.3. Parameters

BasePointPows
Type static parameter
Default 6
Range [1, 60 - InputBitWidth + OutputBitWidth]

This parameter defines the number of base points for the KneeLUT according to the following
formula: NumberOfBasePoints = 2 ^ BasePointsPows.

The step size is the parallelism.

StartBasePoints
Type dynamic/static read/write parameter
Default identity function
Range any

This field parameter defines a set of normalized 2^BasePointPows interval start base points. The
points are normalized to the maximal representable value on the operator output.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

EndBasePoints
Type dynamic/static read/write parameter
Default identity function
Range any

This parameter defines a set of normalized 2^BasePointPows interval end base points. The points
are normalized to the maximal representable value on the operator output. The normalized values
can exceed the range from 0 to 1 to allow the last interval point to reach the maximal respectively
the minimal representable value.

Library Memory 1023

VisualApplets User Documentation Release 3

27.14.4. Examples of Use

The use of operator KneeLUT is shown in the following examples:

• Section 12.11.3, 'Knee-Lookup Table 16 Bit'

Examples - Shows the use of a lookup table for 16 Bit input and output data. For 16 bit a Knee LUT
has to be used due to the limited block RAM resources.

Library Memory 1024

VisualApplets User Documentation Release 3

27.15. Operator LineBuffer (imaFlex)
Operator Library: Memory

The LineBuffer operator buffers the image data stream in the Frame Grabber RAM (DRAM), which is
a memory on the frame grabber but not in the FPGA. The LineBuffer operator is a replacement for
the operator ImageBuffer, which is used for mE5 hardware platforms and provides the same features.
imaFlex CXP-12 Quad and imaFlex CXP-12 Penta don't support the operator ImageBuffer, thus, when
you convert a design from an mE5 hardware platform to an imaFlex CXP-12 Quad or imaFlex CXP-12
Penta platform, any instance of ImageBuffer is automatically replaced by an instance of LineBuffer.

One VisualApplets resource of type RAM is required. See Section 3.8, 'Allocation of Device Resources'
for more information. Multiple resources of type RAM use the same physical RAM with the shared
memory concept. Documentation for how to use the shared memory is available in section Section
A.3, ' Shared Memory Concept '. Additionally, the LineBuffer operator features region-of-interest (ROI)
support. The total number of bits (bit width times parallelism) must not exceed the memory limitations
of the respective frame grabber.

The operator causes a latency of at least one line. Reading a line is started as soon as the line is fully
written into the buffer. If the output is blocked, the operator buffers the input data.

The operator works like a FIFO. The buffer operates on image lines resulting in a very short memory
latency. Any completed line of input data is immediately forwarded to the output as long as it is within
the selected region of interest and the following modules can consume the data fast enough. As a
result, frame data from a camera can be forwarded to the PC while the current frame transfer is still
ongoing. The latency between ingoing and outgoing data increases, if the buffer gets filled with more
lines. This happens, when the output is blocked for some time, in particular because the following
modules can't process data at the same rate as the input bandwidth. Thus, the memory will only be
filled, if the operator can't output the data at the same rate as the input provides data. Often, the
operator is used to compensate peak input bandwidths.

With the parameters XOffset, XLength, YOffset and YLength you can define a region of interest. If
the input image width is less than the sum of the XOffset and XLength, the LineBuffer operator still
reads the parameterized XLength. In this case, the operator outputs undefined memory content for
the additional pixels. If the input image height is less than the requested output image height, the
operator only outputs the available lines. If the input image height is lower than YOffset

In Line1D application mode, the YOffset and YLength settings have no effect.

To measure the fill level of the buffer, the operator provides the following parameters: FillLevel,
LineCount, and Overflow. FillLevel shows the fill level of the RAM in percent. LineCount provides the
current number of lines that are saved in the buffer. The Overflow parameter is set to 1 when FillLevel
is close to or equal to 100% and the next image to be stored in the buffer will exceed the RAM capacity.
In case of an overflow, input data is discarded and the input image height is reduced. Overflows can
only occur, if the data source is not stoppable, which means that InfiniteSource is set to ENABLED.
As a result of an overflow, incomplete images might be stored in the memory. Incomplete images are
automatically finalized and incoming data is discarded until there is space in the buffer for the next line.

The InfiniteSource parameter is used to specify whether the operator receives a data stream which
can't be stopped, i.e. an unbuffered stream from a camera. Read Section 3.6.9, 'Infinite Sources /
Connecting Cameras' for more information.

Operator Restrictions

• Empty frames are not supported.

Available Memory Space

The operator provides the read-only parameter MaxLineCount which reports the
maximum number of lines (defined by XLength) that fit in the RAM. This number further
depends on the presence of other memory operators in the current design and the data
bit width.

Library Memory 1025

VisualApplets User Documentation Release 3

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

27.15.1. Bandwidth Optimization

In contrast to the ImageBuffer operator, the LineBuffer operator performs an automatic aggregation
of pixels for matching the memory data width as close as possible, in order to reach an optimal
performance.

If enabled by the ParallelismConverter parameter, you may adjust the output parallelism to a different
value than the input parallelism. This enables defining an asymmetric peak data throughput between
input and output of the operator. You can use this feature to avoid an additional instance of a
PARALLELdn or PARALLELup operator when the following data processing pipeline needs to work with
a different parallelism.

To enable the operator to handle long bursts of write data that exceed the available maximum
bandwidth of the RAM, enable the WritePriority parameter. This is recommended with infinite data
sources, such as cameras (InfiniteSource = ENABLED). When the available bandwidth of the RAM
is exceeded due to a write burst, reading is inhibited. This allows temporarily more frequent write
accesses to the RAM. If a camera delivers a burst of write data, it is expected that said burst is followed
by a gap in the write data (otherwise the available RAM bandwidth is exceeded), which then can be
used to temporarily ramp up the read bandwidth.

27.15.2. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, image data output

27.15.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width 2^31-1 as I
Max. Img Height 2^31-1 as I

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

Library Memory 1026

VisualApplets User Documentation Release 3

• For signed color inputs: [6, 63].
The product of the bit width and the parallelism must not exceed the native RAM data width:
RamDataWidth.
If the LineBuffer operator converts the parallelism (ParallelismConverter = Yes), it automatically
rounds the maximum image width at the output to the next multiple of O.Parallelism. If
O.Parallelism is greater than I.Parallelism, I.MaxImgWidth must not be greater than 2^31-1-
O.Parallelism so that the rounded maximum image width at the output doesn't exceed 2^31-1.

27.15.4. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used.

XOffset
Type dynamic/static write parameter
Default 0
Range [0, Max.Img Width - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

The step size is the input parallelism.

XLength
Type dynamic/static write parameter
Default 1024
Range [input parallelism, min(Max.Img Width, (2^RAM address width - 1) * internal RAM

parallelism) - XOffset]

This parameter defines the width of the ROI.

The step size is the input parallelism.

YOffset
Type dynamic/static write parameter
Default 0
Range [0, Max.Img Height - YLength]

This parameter defines the y-coordinate of the upper left corner of the ROI.

YLength
Type dynamic/static write parameter
Default 1024
Range [1, Max.Img Height - YOffset]

This parameter defines the height of the ROI.

ParallelismConverter
Type static write parameter
Default No
Range {Yes, No}

This parameter defines whether the LineBuffer operator implements a parallelism converter.

Library Memory 1027

VisualApplets User Documentation Release 3

ParallelismConverter
• No: The operator doesn't perform a parallelism conversion. Input and output parallelism are

always the same. When the input parallelism changes, the output parallelism is automatically
changed to the new input parallelism value. The output parallelism can't be edited.

• Yes: The operator performs a parallelism conversion. The output parallelism is completely
independent from the input parallelism and can be edited at will.

InfiniteSource
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The LineBuffer operator can be inserted directly behind a camera operator. In this case, the
InfiniteSource parameter must be set to ENABLED. The operator will then perform active overflow
management and make sure that the operator can properly recover from overflows. The overflow
can occur either when the data sink behind the operator stops or pauses the transmission and the
buffer fill level reaches its maximum or when the input bandwidth is too high so the write data can't
be transferred to the external RAM. When InfiniteSource is set to DISABLED, an inhibit signal is
generated that stops the proceeding operator from transferring data, if the buffer fill level or input
bandwidth get too high.

The write prioritization is recommended for any operator that is used with the InfiniteSource
parameter set to ENABLED. Consequently, it is recommended to set the WritePriority parameter to
ENABLED, when the InfiniteSource parameter is set to ENABLED.

See Section 3.6.9, 'Infinite Sources / Connecting Cameras' for more information.

WritePriority
Type static write parameter
Default DISABLED
Range {ENABLED, DISABLED}

The shared memory concept (Section A.3, ' Shared Memory Concept ') usually distributes the
bandwidth equally amongst all connected memory operators (operators that use a resource of
type RAM). If the WritePriority is DISABLED), the LineBuffer operator assigns the same priority
to reading and writing. By setting WritePriority to ENABLED), the LineBuffer operator prioritizes
writing over reading, but only while the temporary memory data rate is higher than the available
bandwidth. The temporary prioritization of write data leads to a temporary slow down of the read
process. Consequently, the average bandwidth must not exceed the available bandwidth for the
LineBuffer operator. The write prioritization is recommended for any operator that is used with the
InfiniteSource parameter set to ENABLED. When using the write prioritization with a stoppable
source, make sure that the write bandwidth isn't constantly high, otherwise reading from the
LineBuffer is stopped until the buffer is full. Since the write prioritization is a configuration for an
individual operator, the effect of the write prioritization decreases with each additional memory
operator in the design.

FillLevel
Type dynamic read parameter
Default 0
Range [0%, 100%]

This parameter provides the fill level of DRAM in percent.

MaxLineCount
Type dynamic read parameter
Default 2^RAM address width / (XLength / internal RAM parallelism + 1)
Range [1, 2^RAM address width / 2]

Library Memory 1028

VisualApplets User Documentation Release 3

MaxLineCount
This parameter provides the maximum number of lines that currently fit into the memory. The
maximum number of lines that fit into the memory depends on the, RAM address width, which
depends on the number of instantiated RAM operators.

LineCount
Type dynamic read parameter
Default 0
Range [0, MaxLineCount]

This parameter provides the current number of lines in the memory.

Overflow
Type dynamic read parameter
Default 0
Range [0, 3]

This parameter indicates a buffer overflow. It's a 2-bit bitmap, where each bit indicates a different
type of overflow. Bit 0 indicates a fill level overflow and bit 1 indicates a write bandwidth overflow.
How long the Overflow parameter shows an overflow, depends on the OverflowClearMode.

OverflowClearMode
Type dynamic write parameter
Default AutoClear
Range {AutoClear, ManualClear, ClearAfterRead, ClearWithProcessReset}

OverflowClearMode determines how the Overflow parameter is cleared when the operator has
recovered from an overflow. You can only reset the overflow status with this parameter, if the
operator is not in overflow state anymore.

Clear modes:

• AutoClear: When the operator recovers from an overflow, the Overflow parameter is reset
automatically.

• ManualClear: When the operator recovers from an overflow, the Overflow parameter still shows
the overflow until it is manually reset by writing ManualClear into the OverflowClearMode
parameter. In this mode, a process reset (e.g. acquisition stop) doesn't clear the Overflow
parameter, which means the overflow is still visible after the acquisition has stopped.

• ClearAfterRead: When the operator recovers from an overflow, the Overflow parameter still
shows the overflow until the Overflow parameter is read or a process reset occurs (e.g. when the
acquisition is stopped).

• ClearWithProcessReset: When the operator recovers from an overflow, the Overflow parameter
still shows the overflow until a reset occurs (e.g. when the acquisition is stopped).

Library Memory 1029

VisualApplets User Documentation Release 3

27.16. Operator LineMemory
Operator Library: Memory

The LineMemory operator is a memory block which stores incoming images lines using random write
access. The write addresses are specified with input link column address ColA. Thus for each input
pixel value, a column address has to be specified.

After a line has been fully written to the memory, it is read and output using link O. The output image
width is defined with parameters and is independent of the input image width. The memory is pre-
initialized with values zero.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The memory size is defined by parameter FrameWidth.

The operator can be implemented in two variants. Namely, a single buffer implementation and a double
buffer implementation. The first implementation saves RAM, but does not allow a timely overlap of
writing and reading. Thus the input link I is stopped during the read state. The latter implementation
doubles the RAM and allows to output an image line while accepting the next line at the input link I.

The operator has two states:

1. Write State: The value of Link I is stored at the address specified with ColA. This is done only if
link WriteI is one. If link WriteI is zero, the current pixel is skipped. Writing to any address of the
valid address range is possible. There is no necessity to write to each memory cell.

2. Read State: The memory is read out sequentially and produces a line of the parameterized width.
By use of parameters XOffset and XLength it is possible to define the read address range i.e. a
ROI. Reading the memory resets the content of the read addresses to zero. Thus if a memory cell
is read which has not been written before, a zero will be output.

The toggling between these two states is triggered by an end-of-line at the input link I. Please note,
that the line width at the output link is fixed to the size defined by parameters XOffset and XLength
and is independent from the line width of the input link.

The operator can be useful for mirroring or sensor correction.

The operator uses the FPGA-internal block RAM or UltraRAM memory (URAM is only available for the
imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms). Thus, no VisualApplets frame grabber
resources of type RAM are used. The FPGA-internal block RAM is limited. Full resolution frames might
not fit into the FPGA-internal block RAM. Consider using operator FrameBufferRandomRead instead.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

27.16.1. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

WriteI, write enable input
ColA, write column address for the pixel at I

Output Link O, data input

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

Library Memory 1030

VisualApplets User Documentation Release 3

27.16.2. Supported Link Format

Link Parameter Input Link I Input Link WriteI
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism 1 as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Input Link ColA Output Link O
Bit Width auto as I
Arithmetic unsigned as I
Parallelism as I as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol as I as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width as I parameter FrameWidth
Max. Img Height as I as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The bit width of the column address is:

ColABitWidth = dlog2 (FrameWidth)e

27.16.3. Parameters

ImplementationType (imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms)
Type static write parameter
Default AUTO
Range (AUTO, BRAM, URAM)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
memory elements are used for implementing the operator.

You can select one of the following values:

AUTO: The optimal implementation strategy is selected automatically based on the parametrization
of the connected links.

BRAM: The operator uses the Block RAM of the FPGA.

URAM: The operator uses the UltraRAM of the FPGA.

Library Memory 1031

VisualApplets User Documentation Release 3

ImplementationType (imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms)

Availability and Limitations of URAM

The ImplementationType parameter and thus the option of using URAM is only
available on the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

URAM has the following limitation:

• The FrameWidth parameter of the operator must not exceed 4096.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA resource runs short in a design, you can manually influence the FPGA resource
management using the values BRAM, or URAM.

Implementation
Type static parameter
Default SingleBuffer
Range {SingleBuffer, DoubleBuffer}

This parameter selects the implementation of the LineMemory (see above).

FrameWidth
Type static parameter
Default 1024
Range [0, 65534]

This parameter selects the image width of the output link in pixels.

XOffset
Type dynamic/static read/write parameter
Default 0
Range [0, Max.Img Height - XLength]

This parameter defines the x-coordinate of the upper left corner of the ROI.

XLength
Type dynamic/static read/write parameter
Default 1024
Range [1, Max.Img Width - XOffset]

This parameter defines the width of the ROI.

27.16.4. Examples of Use

The use of operator LineMemory is shown in the following examples:

• Section 12.9.6, 'Line Mirror'

Examples - Shows how to vertically mirror an image. Note the mirroring of the parallel words and
the pixel.

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Memory 1032

VisualApplets User Documentation Release 3

Library Memory 1033

VisualApplets User Documentation Release 3

27.17. Operator LineMemoryRandomRd

Operator Library: Memory

The LineMemoryRandomRd (line memory random read) operator is a small memory block with random
read access. The random read of the data can be performed by transferring addresses to port RColA
(read column address). The operator will use the addresses to read the line data by the given
coordinates. The resulting output frame will have the image width of the address input.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

The LineMemoryRandomRd operator stores incoming image lines and allows random read access. The
line data is transferred into the operator via link I.

The required memory size is defined by the image width of the input frame (Max. Img Width).

The operator can be implemented in two variants. Namely, a single buffer implementation and a double
buffer implementation. The first implementation saves RAM, but does not allow a timely overlap of
writing and reading. Thus the address input links RColA and RRowA are stopped during the write state.
The latter implementation doubles the RAM and allows to random read the last frame while accepting
the next frame at the input link I.

The operator has two states:

1. Write State: The pixels of link I are stored linear in the buffer i.e. the coordinates of the pixels
form the addresses in the buffer.

2. Read State: The memory is read-out using the addresses given at the input RColA. The number
of addresses and address link image width define the image output width. For example, if a line
consisting of only one pixel is input at the address inputs, the output frame width will only consist
of one pixel. The other pixels of the input lines are discarded.

The image data input and the address input are not synchronous to each other. They may have different
image dimensions.

Please not the timing of the input links. The address input must not be sourced by the same operator as
the data link input I without buffering. This is because while writing the image data into the operator,
no addresses to read the current frame can be accepted. Only if the frame is fully stored into the
buffer, addresses can be accepted. In many applications operator is used to generate the images for
the addresses.

The timing is visualized in the following figure.

Library Memory 1034

VisualApplets User Documentation Release 3

The operator uses FPGA-internal block RAM memory. Thus non VisualApplets frame grabber resources
of type RAM are used. The FPGA-internal block RAM is limited. Full resolution frames might not fit into
the FPGA-internal block RAM. Consider using operator FrameBufferRandomRead instead.

Operator Restrictions

• Empty frames are not supported.

Images with varying line lengths are not supported.

27.17.1. I/O Properties

Property Value
Operator Type M
Input Links I, image data input

RColA, read column address for the pixel at I
Output Link O, data input

Synchronous and Asynchronous Inputs

• All inputs are asynchronous to each other.

27.17.2. Supported Link Format

Link Parameter Input Link I Input Link RColA Output Link O
Bit Width [1, 64] auto as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism 1 as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I

Library Memory 1035

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link RColA Output Link O
Img Protocol VALT_IMAGE2D as I as I
Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any any as RColA
Max. Img Height any as I as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The bit width of the row address is:

RowABitWidth = dlog2 (InputMax:ImageWidth)e

27.17.3. Parameters

Implementation
Type static parameter
Default SingleBuffer
Range {SingleBuffer, DoubleBuffer}

This parameter selects the implementation of the FrameMemoryRandomRd (see above).

27.17.4. Examples of Use

The use of operator LineMemoryRandomRd is shown in the following examples:

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Memory 1036

VisualApplets User Documentation Release 3

27.18. Operator LUT

Operator Library: Memory

The operator LUT is a lookup table of dynamic content. The values of the input link define the addresses
of the LUT. The output link will then provides the value stored at this address. The input bit width
defines the number of addresses in the LUT. The output bit width defines the value range of each LUT
element. Both can be set to any value. The LUT content can be changed before synthesis or dynamic
during runtime.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

27.18.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, data input

27.18.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 16] [1, 63 unsigned / 64 signed]
Arithmetic {unsigned} {63 bit unsigned, 64 bit signed}
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

If you have set parameter ImplementationType to URAM, the Bit Width of the input link must be
set to a value between 1 and 14.

URAM is only available for the imaFlex CXP-12 Quad and the imaFlex CXP-12 Penta platforms.
If you have set parameter ImplementationType to URAM, the Bit Width of the output link depends
on the bit width of the input link:

• If the bit width of the input link <= 12, you can set any value.

• If the bit width of the input link = 13 or 14, set the bit width of the output link to a value
between 1 and 16.

URAM is only available for the imaFlex CXP-12 Quad and the imaFlex CXP-12 Penta platforms.

27.18.3. Parameters

LUTcontent
Type dynamic/static read/write parameter

Library Memory 1037

VisualApplets User Documentation Release 3

LUTcontent
Default identity function
Range [0, 2^OuptuBitWidth-1]

This field parameter defines the LUT content. The number of field values is defined by the
operator's input bit width.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

Input Bit Width Changed

If the input bit width is changed, the number of field elements in this parameter
changes. If the input bit width is reduced, values are truncated and deleted. If the
input bit width is increased, the new field elements are set to 0.

Warning Status

If the BRAM is operated at less than 25% capacity, the LUTcontent parameter can go
into warning status.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, BRAM, LUTRAM, URAM)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
memory elements are used for implementing the operator.

You can select one of the following values:

AUTO: The optimal implementation strategy is selected automatically based on the parametrization
of the connected links. AUTO only selects between BRAM and LUTRAM.

BRAM: The operator uses the Block RAM of the FPGA.

LUTRAM: The operator uses the LUT RAM of the FPGA.

URAM: The operator uses the UltraRAM of the FPGA.

Availability and Limitations of URAM

The value URAM is only available on the imaFlex CXP-12 Quad and the imaFlex
CXP-12 Penta platforms.

URAM has the following limitations:

• The Bit Width of the input link must be set to values between 1 and 14.

• The Bit Width of the output link depends on the bit width of the input link:

• If the bit width of the input link <= 12, you can set any value.

• If the bit width of the input link = 13 or 14, set the bit width of the output link to
a value between 1 and 16.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA resource runs short in a design, you can manually influence the FPGA resource

Library Memory 1038

VisualApplets User Documentation Release 3

ImplementationType
management using the values BRAM, LUTRAM, or URAM (URAM is only available for
the imaFlex CXP-12 Quad and the imaFlex CXP-12 Penta platforms).

AUTO only selects between BRAM and LUTRAM.

27.18.4. Examples of Use

The use of operator LUT is shown in the following examples:

• Section 12.4.3, 'HSL Color Classification'

Examples - Color Classification is very simple on HSL images. The applet converts the RGB image into
an HSL image and performs a color classification. The hue is filtered using a lookup table. Moreover,
the saturation and lightness is thresholded using custom threshold values.

• Section 12.9.3.2.4, 'Geometric Transformation and Distortion Correction'

Examples- Geometric Transformation and Distortion Correction using PixelReplicator

• Section 12.9.3.2.5, 'Distortion Correction'

Examples- Distortion Correction

• Section 12.9.8, 'Scaling a Line Scan Image'

Examples - Scaling A Line Scan Image

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.11.1, 'Lookup Table 8 Bit'

Examples - Shows the use of a 8 Bit to 8 Bit lookup table.

• Section 12.11.2, 'Lookup Table 10 to 16 Bit'

Examples - Shows the use of a lookup table with 10 bit input and 16 bit output.

• Section 12.11.4, 'Knee-Lookup Table 24 Bit Color'

Examples - In this example three lookup tables are used for RGB color correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

Library Memory 1039

VisualApplets User Documentation Release 3

27.19. Operator RamLUT

Operator Library: Memory

This operator implements a large lookup table (LUT) based on the Frame Grabber RAM, usually DRAM.
One VisualApplets resource of type RAM is required (see Section 3.8, 'Allocation of Device Resources').

The operator RamLUT supports kernels on the output.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

Typical use cases for this operator are color space classification problems. For example on a microEnable
IV family board the operator allows a lookup table of 2^24 entries, i.e. a classification look up table can
be defined containing a value for each of the colors in the RGB 24 color space. The operator facilitates
the programming of the LUT content in two ways. For both ways, the LUT has to be programmed after
the synthesis process at the time when the applet is used during runtime.

1. One possibility of programming the LUT is a register interface which offers address- value-
parameters InitAddress and InitData. First, set the address using parameter InitAddress. Next,
write the data into parameter InitData. Writing the data causes the operator to actually write to the
LUT and replace the previous value. If you use kernels, writing to the last kernel element causes
the operator to actually write to the LUT and replace the previous value.

2. The second possibility of programming the LUT is the usage of a file containing the content. The file
access is faster than the register access, but requires some attention. The file can be in different
formats. The format has to be defined by parameter InitFileMode:

• text_with_checks

In this mode the init file has to be a text file where the value strings are separated by either
blanks, tab stops, line feeds (LF), or carriage return line feeds (CRLF). The operator checks these
files for errors and reports an error if the file can't be used.

Each value represents a kernel element and needs to be a decimal number within the correct
range.

The following figure demonstrates the file for a 4x3 kernel:

Library Memory 1040

VisualApplets User Documentation Release 3

• text_raw

This mode is similar to mode text_with_checks but comprises less checks for errors. In this
mode each value must be provided in a separate line. Loading a file in this mode is faster
compared to the text_with_checks mode. The example from above would look as follows in
text_raw mode:

Library Memory 1041

VisualApplets User Documentation Release 3

• binary

The binary mode assumes a binary file, where 8 bytes are used for each kernel entry of a LUT
element. If the kernel entry values can be represented by less than 64 bit, the unused bits are
ignored. This is the fastest method of writing values into the LUT. The example from above would
look as follows in binary mode:

Library Memory 1042

VisualApplets User Documentation Release 3

In all three modes the number of entries in the files must not exceed the number of LUT elements
and the number of values must be a multiple of KernelSize. Thus, the files must contain up to
2^InputBitWidth * KernelSize values.

When an init file contains 2^InputBitWidth * KernelSize values, then the LUT memory gets
overwritten completely, starting from address 0. In this case, the parameter InitAddress is not
touched.

When an init file contains less entries, then partial initialization is performed. Then, initialization
is done starting from the address given by the InitAddress parameter. The parameter InitAddress
is automatically incremented to the next position after the last written LUT entry. This allows to
monitor how many LUT entries were written. When the file contains more than (2^InputBitWidth
- InitAddress) * KernelSize values, then initialization will stop after writing the last entry of the
LUT and InitAddress is set to 0.

Parameter InitFilename specifies the file that contains the initial values. Finally, writing value 1 to
parameter LoadInitFile starts reading the file and, if accepted, writing the values to the hardware.
Writing 0 to parameter LoadInitFile doesn't cause the loading of the values. This can be useful if
you do not want the initial file to be loaded to the hardware during the applet initialization process.
During simulation, loading an init file is done the same way as during runtime. For partial
configuration or in case of errors, it may be useful to check the output in the simulation log (you
may need to activate Show Details in the Simulation dialog).

Note that the DRAM technology offers very poor performance for random access. In a worst case
scenario when each consecutive access to the DRAM causes a page miss and requires a new row
activation, the DRAM throughput suffers 90% loss of the maximal performance, resulting in about 10%
bandwidth usage. However, by combining several DRAM banks together it is possible to increase the
throughput even for the worst case. Tie 2 or more RamLUT operators together and let each of them
process a different lookup job. If successive input values to not change quickly, the performance of the
operator is much higher. Check the respective RAM technology and dimensions of your frame grabber
in the hardware user guides.

Library Memory 1043

VisualApplets User Documentation Release 3

27.19.1. Bandwidth Optimization

The theoretical bandwidth [bits/second] going through an operator that uses the Frame Grabber RAM
(DRAM) is calculated in accord with the following formula:

TheoreticalBandwidth = SystemClockdinHze £BitWidth£ Parallelism

However, the actual bandwidth is always less than the theoretical bandwidth due to the DRAM efficiency.

The maximum bandwidth going through the operator is reached if the product of Bit Width and
Parallelism is equal to the internal RAM Port Width x 2 (true for read-only parameters).

Platform-specific values

RAM Port Width and System Clock are platform-specific. See Appendix A, 'Device
Resources' for detailed information on your individual platform.

27.19.2. I/O Properties

Property Value
Operator Type M
Input Link I, read address input
Output Link O, image data output

27.19.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, RAM Address Width] [1, Ram Data Width]
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 [1, Ram Data Width / Bit

Width]
Kernel Rows 1 [1, Ram Data Width / Bit

Width / Kernel Columns]
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

The allowed input bit width depends on the physical memory of the frame grabber and on how
many operators share access to the RAM. Parameter RamAddressWidth provides the maximum
address bits which can be used. Note that this number may change depending on the number of
RAM-based operators in the design. Check Appendix A, 'Device Resources' for more information.
The allowed output bit width depends on the physical memory of the frame grabber. The bit width
is limited to 64 bit but several kernel components may be stored. The product of (bit width *
kernel size) must not exceed the native RAM data width shown in parameter RamDataWidth. Check
Appendix A, 'Device Resources' for more information.

27.19.4. Parameters

RamDataWidth
Type static write parameter

Library Memory 1044

VisualApplets User Documentation Release 3

RamDataWidth
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface. It's the
maximum number of bits the output can provide (if kernels are used properly).

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits that can be used.

InitAddress
Type dynamic write parameter
Default 0
Range [0, 2^InputBitWidth-1]

This parameter defines the address of the data defined by the parameter InitData. See the
descriptions above.

InitData
Type dynamic write parameter
Default 0
Range [0, 2^OutputBitWidth-1]

This parameter defines the data that is written to the address defined by the parameter
InitAddress. Writing to this parameter starts the actual writing into hardware. See the descriptions
above.

InitFileLoadMode
Type dynamic write parameter
Default text_with_checks
Range {text_with_checks, text_raw, binary}

This parameter defines the file format and the mode of the file that is loaded into the lookup table.
See the descriptions above.

InitFileName
Type dynamic write parameter
Default InitRamLut.txt
Range

This parameter defines the name of the initialization file.

LoadInitFile
Type dynamic write parameter
Default 0
Range [0, 1]

To start loading the file specified by the InitFileName parameter into the LUT, write the value 1 to
this parameter. See the descriptions above.

27.19.5. Examples of Use

The use of operator RamLUT is shown in the following examples:

Library Memory 1045

VisualApplets User Documentation Release 3

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

• Section 13.8, 'Functional Example for Specific Operators of Library Color, Base and Memory'

Examples - Demonstration of how to use the operator

Library Memory 1046

VisualApplets User Documentation Release 3

27.20. Operator RamLUT (imaFlex)
Operator Library: Memory

This operator implements a large lookup table (LUT) based on the Frame Grabber RAM, usually
DRAM. One VisualApplets resource of type RAM is required (see Section 3.8, 'Allocation of Device
Resources'). Multiple resources of type RAM use the same physical RAM with the shared memory
concept. Documentation for how to use the shared memory is available in the Application Note: Shared
Memory [https://docs.baslerweb.com/visualapplets/application-note-shared-memory].

The operator RamLUT supports kernels on the output.

Typical use cases for this operator are color space classification problems.

The operator facilitates the programming of the LUT content in two ways. For both ways, the LUT has
to be programmed after the synthesis process at the time when the applet is used during runtime.

1. One possibility of programming the LUT is a register interface which offers address- value-
parameters InitAddress and InitData. First, set the address using parameter InitAddress. Next,
write the data into parameter InitData. Writing the data causes the operator to actually write to the
LUT and replace the previous value. If you use kernels, writing to the last kernel element causes
the operator to actually write to the LUT and replace the previous value.

2. The second possibility of programming the LUT is the usage of a file containing the content. The file
access is faster than the register access, but requires some attention. The file can be in different
formats. The format has to be defined by parameter InitFileMode:

• text_with_checks

In this mode the init file has to be a text file where the value strings are separated by either
blanks, tab stops, line feeds (LF), or carriage return line feeds (CRLF). The operator checks these
files for errors and reports an error if the file can't be used.

Each value represents a kernel element and needs to be a decimal number within the correct
range.

The following figure demonstrates the file for a 4x3 kernel:

https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory
https://docs.baslerweb.com/visualapplets/application-note-shared-memory

Library Memory 1047

VisualApplets User Documentation Release 3

• text_raw

This mode is similar to mode text_with_checks but comprises less checks for errors. In this
mode each value must be provided in a separate line. Loading a file in this mode is faster
compared to the text_with_checks mode. The example from above would look as follows in
text_raw mode:

• binary

The binary mode assumes a binary file, where 8 bytes are used for each kernel entry of a LUT
element. If the kernel entry values can be represented by less than 64 bit, the unused bits are
ignored. This is the fastest method of writing values into the LUT. The example from above would
look as follows in binary mode:

Library Memory 1048

VisualApplets User Documentation Release 3

In all three modes the number of entries in the files must not exceed the number of LUT elements
and the number of values must be a multiple of KernelSize. Thus, the files must contain up to
2^InputBitWidth * KernelSize values.

When an init file contains 2^InputBitWidth * KernelSize values, then the LUT memory gets
overwritten completely, starting from address 0. In this case, the parameter InitAddress is not
touched.

When an init file contains less entries, then partial initialization is performed. Then, initialization
is done starting from the address given by the InitAddress parameter. The parameter InitAddress
is automatically incremented to the next position after the last written LUT entry. This allows to
monitor how many LUT entries were written. When the file contains more than (2^InputBitWidth
- InitAddress) * KernelSize values, then initialization will stop after writing the last entry of the
LUT and InitAddress is set to 0.

Parameter InitFilename specifies the file that contains the initial values. Finally, writing value 1 to
parameter LoadInitFile starts reading the file and, if accepted, writing the values to the hardware.
Writing 0 to parameter LoadInitFile doesn't cause the loading of the values. This can be useful if
you do not want the initial file to be loaded to the hardware during the applet initialization process.
During simulation, loading an init file is done the same way as during runtime. For partial
configuration or in case of errors, it may be useful to check the output in the simulation log (you
may need to activate Show Details in the Simulation dialog).

Note that the DRAM technology offers very poor performance for random access. In a worst case
scenario when each consecutive access to the DRAM causes a page miss and requires a new row
activation, the DRAM throughput suffers 90% loss of the maximal performance, resulting in about
10% bandwidth usage.

The input link can handle dynamic line widths, as well as empty lines and empty frames. Consequently,
the output link can handle the same image dimensions.

Library Memory 1049

VisualApplets User Documentation Release 3

27.20.1. Bandwidth Optimization

For optimal performance, the used number of data bits should match as closely as possible the
number provided in the module parameter RamDataWidth. The maximum bandwidth going through
the operator is reached if the product of bit width and kernel size is equal to the internal RAM port
width RamDataWidth.

Available for Hardware Platform
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

27.20.2. I/O Properties

Property Value
Operator Type M
Input Link I, read address input
Output Link O, image data output

27.20.3. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, RAM Address Width] [1, 64]
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 [1, Ram Data Width / Bit Width]
Kernel Rows 1 [1, Ram Data Width / Bit

Width / Kernel Columns]
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

The allowed input bit width depends on the physical memory of the frame grabber and on how
many operators share the RAM. The RamAddressWidth parameter provides the maximum address
bits that can be used. Note that this number may change depending on the number of RAM-based
operators in the design.
The allowed output bit width depends on the physical memory of the frame grabber. The bit width
is limited to 64 bit but several kernel components may be stored. The product of (bit width *
kernel size) must not exceed the native RAM data width shown in parameter RamDataWidth.

27.20.4. Parameters

RamDataWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of data bits that can be used at the RAM interface. It's the
maximum number of bits the output can provide (if kernels are used properly).

Library Memory 1050

VisualApplets User Documentation Release 3

RamAddressWidth
Type static write parameter
Default 0
Range Integer number

This parameter provides the number of address bits that can be used.

InitAddress
Type dynamic write parameter
Default 0
Range [0, 2^InputBitWidth-1]

This parameter defines the address of the data defined by the parameter InitData. See the
descriptions above.

InitData
Type dynamic write parameter
Default 0
Range [0, 2^OutputBitWidth-1]

This parameter defines the data that is written to the address defined by the parameter
InitAddress. Writing to this parameter starts the actual writing into hardware. See the descriptions
above.

InitFileLoadMode
Type dynamic write parameter
Default text_with_checks
Range {text_with_checks, text_raw, binary}

This parameter defines the file format and the mode of the file that is loaded into the lookup table.
See the descriptions above.

InitFileName
Type dynamic write parameter
Default InitRamLut.txt
Range

This parameter defines the name of the initialization file.

LoadInitFile
Type dynamic write parameter
Default 0
Range [0, 1]

To start loading the file specified by the InitFileName parameter into the LUT, write the value 1 to
this parameter. See the descriptions above.

Library Memory 1051

VisualApplets User Documentation Release 3

27.21. Operator ROM

Operator Library: Memory

The operator ROM is a lookup table of dynamic content. The values of the input link define the addresses
of the LUT. The output link provides the value stored at this address. The input bit width defines the
number of addresses in the LUT. The output bit width defines the value range of each LUT element.
Both can be set to any value. The LUT content can be changed before the build, or dynamically during
runtime.

For information on the latency of the operator, see Table 27.2, 'Individual Latencies of the Operators
in Library Memory'.

Same as Operator LUT

The ROM operator is identical to operator LUT.

27.21.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, data input

27.21.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 16] [1, 63 unsigned/ 64 signed]
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

27.21.3. Parameters

ROMcontent
Type dynamic/static read/write parameter
Default identity function
Range [0, 2^OutputBitWidth-1]

This field parameter defines the LUT content. The number of field values is defined by the
operator's input bit width.

Learn on how to configure field parameters in Section 3.7.1.3, 'Parameter Editing'.

Library Memory 1052

VisualApplets User Documentation Release 3

ROMcontent

Input Bit Width Changed

If the input bit width is changed, the number of field elements in this parameter
changes. If the input bit width is reduced, values are truncated and deleted. If the
input bit width is increased, the new field elements are set to 0.

ImplementationType
Type static write parameter
Default AUTO
Range (AUTO, BRAM, LUTRAM)

Parameter ImplementationType influences the implementation strategy of the operator, i.e., which
memory elements are used for implementing the operator.

You can select one of the following values:

AUTO: The optimal implementation strategy is selected automatically based on the parametrization
of the connected links.

BRAM: The operator uses the Block RAM of the FPGA.

LUTRAM: The operator uses the LUT RAM of the FPGA.

Use AUTO in General

Normally, the parameter should be set to AUTO. In special cases, i.e., if one kind of
FPGA ressource runs short in a design, you can manually influence the FPGA resource
management using the values BRAM or LUTRAM.

27.21.4. Examples of Use

The use of operator ROM is shown in the following examples:

• Section 12.11.1, 'Lookup Table 8 Bit'

Examples - Shows the use of a 8 Bit to 8 Bit lookup table.

• Section 12.11.2, 'Lookup Table 10 to 16 Bit'

Examples - Shows the use of a lookup table with 10 bit input and 16 bit output.

• Section 12.11.4, 'Knee-Lookup Table 24 Bit Color'

Examples - In this example three lookup tables are used for RGB color correction.

Library Parameters 1053

VisualApplets User Documentation Release 3

28. Library Parameters

Library Parameters provides several major advantages for the parametrization of designs during design
time AND during runtime:

• It allows to set paths to specific parameters which may be deeply embedded in hierarchical structures.
This way, even parameters in protected hierarchical boxes (or in protected hierarchical boxes that
are nestled in other protected hierarchical boxes) can be set and reset during runtime, since their
parametrization interface is lifted up in the hierarchy to a hierarchical level that is not access
restricted.

• You can set up nets and/or chains of parameters in your design, allowing to forward one parameter
value to various other operators. This way, you can simplify the parametrization of the final applet:
The final user may, e.g., set one parameter once, and, triggered from this write process, various
other parameters within the design will be set accordantly without any further user interaction.

• With the translator operators of the library, you can not only forward parameter values, but make
the design calculate new values out of the current values of various parameters and write the result
to still other parameters any place in the design. You define the formulas yourself. The syntax of the
formulas complies to the GenICam standard (GenICam API version 2.0) and is described below.

The good thing about the parameters library is that you can set up connections (nets or chains) between
parameter values in your design without actually touching the data flow structure of the design.

Library Parameters contains seven reference operators and four translation operators. Find more
information about both types of operators below.

You find example designs using the operators of the Parameters Library
in your VisualApplets installation: <installation_directory>\VisualApplets\Examples
\AdvancedVAFunctions\Parameters Library.

Availability

To use the Parameters library, you need either an Expert license, a Parameter Module
license, or the VisualApplets 4 license.

**

The Reference Operators

The Reference operators of the Parameters library allow a 1:1 mapping of an operator parameter to
the map parameter Value (or Field) of the reference operator. You specify the referenced parameter
(path and name) in parameter "Reference".

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: "DisplayHierarchy" and "DisplayName". In
"DisplayHierarchy" you address a hierarchical box within the same process the reference operator
itself is located in. In parameter "DisplayName" you set up the name for the target parameter. If
"DisplayHierarchy" and "DisplayName" are both set, the parameter defined by "DisplayName" will
be available in the hierarchical box addressed by "DisplayHierarchy". If "DisplayName" is empty, no
parameter is created. If "DisplayName" is set, but "DisplayHierarchy" is empty, the parameter defined
by "DisplayName" is added to the parent hierarchy (i.e., the hierarchical box the reference operator
itself is located in).

This allows you to make a parameter of your design available on any hierarchical level (of the design)
you want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Library Parameters 1054

VisualApplets User Documentation Release 3

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
"DisplayName" and "DisplayHierarchy". This is especially important when protected hierarchical boxes
are built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
"Value", or target parameter), the value is changed in all other connected parameters,
too.

To set up map parameters, you simply proceed 2 to 3 steps:

1. Instantiate a reference operator.

2. Define a source parameter (e.g., a parameter that is deeply nestled within the hierarchy).
Immediately, the value of the source parameter is mirrored in the map parameter of the reference
operator instance.

3. (Optionally) define name and location (path to target hierarchical box and parameter name) of a
second map parameter.

All map parameters are treated as normal parameters by the environment. You can access them via
the Framegrabber API or the Framegrabber SDK tools (microDiagnostics and microDisplay) the same
way you access "original" operator parameters.

Each instance of a reference operator allows to set up an 1:1 relation between the value of any
parameter in your design and the map parameter (parameter Value) of the reference operator instance.

Data types supported by reference operators:

To create map parameters, you first need to instantiate one reference operator. For each possible data
type, you have one reference operator available:

Operator Name Data types that are supported by this
operator

IntParamReference Integer (VA_SINT, VA_UINT)

EnumParamReference Enumeration (VA_ENUM)

FloatParamReference Floating Point (VA_DOUBLE)

IntFieldParamReference Integer Fields (VA_SINTFIELD, VA_UINTFIELD)

FloatFieldParamReference Floating Point Fields (VA_DOUBLEFIELD)

StringParamReference String
(VA_STRING,VA_FILENAME,VA_METADATA)

ResourceReference Integer (VA_SINT, VA_UINT)

Table 28.1. Data types supported by reference operators

Procedure for creating map values with Reference Operators:

1. Instantiate the reference operator of the data type you need.

2. Double click on the reference operator instance to open its module properties.

Library Parameters 1055

VisualApplets User Documentation Release 3

3. In Parameter Reference, specify the source parameter that you want the reference operator
instance to connect to.

In the example below, an instance of the operator IntParamReference with the name Reference
Operator Example connects to the parameter YLength in module Buffer. In this example, both modules
(Reference Operator Example and Buffer) are located on the same hierarchical level.

Path to referenced parameter:

Referenced parameter:

Syntax for Referencing

The syntax is as follows:

Library Parameters 1056

VisualApplets User Documentation Release 3

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference operator
instance is located in.

<Module> is the name of the module (operator instance or hierarchical box) that contains
the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from design
level (e.g., /Process0/UUT/SetParam.Value).

You can also use ../ to go up a level. However, take care you don't use this option when
designing freely replicable or relocatable modules.

4. Set Parameter Activate to "Yes".

5. Click Apply. The value of the referenced parameter is displayed in parameter Value (wich is the
map parameter).

In our example, the value of parameter YLength in operator Buffer is now also available in parameter
Value of the reference operator instance:

With parameter Value in your reference operator, you can do many things.

You can, for example, make the value you have in parameter Value available in yet another module
(operator instance or hierarchical box) anyplace in your design. To do so:

6. Define the name of a completely new parameter that is to bear the same value as parameter
Value. You do this in parameter DisplayName of the reference operator. You are completely free
in defining the name.

7. Define the module within your design that is to bear this new parameter. You do this in parameter
DisplayHierarchy of the reference operator.

Library Parameters 1057

VisualApplets User Documentation Release 3

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need to
specify the path to the hierarchical box that is to contain the new parameter in parameter
DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same process.
Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

In our example, parameter Value of the reference operator instance is connected to a new parameter
ConnectionToYLengthInModuleBuffer of module ModuleWithConnectedParameter :

If parameter Activate is set to "Yes", after clicking the Apply button, the new parameter is displayed
with the correct value in the connected module:

Library Parameters 1058

VisualApplets User Documentation Release 3

Thus, the new parameter ConnectionToYLengthInModuleBuffer of module
ModuleWithConnectedParameter has the same value as parameter YLength of module Buffer.

The mapping is done by the reference operator instance.

If the connected parameters of any of the three modules is reset, the value is reset in all other modules,
too:

Library Parameters 1059

VisualApplets User Documentation Release 3

Hierarchical Boxes:

The Reference operators of the Parameters library allow you to make a parameter of your design
available on any hierarchical level (of the design) you want. This is especially helpful if you want to
allow parametrization of parameters nestled deeply within protected hierarchical boxes during runtime
(i.e., if you want to make them available as dynamic write parameters). To allow easy parametrization
of hierarchical boxes, hierarchical boxes can carry parameters now (as parameters in the Properties
of the hierarchical box itself).

The Reference operators allow to set paths from the surface of a hierarchical box (Properties of the
hierarchical box) to specific parameters which may be deeply embedded. This way, even parameters
in protected hierarchical boxes (or in protected hierarchical boxes that are nestled in other protected
hierarchical boxes) can be set and reset during runtime, since their parametrization interface is lifted
up in the hierarchy to a hierarchical level that is not access restricted.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value (or Field) in a reference operator, or reference the parameter you have defined in the
parameters DisplayName and DisplayHierarchy of the reference operator. This is especially important
when protected hierarchical boxes are built up out of other protected hierarchical boxes.

Library Parameters 1060

VisualApplets User Documentation Release 3

In our example, this means you can reference parameter Value in module ReferenceOperatorExample
as well as parameter ConnectionToYLengthInModuleBuffer in module ModuleWithConnectedParameter.

Reference to parameter Value of reference operator instance ReferenceOperatorExample:

Reference to parameter ConnectionToYLengthInModuleBuffer of module
ModuleWithConnectedParameter:

Library Parameters 1061

VisualApplets User Documentation Release 3

Don't Create Reference Loops

Make sure you don't implement reference loops, like ModuleA.Value referencing
ModuleB.Value, and ModuleB.Value referencing ModuleA.Value.

Via the six available reference operators, all data types are provided that can occur as parameter
values in protected hierarchical boxes.

**

The Translation Operators

The translation operators of the parameters library allow translated access to parameters of one or
several other operators.

For calculation, you define formulas. The syntax for these formulas complies to GenICam API version
2.0 and is described below.

Read Action:

In parameter ReadAction, you define what happens for a read access to parameter Value of the
translation operator.

One of the main differences to the reference operators is that translation operators don't simply hold
a value. Instead, the value of parameter Value is calculated out of a formula. This formula you define
in parameter ReadAction.

As soon as there happens a read access to parameter Value, the formula you defined in ReadAction is
carried out and the result is forwarded to the element asking for the value.

Library Parameters 1062

VisualApplets User Documentation Release 3

The formula can contain values of operator parameters anywhere in the design. As soon as one of
these values changes, the calculation of translation operator's parameter Value will end up with a new
result (different to the value parameter Value held before).

The formula can not only incorporate the values of parameters, but also specific properties of
parameters, such as minimal value, maximal value, step size, or the numerical value of enumeration
items.

Write Action

In parameter WriteAction, you define what happens during a write access to parameter Value of the
translation operator.

In contrast to the reference operators you do not simply forward the value of parameter Value to
another parameter in the design. Instead, the value of parameter Value is used for a set of write
actions you define in parameter WriteAction of the translation operator. Write actions are composed of
one or several equations. With the left side of these equations you define which parameter of which
operator receives the result of the calculation. If you define more than one equation separate the
equations via semicolon.

As soon as the there happens a write access to parameter Value, the formula(s) on the right side of the
equations you defined in parameter WriteAction is/are carried out and the result(s) is/are forwarded
to the parameters specified on the left side of the equations.

The formula can refer to values of operator parameters anywhere in the design. As soon as one of
these values changes, the calculation results will differ when you re-write the same value as before
to the Value parameter.

The formula can not only incorporate the values of parameters, but also specific properties of
parameters, such as minimal value, maximal value, step size, or the numerical value of enumeration
items.

Data Types:

The operator you select defines the data type of its parameter Value, i.e.:

Library Parameters 1063

VisualApplets User Documentation Release 3

Operator IntParamTranslator -> integer value

Operator FloatParamTranslator -> float integer value

Operator EnumParamTranslator -> value of an enumeration

However, although the operator defines the type of its parameter Value, it does not restrict the data
types of the parameters which are accessed during the write or read operations. For example, operator
IntParamTranslator defines that its parameter Value is of type integer; but the formulas defined in the
operator can contain access to, e.g., parameters of type double.

Formulas for Calculation of Value Range

You can also add formulas to calculate the current value range of parameter Value. You define the
according formulas in the parameters RangeFrom, RangeTo, and RangeIncrement (step size).

The formulas can contain values of module parameters anywhere in the design, as well as specific
properties of these parameters, such as minimal value, maximal value, step size, or the numerical
value of enumeration items.

Syntax for Translation Operator Parameters

The syntax complies to the GenICam API standard in version 2.0. The allowed formula
elements are identical to the formula elements defined in the GenICam standard. Find an
explicite description in the individual documentation on operators FloatParamTranslator
and IntParamTranslator.

Paths to Parameters

To access an operator parameter any place within your design, you need to provide the
path to this parameter in your formula.

For access to an operator's parameter, you use the following construct:

"PathToModule": Here, you define the relative path to the operator who's parameter you
want to access. The path is relative to the hierarchical level the translation operator itself
is located. You also define the name of the accessed operator. Use a slash as hierarchy
separator.

"Module": Name of module.

As name for the translation operator instance itself you use the name "this".

Keep your Modules Independent

It is not allowed to define a path towards a hierarchical level higher than
the hierarchical level the translation operator is located. This rule follows
the logic that a hierarchical module is not allowed to know anything about
the environment it is instantiated in, because only in this case it can be
used as a freely relocatable and replicable module.

Access to Parameter Properties

The formulas can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, or step size:

• ${PathToModule/Module.ParamName.From} or ${PathToModule/
Module.ParamName.Min}: minimal valid value of parameter PathToModule/
Module.ParamName.

Library Parameters 1064

VisualApplets User Documentation Release 3

• ${PathToModule/Module.ParamName.To} or ${ PathToModule/
Module.ParamName.Max}: maximum valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.Inc}: Increment (step size) between two valid
values of parameter PathToModule/Module.ParamName.

• ${PathToModule/Module.ParamName.Enum("EnumName")}: Integer value of
enumeration name EnumName.

Syntax for Write Access Formulas

Equations for write actions you define in parameter WriteAction. They have the following
syntax:

Here, you can define multiple equations for multiple target parameters. Use a semicolon
as separator between the individual equations.

"this" refers to the translation operator instance itself.

Example for a WriteAction Equation:

Example:

Syntax for Read Access Equations

Library Parameters 1065

VisualApplets User Documentation Release 3

Equations for read actions you define in parameter ReadAction. They have the following
syntax:

Example for a ReadAction equation:

The following list summarizes all Operators of Library Parameters

Operator Name Short Description available
since

EnumParamReference Generates map parameter out of a reference
parameter that is of data type VA_ENUM. Version 3.0.1

EnumParamTranslator

Generates translated map parameter of type
VA_ENUM. Uses parameter of type VA_ENUM to
create multiple translated map parameters in other
modules.

Version 3.0.1

EnumVariable Generates a software variable. Version 3.1

FloatFieldParamReferenceGenerates a map parameter out of a reference
parameter of type VA_DOUBLEFIELD. Version 3.0.1

FloatParamReference Generates a map parameter out of a reference
parameter of type VA_DOUBLE. Version 3.0.1

FloatParamTranslator

Generates translated map parameter of type
VA_DOUBLE. Uses parameter of type VA_DOUBLE
to create multiple translated map parameters in
other modules.

Version 3.0.1

FloatVariable Generates a software variable. Version 3.1

IntFieldParamReference
Generates a map parameter out of a
reference parameter of type VA_SINTFIELD or
VA_UINTFIELD.

Version 3.0.1

IntParamReference
Generates an Int64 map parameter out of a
reference parameter of type VA_SINT, VA_UINT, or
VA_ENUM.

Version 3.0.1

IntParamTranslator

Generates translated map parameter of type
VA_SINT. Uses parameter of type VA_SINT to
create multiple translated map parameters in other
modules.

Version 3.0.1

IntVariable Generates a software variable. Version 3.1

Library Parameters 1066

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

IntFieldVariable This operator generates a software variable field. Version 3.5

LinkProperties Allows access to properties of connected link. Version 3.0.1

LinkParamTranslator This operator allows reading or writing properties of
a connected link and can perform write actions. Version 3.3.0

StringParamReference
Generates a map parameter (string) out of
a reference parameter of type VA_STRING,
VA_FILENAME, or VA_METADATA.

Version 3.0.1

ResourceReference This operator generates a map parameter (int) out
of a reference to a device resource mapping. Version 3.3.0

IntParamSelector

This operator generates an Int64-map parameter
which can be switched between several referenced
parameters of type VA_SINT, VA_UINT, or
VA_ENUM.

Version 3.3.0

FloatParamSelector
This operator generates a map parameter which
can be switched between several referenced
parameters of type VA_DOUBLE.

Version 3.3.0

Table 28.2. Operators of Library Parameters

Library Parameters 1067

VisualApplets User Documentation Release 3

28.1. Operator EnumParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter Value) out of a module parameter
located anywhere in the design. You specify the referenced parameter (path and name) in parameter
Reference.

Availability

To use the EnumParamReference operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The referenced parameter is of type VA_ENUM. The map parameter mirrors all properties of the
referenced parameter and is also of type VA_ENUM.

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a parameter of your design available on any hierarchical level (of the design)
you want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Value, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1068

VisualApplets User Documentation Release 3

Map parameter "SignalParamRef" is now available in Process0/Level0/Level1:

28.1.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

Library Parameters 1069

VisualApplets User Documentation Release 3

28.1.2. Supported Link Format

None

28.1.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the referenced parameter (defined in parameter Reference)
at another point in the design (in addition to the reference operator instance itself), you need to
define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,

Library Parameters 1070

VisualApplets User Documentation Release 3

DisplayHierarchy
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Map parameter for access from and to the referenced parameter. This parameter mirrors all
properties of the referenced parameter.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/Signal.Mode).

Library Parameters 1071

VisualApplets User Documentation Release 3

Reference
You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

28.1.4. Examples of Use

The use of operator EnumParamReference is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 14.1, 'Parameter Redirection'

Examples - Demonstration how to use the parameter reference operators.

Library Parameters 1072

VisualApplets User Documentation Release 3

28.2. Operator EnumParamTranslator

Operator Library: Parameters

Operator EnumParamTranslator allows translated access (read and write) to parameters of one or
several other operators. For calculation, you define formulas. The syntax for these formulas complies
to GenICam API version 2.0.

Availability

To use the EnumParamTranslator operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

Operator EnumParamTranslator generates a map parameter of type VA_ENUM. The name of the map
parameter is Value.

Although the operator defines the type of its parameter Value to be of type VA_ENUM, it does not
restrict the data types of the parameters which are accessed during the write or read operations. For
example, the formulas defined in the operator can contain access to parameters of type float.

Read Action

In parameter ReadAction, you define what happens for a read access to parameter Value of the
translation operator. Parameter Value doesn't simply hold a value. Instead, the value of parameter
Value is calculated out of a formula. This formula you define in parameter ReadAction. As soon as there
happens a read access to parameter Value, the formula you defined in ReadAction is carried out and
the result is forwarded to the element asking for the value.

The formula can contain values of operator parameters anywhere in the design. As soon as one of these
values changes, the calculation of translation operator's parameter Value will end up with a new result
(different to the value parameter Value held before). The formula can not only incorporate the values
of parameters, but also specific properties of parameters, such as minimal value, maximal value, step
size, or the numerical value of enumeration items.

Write Action

In parameter WriteAction, you define what happens during a write access to parameter Value of the
translation operator. In contrast to the reference operators you do not simply forward the value of
parameter Value to another parameter in the design. Instead, the value of parameter Value is used for
a set of write actions you define in parameter WriteAction of the translation operator. Write actions are
composed of one or several equations. With the left side of these equations you define which parameter
of which operator receives the result of the calculation. If you define more than one equation, separate
the equations via semicolon. As soon as the there happens a write access to parameter Value, the
formula(s) on the right side of the equations you defined in parameter WriteAction is/are carried out
and the result(s) is/are forwarded to the parameters specified on the left side of the equations.

The formula can refer to values of operator parameters anywhere in the design. As soon as one of
these values changes, the calculation results will differ when you re-write the same value as before to

Library Parameters 1073

VisualApplets User Documentation Release 3

the Value parameter. The formula can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, step size, or the numerical value of
enumeration items.

Syntax for Translation Operator Parameters

The syntax complies to the GenICam API standard in version 2.0. The allowed formula
elements are identical to the formula elements defined in the GenICam standard.

Paths to Parameters

To access an operator parameter any place within your design, you need to provide the
path to this parameter in your formula.

For access to an operator's parameter, you use the following construct:

"PathToModule": Here, you define the relative path to the operator who's parameter you
want to access. The path is relative to the hierarchical level the translation operator itself
is located. You also define the name of the accessed operator. Use a slash as hierarchy
separator.

"Module": Name of module.

As name for the translation operator instance itself you use the name "this".

Keep your Modules Independent

It is not allowed to define a path towards a hierarchical level higher than
the hierarchical level the translation operator is located. This rule follows
the logic that a hierarchical module is not allowed to know anything about
the environment it is instantiated in, because only in this case it can be
used as a freely relocatable and replicable module.

Access to Parameter Properties

The formulas can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, or step size:

• ${PathToModule/Module.ParamName.From} or ${PathToModule/
Module.ParamName.Min}: minimal valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.To} or ${ PathToModule/
Module.ParamName.Max}: maximum valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.Inc}: Increment (step size) between two valid
values of parameter PathToModule/Module.ParamName.

• ${PathToModule/Module.ParamName.Enum("EnumName")}: Integer value of
enumeration name EnumName.

Library Parameters 1074

VisualApplets User Documentation Release 3

Syntax for Write Access Equations

Equations for write actions you define in parameter WriteAction. They have the following
syntax:

Here, you can define multiple equations for multiple target parameters. Use a semicolon
as separator between the individual equations.

"this" refers to the translation operator instance itself.

Example for a WriteAction Equation:

Example:

Syntax for Read Access Equation

The equation for the read action you define in parameter ReadAction. The equation always
starts with "${this.Value}=" . It has the following syntax:

Library Parameters 1075

VisualApplets User Documentation Release 3

Example for a ReadAction equation:

Syntax for Defining the Enumeration in Parameter "Range"

Use the following Syntax: "<String1>"=0;"<String2>"=1; "<String3>"=2;

Example:

Referencing Map Parameters

You can define a target within the design hierarchy where map parameter Value will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the translation operator
itself is located in. In parameter DisplayName you set up the name for the target parameter. If
DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName will be
available in the hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter
is created. If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName
is added to the parent hierarchy (i.e., the hierarchical box the translation operator itself is located in).

This allows you to make map parameter Value accessible on any hierarchical level (of the design)
you want. This is especially helpful when workin with protected hierarchical boxes. You can make the
parameter available directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content
of parameter Value in a translation operator, or reference the parameter you have defined in
the parameters DisplayName and DisplayHierarchy. This is especially important when protected
hierarchical boxes are built up out of other protected hierarchical boxes.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.2.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.2.2. Supported Link Format

None

28.2.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other operator settings are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

Library Parameters 1076

VisualApplets User Documentation Release 3

Status
This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter Value at another point in the design, you
need to define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default Default
Range

Parameter for access to other parameters via the equations specified for read and write accesses.

Library Parameters 1077

VisualApplets User Documentation Release 3

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Range
Type static write parameter
Default "Default"=0;
Range

Definition of name-value combinations.

WriteAction
Type static write parameter
Default
Range

Definition of equations for translation during write access to parameter Value.

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

ReadAction
Type static write parameter
Default
Range

Definition of equation for translation during read access to parameter Value.

The equation always starts with "${this.Value}=" .

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameters (via read and write equations) is activated.

No = Access to and from referenced parameters (via read and write equations) is de-activated and
parameter Status disabled. Parameters DisplayName and DisplayHierarchy have no effect.

28.2.4. Examples of Use

The use of operator EnumParamTranslator is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Parameters 1078

VisualApplets User Documentation Release 3

• Section 14.2, 'Parameter Translation'

Examples - Demonstration how to use the parameter translation operators for manipulation of
parameters.

Library Parameters 1079

VisualApplets User Documentation Release 3

28.3. Operator EnumVariable

Operator Library: Parameters

Operator EnumVariable generates a software variable.

Availability

To use the EnumVariable operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

You can define a target within the design hierarchy where the variable will be visible and accessible.
The target is defined by two parameters: DisplayHierarchy and DisplayName. In DisplayHierarchy you
address a hierarchical box within the same process the operator itself is located in. In parameter
DisplayName you set up the name for the target parameter. If DisplayHierarchy and DisplayName are
both set, the parameter defined by DisplayName will be available in the hierarchical box addressed
by DisplayHierarchy. If DisplayName is empty, no parameter is created. If DisplayName is set, but
DisplayHierarchy is empty, the parameter defined by DisplayName is added to the parent hierarchy
(i.e., the hierarchical box the operator itself is located in).

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.3.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.3.2. Supported Link Format

None

28.3.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter at another point in the design (in addition
to the operator instance itself), you need to define a new parameter. Specify here the name of this
new parameter.

If this field is empty, no new parameter is created.

Library Parameters 1080

VisualApplets User Documentation Release 3

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the operator instance. (Keep in mind
this is not possible if the operator instance is located on the highest (process) level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default Default
Range

Map parameter for access from and to the variable. This parameter mirrors all properties of the
variable.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Range
Type static write parameter
Default "Default"=0;
Range

Library Parameters 1081

VisualApplets User Documentation Release 3

Range
Definition of name-value combinations.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from the variable (via map parameter Value) is activated.

No = Access to and from the variable is de-activated and parameter Status is disabled. Parameters
DisplayName and DisplayHierarchy have no effect.

Library Parameters 1082

VisualApplets User Documentation Release 3

28.4. Operator FloatFieldParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter Field) out of a field parameter located
anywhere in the design. You specify the referenced parameter (path and name) in parameter
Reference.

Availability

To use the FloatFieldParamReference operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The referenced field parameter can be of one of type VA_DOUBLEFIELD. The map parameter mirrors
all properties of the referenced parameter.

Since there are no field parameters specified in the GenICam standard, the created GenICam API and
the created Framegrabber API code (FgLib) vary on this point. In the GenICam API code, the two
parameters <DisplayName>_Index und <DisplayName>_Value are created.

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a field parameter of your design available on any hierarchical level (of the
design) you want. For example, you can make the field parameters of modules within a protected
hierarchical box available for parametrization directly under the properties of the protected hierarchical
box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Field in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Field, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1083

VisualApplets User Documentation Release 3

The map parameter TransformCoeff is now available in Process0/Level0/Level1:

Library Parameters 1084

VisualApplets User Documentation Release 3

28.4.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.4.2. Supported Link Format

None

28.4.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

Library Parameters 1085

VisualApplets User Documentation Release 3

DisplayName
If you want to grant access from and to the referenced field parameter (defined in parameter
Reference) at another point in the design (in addition to the reference operator instance itself), you
need to define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Index
Type dynamic write parameter
Default 0
Range UInt

Set the field index here.

Value
Type dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Library Parameters 1086

VisualApplets User Documentation Release 3

Value
Set or read the field entry addressed by parameter Index.

Field
Type static,dynamic, write, read parameter
Default none
Range array

Map parameter for access to referenced field parameter. This parameter mirrors all properties of the
referenced field parameter.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/Transform.Coefficients).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No

Library Parameters 1087

VisualApplets User Documentation Release 3

Activate
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

28.4.4. Examples of Use

The use of operator FloatFieldParamReference is shown in the following examples:

• Section 14.1, 'Parameter Redirection'

Examples - Demonstration how to use the parameter reference operators.

Library Parameters 1088

VisualApplets User Documentation Release 3

28.5. Operator FloatParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter Value) out of a module parameter
located anywhere in the design. You specify the referenced parameter (path and name) in parameter
Reference.

Availability

To use the FloatParamReference operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The referenced parameter is of type VA_DOUBLE. The map parameter mirrors all properties of the
referenced parameter and is also of type VA_DOUBLE.

You can define a target within the design hierarchy where the selected parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a parameter of your design available on any hierarchical level (of the design)
you want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Value, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1089

VisualApplets User Documentation Release 3

Map parameter "WB_Red" is now available in Process0/Level0/Level1:

28.5.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

Library Parameters 1090

VisualApplets User Documentation Release 3

28.5.2. Supported Link Format

None

28.5.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the referenced parameter (defined in parameter Reference)
at another point in the design (in addition to the reference operator instance itself), you need to
define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,

Library Parameters 1091

VisualApplets User Documentation Release 3

DisplayHierarchy
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range double

Map parameter for access from and to the referenced parameter. This parameter mirrors all
properties of the referenced parameter.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

Library Parameters 1092

VisualApplets User Documentation Release 3

Reference
<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/WhiteBalance.RedCoefficient).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

28.5.4. Examples of Use

The use of operator FloatParamReference is shown in the following examples:

• Section 14.1, 'Parameter Redirection'

Examples - Demonstration how to use the parameter reference operators.

Library Parameters 1093

VisualApplets User Documentation Release 3

28.6. Operator FloatParamTranslator

Operator Library: Parameters

Operator FloatParamTranslator allows translated access (read and write) to parameters of one or
several other operators. For calculation, you define formulas. The syntax for these formulas complies
to GenICam API version 2.0.

Availability

To use the FloatParamTranslator operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

Operator FloatParamTranslator generates a map parameter of type VA_DOUBLE. The name of the map
parameter is Value.

Although the operator defines the type of its parameter Value to be of type VA_DOUBLE, it does not
restrict the data types of the parameters which are accessed during the write or read operations.

Read Action

In parameter ReadAction, you define what happens for a read access to parameter Value of the
translation operator. Parameter Value doesn't simply hold a value. Instead, the value of parameter
Value is calculated out of a formula. This formula you define in parameter ReadAction. As soon as there
happens a read access to parameter Value, the formula you defined in ReadAction is carried out and
the result is forwarded to the element asking for the value.

The formula can contain values of operator parameters anywhere in the design. As soon as one of these
values changes, the calculation of translation operator's parameter Value will end up with a new result
(different to the value parameter Value held before). The formula can not only incorporate the values
of parameters, but also specific properties of parameters, such as minimal value, maximal value, step
size, or the numerical value of enumeration items.

Write Action

In parameter WriteAction, you define what happens during a write access to parameter Value of the
translation operator. In contrast to using the reference operators, you do not simply forward the value
of parameter Value to another parameter in the design. Instead, the value of parameter Value is
used for a set of write actions you define in parameter WriteAction of the translation operator. Write
actions are composed of one or several equations. On the left-hand side of these equations you define
which parameter of which operator receives the result of the calculation. If you define more than
one equation, separate the equations via semicolon. As soon as the there happens a write access to
parameter Value, the formula(s) on the right-hand side of the equations you defined in parameter

Library Parameters 1094

VisualApplets User Documentation Release 3

WriteAction is/are carried out and the result(s) is/are forwarded to the parameters specified on the
left-hand side of the equations.

The formula can refer to values of operator parameters anywhere in the design. As soon as one of
these values changes, the calculation results will differ when you re-write the same value as before to
the Value parameter. The formula can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, step size, or the numerical value of
enumeration items.

Formulas for Calculation of Value Range

You can also add formulas to calculate the current value range of parameter Value. You define the
according formulas in the parameters RangeFrom, RangeTo, and RangeIncrement (step size). The
formulas can contain values of module parameters anywhere in the design, as well as specific properties
of these parameters, such as minimal value, maximal value, step size, or the numerical value of
enumeration items.

Formula Syntax: Mathematical Operations

The syntax complies to the GenICam API standard in version 2.0. The allowed formula
elements are identical to the formula elements defined in the GenICam standard:

Basic operations:
() brackets

+ - * / addition, subtraction, multiplication,
division

% remainder

** power

& | ^ ~ bitwise: and / or / xor / not

<> = > < <= >= logical relations: not equal / equal /
greater / less / less or equal / greater or
equal

&& || logical and / logical or

<< >> shift left / shift right

Table 28.3. Basic operations

Conditional operator

<condition> ? <true_expr> : <false_expr>

Example:

${target.Value} = (${this.Value} > 0) ? 1 : 0;

Functions:
SGN(x) return sign of x. Returns +1 for positive

argument and -1 for negative argument

NEG(x) swap sign of x

ABS(x) return absolute value of x

SQRT(x) return square root of x

TRUNC(x) truncate x, which means returning the
nearest integral value that is not larger in
magnitude than x

Library Parameters 1095

VisualApplets User Documentation Release 3

FLOOR(x) Round downward, returning the largest
integral value that is not greater than x

CEIL(x) Round upward, returning the smallest
integral value that is not less than x

ROUND(x,precision) round x to the number of decimal
fractional digits given by precision, with
halfway cases rounded away from zero

SIN(x) return sine of an angle of x radians

COS(x) return cosine of an angle of x radians

TAN(x) return the tangent of an angle of x radians

ASIN(x) return the principal value of the arc sine of
x, expressed in radians

ACOS(x) return the principal value of the arc cosine
of x, expressed in radians

ATAN(x) return the principal value of the arc
tangent of x, expressed in radians

EXP(x) return the base-e exponential function of
x, which is e raised to the power x: ex

LN(x) return the natural logarithm of x The
natural logarithm is the base-e logarithm:
the inverse of the natural exponential
function (exp).

LG(x) return the common (base-10) logarithm of
x

E() return Euler's number,
2.7182818284590451

PI() return circle constant,
3.1415926535897931

Table 28.4. Functions

Example:

${target.Value} = NEG(${this.Value})

Paths to Parameters

To access an operator parameter any place within your design, you need to provide the
path to this parameter in your formula.

For access to an operator's parameter, you use the following construct:

"PathToModule": Here, you define the relative path to the operator who's parameter you
want to access. The path is relative to the hierarchical level the translation operator itself
is located. You also define the name of the accessed operator. Use a slash as hierarchy
separator.

"Module": Name of module.

As name for the translation operator instance itself you use the name "this".

Library Parameters 1096

VisualApplets User Documentation Release 3

Keep your Modules Independent

It is not allowed to define a path towards a hierarchical level higher than
the hierarchical level the translation operator is located. This rule follows
the logic that a hierarchical module is not allowed to know anything about
the environment it is instantiated in, because only in this case it can be
used as a freely relocatable and replicable module.

Access to Parameter Properties

The formulas can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, or step size:

• ${PathToModule/Module.ParamName.From} or ${PathToModule/
Module.ParamName.Min}: minimal valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.To} or ${ PathToModule/
Module.ParamName.Max}: maximum valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.Inc}: Increment (step size) between two valid
values of parameter PathToModule/Module.ParamName.

• ${PathToModule/Module.ParamName.Enum("EnumName")}: Integer value of
enumeration name EnumName.

Syntax for Write Access Equations

Equations for write actions you define in parameter WriteAction. They have the following
syntax:

Here, you can define multiple equations for multiple target parameters. Use a semicolon
as separator between the individual equations.

"this" refers to the translation operator instance itself.

Example for a WriteAction Equation:

Example:

Library Parameters 1097

VisualApplets User Documentation Release 3

Syntax for Read Access Equation

The equation for the read action you define in parameter ReadAction. The equation always
starts with "${this.Value}=" . It has the following syntax:

Example for a ReadAction equation:

Referencing Map Parameters

You can define a target within the design hierarchy where map parameter Value will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the translation operator
itself is located in. In parameter DisplayName you set up the name for the target parameter. If
DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName will be
available in the hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter
is created. If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName
is added to the parent hierarchy (i.e., the hierarchical box the translation operator itself is located in).

This allows you to make map parameter Value accessible on any hierarchical level (of the design)
you want. This is especially helpful when workin with protected hierarchical boxes. You can make the
parameter available directly under the properties of the protected hierarchical box itself.

Library Parameters 1098

VisualApplets User Documentation Release 3

Mapped parameters can be referenced themselves. Thus, you can reference either the content
of parameter Value in a translation operator, or reference the parameter you have defined in
the parameters DisplayName and DisplayHierarchy. This is especially important when protected
hierarchical boxes are built up out of other protected hierarchical boxes.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.6.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.6.2. Supported Link Format

None

28.6.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other operator settings are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter Value at another point in the design, you
need to define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Library Parameters 1099

VisualApplets User Documentation Release 3

DisplayHierarchy

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range double

Parameter for access to other parameters via the equations specified for read and write accesses.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

RangeFrom
Type static write parameter
Default 0.1
Range

Definition of smallest valid value. You can also enter a formula here.

RangeTo
Type static write parameter
Default 1.0
Range

Definition of biggest valid value. You can also enter a formula here.

Library Parameters 1100

VisualApplets User Documentation Release 3

RangeIncrement
Type static write parameter
Default 0.1
Range

Definition of intervall between valid values (definition of stepsize). You can also enter a formula
here.

WriteAction
Type static write parameter
Default
Range

Definition of equations for translation during write access to parameter Value.

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

ReadAction
Type static write parameter
Default
Range

Definition of equation for translation during read access to parameter Value.

The equation always starts with "${this.Value}=" .

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameters (via read and write equations) is activated.

No = Access to and from referenced parameters (via read and write equations) is de-activated and
parameter Status disabled. Parameters DisplayName and DisplayHierarchy have no effect.

28.6.4. Examples of Use

The use of operator FloatParamTranslator is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 14.2, 'Parameter Translation'

Examples - Demonstration how to use the parameter translation operators for manipulation of
parameters.

Library Parameters 1101

VisualApplets User Documentation Release 3

28.7. Operator FloatVariable

Operator Library: Parameters

Operator FloatVariable generates a software variable.

Availability

To use the FloatVariable operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

You can define a target within the design hierarchy where the variable will be visible and accessible.
The target is defined by two parameters: DisplayHierarchy and DisplayName. In DisplayHierarchy you
address a hierarchical box within the same process the operator itself is located in. In parameter
DisplayName you set up the name for the target parameter. If DisplayHierarchy and DisplayName are
both set, the parameter defined by DisplayName will be available in the hierarchical box addressed
by DisplayHierarchy. If DisplayName is empty, no parameter is created. If DisplayName is set, but
DisplayHierarchy is empty, the parameter defined by DisplayName is added to the parent hierarchy
(i.e., the hierarchical box the operator itself is located in).

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.7.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.7.2. Supported Link Format

None

28.7.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter at another point in the design (in addition
to the operator instance itself), you need to define a new parameter. Specify here the name of this
new parameter.

If this field is empty, no new parameter is created.

Library Parameters 1102

VisualApplets User Documentation Release 3

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the operator instance. (Keep in mind
this is not possible if the operator instance is located on the highest (process) level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range double

Map parameter for access from and to the variable. This parameter mirrors all properties of the
variable.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Library Parameters 1103

VisualApplets User Documentation Release 3

Description
Enter here the description for the parameter Value.

RangeFrom
Type static write parameter
Default 0.1
Range

Definition of smallest valid value. You can also enter a formula here.

RangeTo
Type static write parameter
Default 1.0
Range

Definition of biggest valid value. You can also enter a formula here.

RangeIncrement
Type static write parameter
Default 0.1
Range

Definition of intervall between valid values (definition of stepsize). You can also enter a formula
here.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from the variable (via map parameter Value) is activated.

No = Access to and from the variable is de-activated and parameter Status is disabled. Parameters
DisplayName and DisplayHierarchy have no effect.

Library Parameters 1104

VisualApplets User Documentation Release 3

28.8. Operator IntFieldParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter Field) out of a field parameter located
anywhere in the design. You specify the referenced parameter (path and name) in parameter
Reference.

Availability

To use the IntFieldParamReference operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The referenced field parameter can be of one of the following types: VA_SINTFIELD or VA_UINTFIELD.
The map parameter mirrors all properties of the referenced parameter.

Since there are no field parameters specified in the GenICam standard, the created GenICam API and
the created Framegtabber API code (FgLib) vary on this point. In the GenICam API code, the two
parameters <DisplayName>_Index and <DisplayName>_Value are created.

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a field parameter of your design available on any hierarchical level (of the
design) you want. For example, you can make the field parameters of modules within a protected
hierarchical box available for parametrization directly under the properties of the protected hierarchical
box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Field in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Field, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1105

VisualApplets User Documentation Release 3

The map parameter FieldValues is now available in Process0/Level0/Level1:

28.8.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

Library Parameters 1106

VisualApplets User Documentation Release 3

28.8.2. Supported Link Format

None

28.8.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the referenced field parameter (defined in parameter
Reference) at another point in the design (in addition to the reference operator instance itself), you
need to define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,

Library Parameters 1107

VisualApplets User Documentation Release 3

DisplayHierarchy
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Index
Type dynamic write parameter
Default 0
Range UInt

Set the field index here.

Value
Type dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Set or read the field entry addressed by parameter Index.

Field
Type static,dynamic, write, read parameter
Default none
Range array

Map parameter for access to referenced field parameter. This parameter mirrors all properties of the
referenced field parameter.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

Library Parameters 1108

VisualApplets User Documentation Release 3

Reference

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/LUT.LUTContent).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

28.8.4. Examples of Use

The use of operator IntFieldParamReference is shown in the following examples:

• Section 14.1, 'Parameter Redirection'

Examples - Demonstration how to use the parameter reference operators.

Library Parameters 1109

VisualApplets User Documentation Release 3

28.9. Operator IntParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter Value) out of a module parameter
located anywhere in the design. You specify the referenced parameter (path and name) in parameter
Reference.

Availability

To use the IntParamReference operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

The referenced parameter can be of one of the three following types: VA_SINT, VA_UINT or VA_ENUM.
The map parameter itself is always of type Int64. The map parameter mirrors all properties of the
referenced parameter.

If you want to reference an unsigned parameter that uses the full 64 bit, a re-interpretation of the
value according to type Int64 is necessary.

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a parameter of your design available on any hierarchical level (of the design)
you want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Value, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1110

VisualApplets User Documentation Release 3

Map parameter ParamRef is now available in Process0/Level0/Level1:

28.9.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

Library Parameters 1111

VisualApplets User Documentation Release 3

28.9.2. Supported Link Format

None

28.9.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the referenced parameter (defined in parameter Reference)
at another point in the design (in addition to the reference operator instance itself), you need to
define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,

Library Parameters 1112

VisualApplets User Documentation Release 3

DisplayHierarchy
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Map parameter for access from and to the referenced parameter. This parameter has the same
properties as the referenced parameter.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

Library Parameters 1113

VisualApplets User Documentation Release 3

Reference
<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/SetParam.Value).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

28.9.4. Examples of Use

The use of operator IntParamReference is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 14.1, 'Parameter Redirection'

Examples - Demonstration how to use the parameter reference operators.

• Section 14.3, 'User Library Parameter'

Examples - Demonstration how user library elements can be provided with parameters.

Library Parameters 1114

VisualApplets User Documentation Release 3

28.10. Operator IntParamTranslator
Operator Library: Parameters

Operator IntParamTranslator allows translated access (read and write) to parameters of one or several
other operators. For calculation, you define formulas. The syntax for these formulas complies to
GenICam API version 2.0. A detailed syntax description you find below.

Availability

To use the IntParamTranslator operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

Operator IntParamTranslator generates a map parameter of type VA_SINT. The name of the map
parameter is Value.

Although the operator defines the type of its parameter Value to be of type VA_SINT, it does not restrict
the data types of the parameters which are accessed during the write or read operations. For example,
the formulas defined in the operator can contain access to parameters of type float.

Read Action

In parameter ReadAction, you define what happens for a read access to parameter Value of the
translation operator. Parameter Value doesn't simply hold a value. Instead, the value of parameter
Value is calculated out of a formula. This formula you define in parameter ReadAction. As soon as there
happens a read access to parameter Value, the formula you defined in ReadAction is carried out and
the result is forwarded to the element asking for the value.

The formula can contain values of operator parameters anywhere in the design. As soon as one of these
values changes, the calculation of translation operator's parameter Value will end up with a new result
(different to the value parameter Value held before). The formula can not only incorporate the values
of parameters, but also specific properties of parameters, such as minimal value, maximal value, step
size, or the numerical value of enumeration items.

Write Action

In parameter WriteAction, you define what happens during a write access to parameter Value of the
translation operator. In contrast to using the reference operators, you do not simply forward the value
of parameter Value to another parameter in the design. Instead, the value of parameter Value is
used for a set of write actions you define in parameter WriteAction of the translation operator. Write
actions are composed of one or several equations. On the left-hand side of these equations you define
which parameter of which operator receives the result of the calculation. If you define more than
one equation, separate the equations via semicolon. As soon as the there happens a write access to
parameter Value, the formula(s) on the right-hand side of the equations you defined in parameter
WriteAction is/are carried out and the result(s) is/are forwarded to the parameters specified on the
left-hand side of the equations.

Library Parameters 1115

VisualApplets User Documentation Release 3

The formula can refer to values of operator parameters anywhere in the design. As soon as one of
these values changes, the calculation results will differ when you re-write the same value as before to
the Value parameter. The formula can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, step size, or the numerical value of
enumeration items.

Formulas for Calculation of Value Range

You can also add formulas to calculate the current value range of parameter Value. You define the
according formulas in the parameters RangeFrom, RangeTo, and RangeIncrement (step size). The
formulas can contain values of module parameters anywhere in the design, as well as specific properties
of these parameters, such as minimal value, maximal value, step size, or the numerical value of
enumeration items.

Formula Syntax: Mathematical Operations

The syntax complies to the GenICam API standard in version 2.0. The allowed formula
elements are identical to the formula elements defined in the GenICam standard:

Basic operations:
() brackets

+ - * / addition, subtraction, multiplication,
division

% remainder

** power

& | ^ ~ bitwise: and / or / xor / not

<> = > < <= >= logical relations: not equal / equal /
greater / less / less or equal / greater or
equal

&& || logical and / logical or

<< >> shift left / shift right

Table 28.5. Basic operations

Conditional operator

<condition> ? <true_expr> : <false_expr>

Example:

${target.Value} = (${this.Value} > 0) ? 1 : 0;

Functions:
SGN(x) return sign of x. Returns +1 for positive

argument and -1 for negative argument

NEG(x) swap sign of x

ABS(x) return absolute value of x

SQRT(x) return square root of x

TRUNC(x) truncate x, which means returning the
nearest integral value that is not larger in
magnitude than x

FLOOR(x) Round downward, returning the largest
integral value that is not greater than x

Library Parameters 1116

VisualApplets User Documentation Release 3

CEIL(x) Round upward, returning the smallest
integral value that is not less than x

ROUND(x,precision) round x to the number of decimal
fractional digits given by precision, with
halfway cases rounded away from zero

SIN(x) return sine of an angle of x radians

COS(x) return cosine of an angle of x radians

TAN(x) return the tangent of an angle of x radians

ASIN(x) return the principal value of the arc sine of
x, expressed in radians

ACOS(x) return the principal value of the arc cosine
of x, expressed in radians

ATAN(x) return the principal value of the arc
tangent of x, expressed in radians

EXP(x) return the base-e exponential function of
x, which is e raised to the power x: ex

LN(x) return the natural logarithm of x The
natural logarithm is the base-e logarithm:
the inverse of the natural exponential
function (exp).

LG(x) return the common (base-10) logarithm of
x

E() return Euler's number,
2.7182818284590451

PI() return circle constant,
3.1415926535897931

Table 28.6. Functions

Example:

${target.Value} = NEG(${this.Value})

GenICam Support for Individual Functions

With access via GenICam, support for funtions SGN(x) and NEG(x) is guaranteed. The
other functions mentioned above may or may not be supported by a specific GenICam
implementation. This is of special interest to eVA platforms using the GenICam interface.

Paths to Parameters

To access an operator parameter any place within your design, you need to provide the
path to this parameter in your formula.

For access to an operator's parameter, you use the following construct:

"PathToModule": Here, you define the relative path to the operator who's parameter you
want to access. The path is relative to the hierarchical level the translation operator itself
is located. You also define the name of the accessed operator. Use a slash as hierarchy
separator.

Library Parameters 1117

VisualApplets User Documentation Release 3

"Module": Name of module.

As name for the translation operator instance itself you use the name "this".

Keep your Modules Independent

It is not allowed to define a path towards a hierarchical level higher than
the hierarchical level the translation operator is located. This rule follows
the logic that a hierarchical module is not allowed to know anything about
the environment it is instantiated in, because only in this case it can be
used as a freely relocatable and replicable module.

Access to Parameter Properties

The formulas can not only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, or step size:

• ${PathToModule/Module.ParamName.From} or ${PathToModule/
Module.ParamName.Min}: minimal valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.To} or ${ PathToModule/
Module.ParamName.Max}: maximum valid value of parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.Inc}: Increment (step size) between two valid
values of parameter PathToModule/Module.ParamName.

• ${PathToModule/Module.ParamName.Enum("EnumName")}: Integer value of
enumeration name EnumName.

Syntax for Write Access Equations

Equations for write actions you define in parameter WriteAction. They have the following
syntax:

Here, you can define multiple equations for multiple target parameters. Use a semicolon
as separator between the individual equations.

"this" refers to the translation operator instance itself.

Example for a WriteAction Equation:

Example:

Library Parameters 1118

VisualApplets User Documentation Release 3

Syntax for Read Access Equation

The equation for the read action you define in parameter ReadAction. The equation always
starts with "${this.Value}=" . It has the following syntax:

Example for a ReadAction equation:

Referencing Map Parameters

You can define a target within the design hierarchy where map parameter Value will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the translation operator
itself is located in. In parameter DisplayName you set up the name for the target parameter. If
DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName will be
available in the hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter
is created. If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName
is added to the parent hierarchy (i.e., the hierarchical box the translation operator itself is located in).

This allows you to make map parameter Value accessible on any hierarchical level (of the design)
you want. This is especially helpful when workin with protected hierarchical boxes. You can make the
parameter available directly under the properties of the protected hierarchical box itself.

Library Parameters 1119

VisualApplets User Documentation Release 3

Mapped parameters can be referenced themselves. Thus, you can reference either the content
of parameter Value in a translation operator, or reference the parameter you have defined in
the parameters DisplayName and DisplayHierarchy. This is especially important when protected
hierarchical boxes are built up out of other protected hierarchical boxes.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.10.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.10.2. Supported Link Format

None

28.10.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other operator settings are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter Value at another point in the design, you
need to define a new parameter. Specify here the name of this new parameter.

If this field is empty, no new parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Library Parameters 1120

VisualApplets User Documentation Release 3

DisplayHierarchy

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit)

Parameter for access to other parameters via the equations specified for read and write accesses.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the parameter Value.

RangeFrom
Type static write parameter
Default 0
Range

Definition of smallest valid value. You can also enter a formula here.

RangeTo
Type static write parameter
Default 255
Range

Definition of biggest valid value. You can also enter a formula here.

Library Parameters 1121

VisualApplets User Documentation Release 3

RangeIncrement
Type static write parameter
Default 1
Range

Definition of intervall between valid values (definition of stepsize). You can also enter a formula
here.

WriteAction
Type static write parameter
Default
Range

Definition of equations for translation during write access to parameter Value.

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

ReadAction
Type static write parameter
Default
Range

Definition of equation for translation during read access to parameter Value.

The equation always starts with "${this.Value}=" .

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameters (via read and write equations) is activated.

No = Access to and from referenced parameters (via read and write equations) is de-activated and
parameter Status disabled. Parameters DisplayName and DisplayHierarchy have no effect.

28.10.4. Examples of Use

The use of operator IntParamTranslator is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 14.2, 'Parameter Translation'

Examples - Demonstration how to use the parameter translation operators for manipulation of
parameters.

Library Parameters 1122

VisualApplets User Documentation Release 3

28.11. Operator IntVariable

Operator Library: Parameters

Operator IntVariable generates a software variable.

Availability

To use the IntVariable operator, you need either an Expert license, a Parameter Module
license, or the VisualApplets 4 license.

You can define a target within the design hierarchy where the variable will be visible and accessible.
The target is defined by two parameters: DisplayHierarchy and DisplayName. In DisplayHierarchy you
address a hierarchical box within the same process the operator itself is located in. In parameter
DisplayName you set up the name for the target parameter. If DisplayHierarchy and DisplayName are
both set, the parameter defined by DisplayName will be available in the hierarchical box addressed
by DisplayHierarchy. If DisplayName is empty, no parameter is created. If DisplayName is set, but
DisplayHierarchy is empty, the parameter defined by DisplayName is added to the parent hierarchy
(i.e., the hierarchical box the operator itself is located in).

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

28.11.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.11.2. Supported Link Format

None

28.11.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter at another point in the design (in addition
to the operator instance itself), you need to define a new parameter. Specify here the name of this
new parameter.

If this field is empty, no new parameter is created.

Library Parameters 1123

VisualApplets User Documentation Release 3

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the operator instance. (Keep in mind
this is not possible if the operator instance is located on the highest (process) level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Map parameter for access from and to the variable. This parameter mirrors all properties of the
variable.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range any text

Library Parameters 1124

VisualApplets User Documentation Release 3

Description
Enter here the description for the parameter Value.

RangeFrom
Type static write parameter
Default 0
Range

Definition of smallest valid value. You can also enter a formula here.

RangeTo
Type static write parameter
Default 255
Range

Definition of biggest valid value. You can also enter a formula here.

RangeIncrement
Type static write parameter
Default 1
Range

Definition of intervall between valid values (definition of stepsize). You can also enter a formula
here.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from the variable (via map parameter Value) is activated.

No = Access to and from the variable is de-activated and parameter Status is disabled. Parameters
DisplayName and DisplayHierarchy have no effect.

Library Parameters 1125

VisualApplets User Documentation Release 3

28.12. Operator IntFieldVariable
Operator Library: Parameters

The IntFieldVariable operator generates a software variable field.

Availability

To use the IntFieldVariable operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

You can define a target within the design hierarchy where the variable will be visible and accessible.
The target is defined by two parameters: DisplayHierarchy and DisplayName. In DisplayHierarchy
you address a hierarchical box within the same process the operator itself is located in. With the
DisplayName parameter, you set up the name for the target parameter. If DisplayHierarchy and
DisplayName are both set, the parameter defined by DisplayName will be available in the hierarchical
box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If DisplayName
is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added to the parent
hierarchy (i.e., the hierarchical box the operator itself is located in).

The operator has no inputs and outputs, because it doesn't interfere with the data flow structure of
the design.

For a general introduction into the Parameters library, see 28. Library Parameters [1053].

28.12.1. I/O Properties

Property Value
Operator Type None, since there are no inputs or outputs.

28.12.2. Supported Link Format

None

28.12.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If the Activate parameter is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e. either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the parameter at another point in the design (in addition
to the operator instance itself), you need to define a new parameter. Specify here the name of this
new parameter.

If this field is empty, no new parameter is created.

Library Parameters 1126

VisualApplets User Documentation Release 3

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
with the DisplayName parameter.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new DisplayName parameter, but leave the DisplayHierarchy parameter empty:
The new parameter is added to the hierarchical box that contains the operator instance. This is not
possible if the operator instance is located on the highest (process) level.

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in the
DisplayHierarchy parameter.

The syntax is as follows:

<Path> is the relative path from the process level to the level of the design
where the <Hierarchical Box> is located which will get the new parameter. Thus,
the DisplayHierarchy parameter can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Size
Type static, dynamic, write, read parameter
Default 0
Range Unsigned integer (31 bit)

With this parameter you can define the number of field entries.

ColumnCount
Type static write, read parameter
Default 0
Range [1,256]

With this parameter you can define the number of columns for entering field values in the module
properties dialog.

Index
Type dynamic write parameter
Default 0
Range UInt

Library Parameters 1127

VisualApplets User Documentation Release 3

Index
With this parameter you can set the field index here.

Value
Type dynamic, write, read parameter
Default 0
Range Signed integer (64 bit)

With this parameter you can set or read the field entry addressed by the Index parameter.

Field
Type static,dynamic, write, read parameter
Default none
Range array

This field parameter defines the content of the variable field.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the Value parameter.

Description
Type static write parameter
Default -
Range any text

Enter here the description for the Value parameter.

RangeFrom
Type static write parameter
Default 0
Range

With this parameter you can define the smallest valid value. You can also enter a formula here.

RangeTo
Type static write parameter
Default 255
Range

With this parameter you can define the biggest valid value. You can also enter a formula here.

RangeIncrement
Type static write parameter
Default 1
Range

With this parameter you can define the interval between valid values (definition of step size). You
can also enter a formula here.

Activate
Type dynamic write parameter

Library Parameters 1128

VisualApplets User Documentation Release 3

Activate
Default No
Range {No,Yes}

Yes = Access to and from the variable is activated via the Value map parameter.

No = Access to and from the variable is de-activated and the Status parameter is disabled. The
DisplayName and DisplayHierarchy parameters have no effect.

Library Parameters 1129

VisualApplets User Documentation Release 3

28.13. Operator LinkProperties
Operator Library: Parameters

This operator offers read access to the properties of the connected link. The link properties are available
as read-only operator parameters.

The benefit of this operator is that the reference and translate operators of the Parameters library can
use the link parameters for incorporating them into formulas. For example, in some formulas you may
need to incorporate the link parallelism; by using this operator, the parallelism can be detected. This
way, the formulas can automatically adapt to the current link configuration.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Availability

To use the LinkProperties operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

28.13.1. I/O Properties

Property Value
Operator Type O
Input Link I, Image data input
Output Link O, Image data output

28.13.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

28.13.3. Parameters

Protocol
Type static write parameter
Default VALT_IMAGE2D
Range {VALT_IMAGE2D,VALT_LINE1D,VALT_PIXEL0D,VALT_SIGNAL}

Allows access to link property Protocol. Possible values are
VALT_IMAGE2D,VALT_LINE1D,VALT_PIXEL0D,VALT_SIGNAL.

Library Parameters 1130

VisualApplets User Documentation Release 3

ColorFormat
Type static write parameter
Default VAF_GRAY
Range {VAF_GRAY,VAF_COLOR,VAF_NONE,VAF_UNDEFINED}

Allows access to link property ColorFormat. Possible values are
VAF_GRAY,VAF_COLOR,VAF_NONE,VAF_UNDEFINED.

ColorFlavor
Type static write parameter
Default FL_NONE
Range {FL_NONE,FL_RGB,FL_HSI,FL_YUV,FL_LAB,FL_XYZ,FL_HSL,FL_HSV,FL_YCrCb}

Allows access to link property ColorFlavor. Possible values are FL_NONE, FL_RGB, FL_HSI, FL_YUV,
FL_LAB, FL_XYZ, FL_HSL, FL_HSV, FL_YCrCb.

Arithmetic
Type static write parameter
Default UNSIGNED
Range {SIGNED,UNSIGNED}

Allows access to link property Arithmetic. Possible values are SIGNED and UNSIGNED.

BitWidth
Type static write parameter
Default 1
Range

Allows access to link property BitWidth.

Parallelism
Type static write parameter
Default 1
Range

Allows access to link property Parallelism.

KernelRows
Type static write parameter
Default 1
Range

Allows access to link property KernelRows.

KernelColumns
Type static write parameter
Default 1
Range

Allows access to link property KernelColumns.

MaxImgWidth
Type static write parameter
Default 1024
Range

Library Parameters 1131

VisualApplets User Documentation Release 3

MaxImgWidth
Allows access to link property MaxImgWidth.

MaxImgHeight
Type static write parameter
Default 1024
Range

Allows access to link property MaxImgHeight.

Library Parameters 1132

VisualApplets User Documentation Release 3

28.14. Operator LinkParamTranslator
Operator Library: Parameters

This operator offers read or write access to the properties of the connected link. Write access may
trigger secondary parameter updates via write actions.

The benefit of this operator is that it enables changing link properties via other operators of the library
Parameters. Additionally, you may use this operator to change other module parameters when a link
parameter changes. For that purpose you can define write actions. You can also use this operator to
fix link properties and enforce dependencies between several link properties.

Availability

To use the LinkParamTranslator operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The link format of the output O strictly follows the format of the input I. The module parameters reflect
the current status of the link properties at the port I. You may change the module parameters from Read
(default) to Write. The mode Read means that the corresponding link property is read-only. This way
the operator performs like the operator LinkProperties. If a parameter is set to Write, this parameter
can be set. In that case, the parameter value is propagated to the corresponding link property. This
has the additional effect, that the corresponding link property at the output port O cannot be edited
any more, which is useful for selectively freezing link properties. Additionally, the corresponding link
property from an input connection is not propagated to the property of I and O any more. In Write
mode, the link property parameter can be edited even when the same property of a connected input
link cannot be edited. In that case an error on the input link may show up indicating that the format
of an attached previous module doesn't match to the format of the LinkParamTranslator instance.

In the parameter WriteAction you define what happens when link properties change. The parameter
Activate activates the write actions defined in WriteAction:

• If Activate is set to No, then parameters which have the access flag Write may still be changed but
no write action is executed. As any link property is a static parameter, the possible write targets
must be static, too.

• If the write target is a parameter of the own module, then the addressed module parameter may
have the mode Read or Write.

• If the parameter has the mode Read, the write action may be used to enforce certain rules on the
link properties.

Write actions are composed of one or several equations. If you define more than one equation, separate
the equations via semicolon. On the left-hand side of these equations you define which parameter
of which module receives the result of the calculation. Use the notation this when referencing a
parameter of this module. As soon as the link properties are changed either because of an update
of the incoming link or write access to a parameter of this module, the formula(s) on the right-hand
side of the equation(s) you defined in parameter WriteAction is/are carried out and the result(s) is/are
forwarded to the parameter(s) specified on the left-hand side of the equation(s). As with the left-hand
side you can reference parameters of this module using the notation this.

Example:

${this.MaxImgWidth} = (${this.MaxImgWidth} <= 1024) ? ${this.MaxImgWidth} : 1024;

The formula can refer to values of static module parameters anywhere in the design. The formula
cannot only incorporate the values of parameters, but also specific properties of parameters, such as
minimal value, maximal value, step size, or the numerical value of enumeration items.

Formula syntax: mathematical operations

The syntax complies to the GenICam API standard in version 2.0. The allowed formula
elements are identical with the formula elements defined in the GenICam standard:

Library Parameters 1133

VisualApplets User Documentation Release 3

Basic operations:
() Brackets

+ - * / Addition, subtraction, multiplication,
division

% Remainder

** Power

& | ^ ~ Bitwise: and / or / xor / not

<> = > < <= >= Logical relations: not equal / equal /
greater / less / less or equal / greater or
equal

&& || Logical and / logical or

<< >> Shift left / shift right

Table 28.7. Basic operations

Conditional operator

<condition> ? <true_expr> : <false_expr>

Example:

${target.Value} = (${this.BitWidth} > 8) ? 2 : 1;

Functions:
SGN(x) Returns sign of x. Returns +1 for positive

argument and -1 for negative argument.

NEG(x) Swaps sign of x.

ABS(x) Returns absolute value of x.

SQRT(x) Returns square root of x.

TRUNC(x) Truncates x, which means returning the
nearest integral value that is not larger in
magnitude than x.

FLOOR(x) Rounds downward, returning the largest
integral value that is not greater than x.

CEIL(x) Rounds upward, returning the smallest
integral value that is not less than x.

ROUND(x,precision) Rounds x to the number of decimal
fractional digits given by precision, with
halfway cases rounded away from zero.

SIN(x) Returns sine of an angle of x radians.

COS(x) Returns cosine of an angle of x radians.

TAN(x) Returns the tangent of an angle of x
radians.

ASIN(x) Returns the principal value of the arc sine
of x, expressed in radians.

ACOS(x) Returns the principal value of the arc
cosine of x, expressed in radians.

ATAN(x) Returns the principal value of the arc
tangent of x, expressed in radians.

Library Parameters 1134

VisualApplets User Documentation Release 3

EXP(x) Returns the base-e exponential function of
x, which is e raised to the power x: ex.

LN(x) Returns the natural logarithm of x. The
natural logarithm is the base-e logarithm:
the inverse of the natural exponential
function (exp).

LG(x) Returns the common (base-10) logarithm
of x.

E() Returns Euler's number,
2.7182818284590451.

PI() Returns circle constant,
3.1415926535897931.

Table 28.8. Functions

Example:

${target.Value} = NEG(${this.Parallelism})

Paths to parameters

To access an operator parameter any place within your design, you need to provide the
path to this parameter in your formula.

For access to an operator's parameter, use the following construct:

PathToModule: Here, you define the relative path to the operator whose parameter you
want to access. The path is relative to the hierarchical level the translation operator itself
is located. You also define the name of the accessed operator. Use a slash as hierarchy
separator.

Module: Name of the module.

As name for the translation operator instance itself, use the name this.

Keep your modules independent

It is not allowed to define a path towards a hierarchical level higher than
the hierarchical level the translation operator is located at. This rule follows
the logic that a hierarchical module is not allowed to know anything about
the environment it is instantiated in, because only in this case it can be
used as a freely relocatable and replicable module.

Access to parameter properties

The formulas cannot only incorporate the values of parameters, but also specific
properties of parameters, such as minimal value, maximal value, or step size:

• ${PathToModule/Module.ParamName.From} or ${PathToModule/
Module.ParamName.Min}: the minimal valid value of the parameter PathToModule/
Module.ParamName.

Library Parameters 1135

VisualApplets User Documentation Release 3

• ${PathToModule/Module.ParamName.To} or ${ PathToModule/
Module.ParamName.Max}: the maximum valid value of the parameter PathToModule/
Module.ParamName.

• ${PathToModule/Module.ParamName.Inc}: increment (step size) between two valid
values of the parameter PathToModule/Module.ParamName.

• ${PathToModule/Module.ParamName.Enum("EnumName")}: integer value of the
enumeration name EnumName.

Syntax for write access equations

You define the equations for write actions in the parameter WriteAction. They have the
following syntax:

Here, you can define multiple equations for multiple target parameters. Use a semicolon
as separator between the individual equations.

this refers to the translation operator instance itself.

You find a general introduction into the library Parameters in 28. Library Parameters [1053].

28.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, Image data input
Output Link O, Image data output

28.14.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] As I
Arithmetic {Unsigned, signed} As I
Parallelism Any As I
Kernel Columns Any As I
Kernel Rows Any As I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
As I

Color Format Any As I
Color Flavor Any As I
Max. Img Width Any As I
Max. Img Height Any As I

The range of the input bit width is [1, 64]. For signed inputs, the range is [2, 64]. For unsigned
color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Parameters 1136

VisualApplets User Documentation Release 3

28.14.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default None
Range OK or an error message occurs

Displays the error status. If the parameter Activate is set to Yes, the other module parameters
are checked. This parameter displays the result of this check, i.e., either OK or an error message
occurs.

This parameter is not part of the final applet.

Protocol
Type static write parameter
Default VALT_IMAGE2D
Range {VALT_IMAGE2D,VALT_LINE1D,VALT_PIXEL0D,VALT_SIGNAL}

Allows access to the link property Protocol. Possible values are
VALT_IMAGE2D,VALT_LINE1D,VALT_PIXEL0D,VALT_SIGNAL.

ColorFormat
Type static write parameter
Default VAF_GRAY
Range {VAF_GRAY,VAF_COLOR,VAF_NONE,VAF_UNDEFINED}

Allows access to the link property ColorFormat. Possible values are
VAF_GRAY,VAF_COLOR,VAF_NONE,VAF_UNDEFINED.

ColorFlavor
Type static write parameter
Default FL_NONE
Range {FL_NONE,FL_RGB,FL_HSI,FL_YUV,FL_LAB,FL_XYZ,FL_HSL,FL_HSV,FL_YCrCb}

Allows access to the link property ColorFlavor. Possible values are FL_NONE, FL_RGB, FL_HSI,
FL_YUV, FL_LAB, FL_XYZ, FL_HSL, FL_HSV, FL_YCrCb.

Arithmetic
Type static write parameter
Default UNSIGNED
Range {SIGNED, UNSIGNED}

Allows access to the link property Arithmetic. Possible values are SIGNED and UNSIGNED.

BitWidth
Type static write parameter
Default 1
Range

Allows access to the link property BitWidth.

Parallelism
Type static write parameter
Default 1
Range

Allows access to the link property Parallelism.

Library Parameters 1137

VisualApplets User Documentation Release 3

KernelRows
Type static write parameter
Default 1
Range

Allows access to the link property KernelRows.

KernelColumns
Type static write parameter
Default 1
Range

Allows access to the link property KernelColumns.

MaxImgWidth
Type static write parameter
Default 1024
Range

Allows access to the link property MaxImgWidth.

MaxImgHeight
Type static write parameter
Default 1024
Range

Allows access to the link property MaxImgHeight.

WriteAction
Type static write parameter
Default
Range

Definition of equations for translation during write access to a link property parameter.

For this parameter, you can use the autocompletion functionality and syntax highlighting.
To use autocompletion, click into the Parameter Values field of this parameter in the Module
Properties dialog, and type “${”. More detailed instructions for the autocompletion functionality are
available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

Activate
Type dynamic write parameter
Default No
Range {No, Yes}

Yes = Access to referenced parameters via write equations in WriteAction is activated.

No = Access to referenced parameters via write equations is de-activated and the parameter Status
is disabled.

28.14.4. Examples of Use

The use of operator LinkParamTranslator is shown in the following examples:

• Section 14.5, 'Link Parameter Translation'

Examples - Demonstration of how to use the parameter translation operator LinkParamTranslator.

Library Parameters 1138

VisualApplets User Documentation Release 3

Library Parameters 1139

VisualApplets User Documentation Release 3

28.15. Operator StringParamReference

Operator Library: Parameters

This operator generates a 1:1 map parameter (in parameter "Value") out of a module parameter
located anywhere in the design. You specify the referenced parameter (path and name) in parameter
"Reference".

Availability

To use the StringParamReference operator, you need either an Expert license, a
Parameter Module license, or the VisualApplets 4 license.

The referenced parameter can be of one of the three following types: VA_STRING, VA_FILENAME, or
VA_METADATA. The map parameter is always a string.

You can define a target within the design hierarchy where the referenced parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself is
located in. In parameter DisplayName you set up the name for the target parameter. If DisplayHierarchy
and DisplayName are both set, the parameter defined by DisplayName will be available in the
hierarchical box addressed by DisplayHierarchy. If DisplayName is empty, no parameter is created. If
DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e., the hierarchical box the reference operator itself is located in).

This allows you to make a parameter of your design available on any hierarchical level (of the design)
you want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (referenced parameter, map parameter
Value, or target parameter), the value is changed in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

A general introduction into library Parameters you find in 28. Library Parameters [1053].

Example:

Library Parameters 1140

VisualApplets User Documentation Release 3

Map parameter "CoeffFileParam" is now available in Process0/Level0/Level1:

28.15.1. I/O Properties

Property Value
Operator Type None (since there are no inputs or outputs)

28.15.2. Supported Link Format

None

Library Parameters 1141

VisualApplets User Documentation Release 3

28.15.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default none
Range OK or error message

Displays the error status. If parameter Activate is set to Yes, the other module parameters are
checked. This parameter displays the result of this check, i.e., either OK or an error message.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range any string

If you want to grant access from and to the referenced parameter (defined in parameter Reference)
at another point in the design (in addition to the reference operator instance itself), you need to
define a new parameter. Specify here the name of this new parameter. If this field is empty, no new
parameter is created.

DisplayHierarchy
Type static write parameter
Default none
Range any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. (Keep
in mind this is not possible if the reference operator instance is located on the highest (process)
level.)

Syntax for Setting up Path to Display Target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Library Parameters 1142

VisualApplets User Documentation Release 3

DisplayHierarchy
Example: Level0/Level1

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Map parameter for access from and to the referenced parameter. This parameter has the same
properties as the referenced parameter.

Reference
Type static write parameter
Default none
Range any string defining the referenced parameter: relative path to module, module name,

and parameter name

Here, you define the position of the referenced parameter within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for Referencing

The syntax is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
"Module" is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (operator instance or hierarchical box) that
contains the referenced parameter.

<ParamName> is the actual name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/CoeffBuffer.CoefficientFile0).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No,Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and parameter Status disabled.
Parameters DisplayName and DisplayHierarchy have no effect.

Library Parameters 1143

VisualApplets User Documentation Release 3

28.15.4. Examples of Use

The use of operator StringParamReference is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Parameters 1144

VisualApplets User Documentation Release 3

28.16. Operator ResourceReference
Operator Library: Parameters

You find a general introduction into the library Parameters in 28. Library Parameters [1053].

This operator generates a 1:1 map parameter (in the parameter ResourceIndex) out of a device
resource mapping for a module located anywhere in the design. You specify the referenced module in
the parameter Reference and the device resource type in the parameter ResourceName.

Availability

To use the ResourceReference operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

The referenced resource mapping is represented as an integer value.

You can define a target within the design hierarchy where the referenced resource mapping will be
visible and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName.
In DisplayHierarchy you address a hierarchical box within the same process the rerence operator itself
is located in. In parameter DisplayName you set up the name for the target parameter. This means:

• If DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName is available
in the hierarchical box addressed by DisplayHierarchy.

• If DisplayName is empty, no parameter is created.

• If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e. the hierarchical box the reference operator itself is located in).

This allows you to make the parameter for the resource mapping available on any hierarchical level of
the design you want. For example, you can make the resource mapping of modules within a protected
hierarchical box available for parametrization directly under the properties of the protected hierarchical
box itself.

Mapped resource parameters can be referenced themselves. Thus, you can reference either the content
of the parameter ResourceIndex in a reference operator, or reference the parameter you have defined
in the parameters DisplayName and DisplayHierarchy. This is especially important when protected
hierarchical boxes are built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (the referenced resource mapping, the
map parameter ResourceIndex, or the display reference parameter), the value is changed
in all other connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

For further details, refer to the general description of the the library Parameters in 28. Library
Parameters [1053].

28.16.1. I/O Properties

Property Value
Operator Type None, since there are no inputs or outputs

28.16.2. Supported Link Format

None

Library Parameters 1145

VisualApplets User Documentation Release 3

28.16.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default None
Range OK or an error message occurs

Displays the error status. If parameter Activate is set to Yes, the other operator settings are
checked. This parameter displays the result of this check, i.e., either OK or an error message
occurs.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default None
Range Any string

If you want to grant access from and to the referenced parameter defined in the parameter
Reference at another point in the design in addition to the reference operator instance itself, you
need to define a new parameter. Specify here the name of this new parameter. If this field is empty,
no new parameter is created.

DisplayHierarchy
Type static write parameter
Default None
Range Any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in the parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you defined a new parameter DisplayName, but leave parameter DisplayHierarchy empty: The
new parameter is added to the hierarchical box that contains the reference operator instance. If the
reference operator instance is located on the highest process level, this is not possible.

Syntax for setting up the path to the display target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in the
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
the parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Library Parameters 1146

VisualApplets User Documentation Release 3

DisplayHierarchy
Example: Level0/Level1

ResourceIndex
Type static, dynamic, write, read parameter
Default 0
Range Depends on the index range of the connected device resource

Map parameter for access from and to the referenced device resource mapping value.

ResourceName
Type static, dynamic, write parameter
Default 0
Range Any string

Define the device resource type which shall be accessed. The name is the same as provided in the
device resources dialog.

Reference
Type static write parameter
Default None
Range Any string defining the referenced module: relative path to module

Here, you define the position of the referenced module within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Description
Type static write parameter
Default None
Range Any string

Here, you define a description of the generated reference parameter.

Activate
Type dynamic write parameter
Default No
Range {No, Yes}

Yes = Access to and from the referenced device resource mapping (via the map parameter
ResourceIndex) is activated.

No = Access to and from the referenced device resource mapping is de-activated and the
parameter Status is disabled. The parameters DisplayName and DisplayHierarchy have no effect.

28.16.4. Examples of Use

The use of operator ResourceReference is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Parameters 1147

VisualApplets User Documentation Release 3

Library Parameters 1148

VisualApplets User Documentation Release 3

28.17. Operator IntParamSelector
Operator Library: Parameters

This operator generates a map parameter in the parameter Value. You can switch this map parameter
between several module parameters located anywhere in the design via the parameter Select. To
specify path and name of the referenced parameters, add a list separated by semicolon in the parameter
References.

Availability

To use the IntParamSelector operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

The referenced parameters can be of one of the three following types:

• VA_SINT: signed integer like the parameter Value in the operator CONST.

• VA_UINT: unsigned integer like the parameter ScaleFactor in the operator SCALE.

• VA_ENUM: enumeration like the parameter mode in the operator SetSignalStatus.

The map parameter itself is always of type Int64. The map parameter mirrors all properties of the
currently selected referenced parameter.

If you want to reference an unsigned parameter that uses the full 64 bit, a re-interpretation of the
value according to type Int64 is necessary.

You can define a target within the design hierarchy where the selected parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself
is located in. In parameter DisplayName you set up the name for the target parameter. This means:

• If DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName is available
in the hierarchical box addressed by DisplayHierarchy.

• If DisplayName is empty, no parameter is created.

• If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e. the hierarchical box the reference operator itself is located in).

This allows you to make the selected parameter available on any hierarchical level of the design you
want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of the
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (i.e. the selected parameter, the map
parameter Value, or the display target parameter), the value is changed in all other
connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

You find a general introduction into the library Parameters in 28. Library Parameters [1053].

28.17.1. I/O Properties

Property Value
Operator Type None, since there are no inputs or outputs

Library Parameters 1149

VisualApplets User Documentation Release 3

28.17.2. Supported Link Format

None

28.17.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default None
Range OK or an error message occurs

Displays the error status. If the parameter Activate is set to Yes, the other module parameters
are checked. This parameter displays the result of this check, i.e., either OK or an error message
occurs.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default None
Range Any string

If you want to grant access from and to the referenced parameter defined in the parameter
Reference at another point in the design in addition to the reference operator instance itself, you
need to define a new parameter. Specify here the name of this new parameter. If this field is empty,
no new parameter is created.

DisplayHierarchy
Type static write parameter
Default None
Range Any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in the parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you define a new parameter DisplayName, but leave the parameter DisplayHierarchy empty, the
new parameter is added to the hierarchical box that contains the reference operator instance. If the
reference operator instance is located on the highest process level, this is not possible.

Syntax for setting up the path to the display target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in the
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,

Library Parameters 1150

VisualApplets User Documentation Release 3

DisplayHierarchy
the parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Example: Level0/Level1

Select
Type static, dynamic, write parameter
Default 0
Range Depends on the number of referenced parameters

Selector for switching between the referenced parameters.

Value
Type static, dynamic, write, read parameter
Default 0
Range Signed integer (64 bit), unsigned integer (64 bit)

Map parameter for access from and to the selected parameter. This parameter has the same
properties as the currently selected referenced parameter.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range Any text

Enter here the description for the parameter Value.

References
Type static write parameter
Default None
Range String defining the referenced parameters in a list separated by semicolon: relative

path to module, module name, and parameter name.

Here, you define the position of the referenced parameters within the design.

Syntax for referencing

For this parameter, you can use the autocompletion functionality and syntax
highlighting. To use autocompletion, click into the Parameter Values field of this
parameter in the Module Properties dialog, and press the TAB key of your keyboard.
More detailed instructions for the autocompletion functionality are available at Section
3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator and Reference
Operators'.

The syntax for an item in the string list is as follows:

Library Parameters 1151

VisualApplets User Documentation Release 3

References

<Path> is the relative path to the hierarchical level where the referenced module
<Module> is located. Use a slash as separator between different hierarchical levels.
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (i.e. an operator instance or a hierarchical box)
that contains the referenced parameter.

<ParamName> is the name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/SetParam.Value).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No, Yes}

Yes = Access to and from the referenced parameter (via the map parameter Value) is activated.

No = Access to and from the referenced parameter is de-activated and the parameter Status is
disabled. The parameters DisplayName and DisplayHierarchy have no effect.

28.17.4. Examples of Use

The use of operator IntParamSelector is shown in the following examples:

• Section 14.4, 'Parameter Selection'

Examples - Demonstration of how to use the parameter translation operators IntParamSelector and
FloatParamSelector.

Library Parameters 1152

VisualApplets User Documentation Release 3

28.18. Operator FloatParamSelector

Operator Library: Parameters

This operator generates a map parameter in the parameter Value. You can switch this map parameter
between several module parameters located anywhere in the design via the parameter Select. To
specify path and name of the referenced parameters, add a list separated by semicolon in the parameter
References.

Availability

To use the FloatParamSelector operator, you need either an Expert license, a Parameter
Module license, or the VisualApplets 4 license.

The referenced parameters must be of type VA_DOUBLE. The map parameter mirrors all properties of
the currently selected referenced parameter.

You can define a target within the design hierarchy where the selected parameter will be visible
and accessible. The target is defined by two parameters: DisplayHierarchy and DisplayName. In
DisplayHierarchy you address a hierarchical box within the same process the reference operator itself
is located in. In parameter DisplayName you set up the name for the target parameter. This means:

• If DisplayHierarchy and DisplayName are both set, the parameter defined by DisplayName is available
in the hierarchical box addressed by DisplayHierarchy.

• If DisplayName is empty, no parameter is created.

• If DisplayName is set, but DisplayHierarchy is empty, the parameter defined by DisplayName is added
to the parent hierarchy (i.e. the hierarchical box the reference operator itself is located in).

This allows you to make the selected parameter available on any hierarchical level of the design you
want. For example, you can make the parameters of modules within a protected hierarchical box
available for parametrization directly under the properties of the protected hierarchical box itself.

Mapped parameters can be referenced themselves. Thus, you can reference either the content of
parameter Value in a reference operator, or reference the parameter you have defined in the parameters
DisplayName and DisplayHierarchy. This is especially important when protected hierarchical boxes are
built up out of other protected hierarchical boxes.

All connected parameters update at once

If one of the connected parameters is changed (i.e. the selected parameter, the map
parameter Value, or the display target parameter), the value is changed in all other
connected parameters, too.

The operator has no inputs and outputs, as it doesn't interfere with the data flow structure of the design.

You find a general introduction into the library Parameters in 28. Library Parameters [1053].

28.18.1. I/O Properties

Property Value
Operator Type None, since there are no inputs or outputs

28.18.2. Supported Link Format

None

Library Parameters 1153

VisualApplets User Documentation Release 3

28.18.3. Parameters

Status
Type static read (although the GUI displays write) parameter
Default None
Range OK or an error message occurs

Displays the error status. If the parameter Activate is set to Yes, the other module parameters
are checked. This parameter displays the result of this check, i.e., either OK or an error message
occurs.

This parameter is not part of the final applet.

DisplayName
Type static write parameter
Default none
Range Any string

If you want to grant access from and to the referenced parameter defined in the parameter
Reference at another point in the design in addition to the reference operator instance itself, you
need to define a new parameter. Specify here the name of this new parameter. If this field is empty,
no new parameter is created.

DisplayHierarchy
Type static write parameter
Default None
Range Any string

Specify here the hierarchical box to which you want to attach the new map parameter you defined
in the parameter DisplayName.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

If you define a new parameter DisplayName, but leave the parameter DisplayHierarchy empty, the
new parameter is added to the hierarchical box that contains the reference operator instance. If the
reference operator instance is located on the highest process level, this is not possible.

Syntax for setting up the path to the display target

If you want the new parameter to show up in another place of the design, you need
to specify the path to the hierarchical box that is to contain the new parameter in the
parameter DisplayHierarchy.

The syntax is as follows:

<Path> is the relative path from process level to the hierarchical level of the design
where the <Hierarchical Box> is located that is to receive the new parameter. Thus,
the parameter DisplayHierarchy can only address hierarchical boxes within the same
process. Use a slash as separator between different hierarchical levels.

<HierarchicalBox> is the name of the hierarchical box that is to receive the new map
parameter.

Library Parameters 1154

VisualApplets User Documentation Release 3

DisplayHierarchy
Example: Level0/Level1

Select
Type static, dynamic, write parameter
Default 0
Range Depends on number of referenced parameters

Selector for switching between the referenced parameters.

Value
Type static, dynamic, write, read parameter
Default 0
Range double

Map parameter for access from and to the selected parameter. This parameter has the same
properties as the currently selected referenced parameter.

Unit
Type static write parameter
Default -
Range Latin-1

Enter here the unit for the parameter Value.

Description
Type static write parameter
Default -
Range Any text

Enter here the description for the parameter Value.

References
Type static write parameter
Default None
Range String defining the referenced parameters in a list separated by semicolon: relative

path to module, module name, and parameter name

Here, you define the position of the referenced parameters within the design.

For this parameter, you can use the autocompletion functionality and syntax highlighting. To use
autocompletion, click into the Parameter Values field of this parameter in the Module Properties
dialog, and press the TAB key of your keyboard. More detailed instructions for the autocompletion
functionality are available at Section 3.7.1.4, 'Autocompletion and Syntax Highlighting for Translator
and Reference Operators'.

Syntax for referencing

The syntax for an item in the string list is as follows:

<Path> is the relative path to the hierarchical level where the referenced module
<Module> is located. Use a slash as separator between different hierarchical levels.

Library Parameters 1155

VisualApplets User Documentation Release 3

References
Define the path as relative path from the hierarchical level the reference
operator instance is located in.

<Module> is the name of the module (i.e. an operator instance or a hierarchical box)
that contains the referenced parameter.

<ParamName> is the name of the referenced parameter.

If <Path> starts with a slash, the path is interpreted as absolute path starting from
design level (e.g., /Process0/UUT/SetParam.Value).

You can also use ../ to go up a level. However, take care you don't use this option
when designing freely replicable or relocatable modules.

Activate
Type dynamic write parameter
Default No
Range {No, Yes}

Yes = Access to and from referenced parameter (via map parameter Value) is activated.

No = Access to and from referenced parameter is de-activated and the parameter Status is
disabled. The parameters DisplayName and DisplayHierarchy have no effect.

28.18.4. Examples of Use

The use of operator FloatParamSelector is shown in the following examples:

• Section 14.4, 'Parameter Selection'

Examples - Demonstration of how to use the parameter translation operators IntParamSelector and
FloatParamSelector.

Library Hardware Platform 1156

VisualApplets User Documentation Release 3

29. Library Hardware Platform

The library Hardware Platform contains operators which are only available on certain hardware platform
devices.

The following list summarizes all Operators of Library Hardware Platform

Operator Name Short Description available
since

AppletProperties Controls the applet and the board hardware setup. Version 2.1

BoardStatus Provides read-only parameters to monitor the
current board status during runtime. Version 2.1

ActionCommand
Sends an action command trigger signal to the
firmware whereupon the firmware sends an action
command to the camera.

Version 3.0.4

CameraControl Provides the interface for the Camera Link CC
ports. Version 1.3

BaseGrayCamera Supports any BASE GRAY configurations for line
scan and area scan cameras. Version 2.2

BaseRgbCamera Supports any CL RGB BASE configurations for line
scan and area scan cameras. Version 2.2

MediumGrayCamera Supports any MEDIUM GRAY configurations for line
scan and area scan cameras. Version 2.2

MediumRgbCamera Supports any CL RGB MEDIUM configurations for
line scan and area scan cameras. Version 2.2

FullGrayCamera Supports any FULL GRAY configurations for line
scan and area scan cameras. Version 2.1

FullRgbCamera Supports any CL RGB FULL configurations for line
scan and area scan cameras. Version 2.2

CameraGrayArea Camera image input interface for grayscale area
scan GigE Vision cameras.

Version 1.2
SR5

Library Hardware Platform 1157

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

CameraGrayAreaBase
Camera image input interface for grayscale area
scan cameras in Camera Link base configuration
mode.

Version 1.2

CameraGrayAreaFull
Camera image input interface for grayscale area
scan cameras in Camera Link full configuration
mode.

Version 1.2

CameraGrayAreaMedium
Camera image input interface for grayscale area
scan cameras in Camera Link medium configuration
mode.

Version 1.2

CameraGrayLine Camera image input interface for grayscale line
scan GigE Vision cameras.

Version 1.2
SR5

CameraGrayLineBase
Camera image input interface for grayscale line
scan cameras in Camera Link base configuration
mode.

Version 1.2

CameraGrayLineFull
Camera image input interface for grayscale line
scan cameras in Camera Link full configuration
mode.

Version 1.2

CameraGrayLineMedium
Camera image input interface for grayscale line
scan cameras in Camera Link medium configuration
mode.

Version 1.2

CameraRgbArea Camera image input interface for RGB area scan
GigE Vision cameras.

Version 1.2
SR5

CameraRgbAreaBase Camera image input interface for RGB area scan
cameras in Camera Link base configuration mode. Version 1.2

CameraRgbAreaMedium
Camera image input interface for RGB area scan
cameras in Camera Link medium configuration
mode.

Version 1.2

CameraRgbLine Camera image input interface for RGB line scan
GigE Vision cameras.

Version 1.2
SR5

CameraRgbLineBase Camera image input interface for RGB line scan
cameras in Camera Link base configuration mode. Version 1.2

CameraRgbLineMedium
Camera image input interface for RGB line scan
cameras in Camera Link medium configuration
mode.

Version 1.2

CLHSDualCamera Image data interface between CLHS camera and
VisualApplets. Version 3.0.3

CLHSPulseIn The operator manages the sending of pulse
messages. Version 3.0.3

Library Hardware Platform 1158

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

CLHSPulseOut The operator manages the receiving of pulse
messages. Version 3.0.3

CLHSSingleCamera Image data interface between CLHS camera and
VisualApplets. Version 3.0.3

CxpCamera This operator represents the image data interface
between a CXP camera and VisualApplets. Version 3.3

CxpCameraMultiTap This operator represents the image data interface
between a CXP dual-tap camera and VisualApplets. Version 4.0

CxpAcquisitionStatus
Provides a signal that indicates whether an
acquisition for a selected CXP camera port is
started by the runtime environment.

Version 3.3

CxpPortStatus Monitors the status of a CXP channel. Version 3.3

CxpRxTrigger Provides a receiver for trigger data from a CXP
channel. Version 3.3

CxpTxTrigger This operator provides a sender for trigger packets
to a CXP channel. Version 3.3

CXPDualCamera Image data interface between CXP dual channel
camera and VisualApplets. Version 2.1

CXPQuadCamera Image data interface between CXP camera(s) and
VisualApplets. Version 2.1

CXPSingleCamera Image data interface between CXP camera(s) and
VisualApplets. Version 2.1

DigIOPort Shows and sets the status of the TriggerIOs using
parameters. Version 1.2

DmaFromPC Image data input interface for transfer from host
PC. Version 1.2

DmaToPC Image data output interface for transfer to host PC. Version 1.2

GPI Provides an interface to the digital inputs of
microEnable or LightBridge. Version 1.3

GPO Provides an interface to the digital outputs of
microEnable or LightBridge. Version 1.3

Library Hardware Platform 1159

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

LED Provides interface for accessing the 4 board LEDs
via applet Version 2.1

NativeTrgPortIn Provides an interface to the microEnable's digital
inputs. Version 1.2

NativeTrgPortInExt Provides an interface to the microEnable's digital
inputs. Version 1.2

NativeTrgPortOut Provides an interface to the microEnable's digital
outputs and CC outputs. Version 1.2

RxLink Provides a data link interface between a pixelPlant
and frame grabber board. Version 1.3

TrgPortArea Generates the trigger (Exsync) for the Camera. Version 1.2

TrgPortLine
Generates the trigger (Exsync) for the camera and
is also responsible for assembling the acquired lines
to images.

Version 1.2

TriggerIn Provides an interface to the microEnable's digital
inputs. Version 1.3

TriggerOut Provides an interface to the microEnable's digital
outputs. Version 1.3

TxLink Provides a data link interface between a pixelPlant
and frame grabber board. Version 1.3

SignalToEvent Generates software events for its input links. Version 1.2

Table 29.1. Operators of Library Hardware Platform

Library Hardware Platform 1160

VisualApplets User Documentation Release 3

29.1. Operator AppletProperties

Operator Library: Hardware Platform

The operator AppletProperties has no inputs and no outputs. It controls the applet and the board
hardware setup.

The operator also provides a set of parameters that describe the applet (by partly user defined, partly
automatically generated values).

This operator is mandatory in every design and is automatically instantiated by VisualApplets. The
operator cannot be deleted.

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

mE5 marathon VCLx

mE5 marathon VCL

mE5 marathon VCX-QP

mE5 marathon VF2

LightBridge VCL

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

mE5 ironman VD8-PoCL

Available Parameters

Operator AppletProperties provides a specific set of parameters for every hardware
platform.

The parameter descriptions below state for which hardware platforms a specific
parameter is available.

29.1.1. I/O Properties

Property Value
Operator Type None (since there are no Inputs or Outputs)

29.1.2. Supported Link Format

None

29.1.3. Parameters

VisualAppletsVersion
Type static read parameter
Default
Range

Version number of used VisualApplets version.

Library Hardware Platform 1161

VisualApplets User Documentation Release 3

VisualAppletsVersion

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

ProjectName
Type static read parameter
Default
Range

Name of the project as specified in menu Design, menu item Properties.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

AppletVersion
Type static read parameter
Default
Range

Version as specified in menu Design, menu item Properties.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

AppletVendor
Type static read parameter
Default
Range

Directly in the Module Properties dialog of this operator, you can enter information on the Applet
vendor.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

AppletAuthor
Type static read parameter
Default
Range

Directly in the Module Properties dialog of this operator, you can enter information on the Applet
author.

Library Hardware Platform 1162

VisualApplets User Documentation Release 3

AppletAuthor

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

DesignClock (imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms)
Type static read parameter
Default 312.5
Range [312.5; 400.0]

The parameter represents the design system clock frequency in Mega Hertz. You can alter the
design system clock frequency in VisualApplets, menu Design, menu item Change FPGA Clock.
Using higher frequency settings as 135 MHz may result in a timing violation. In this case, reduce
frequency.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

DesignClock (mE5 platforms and LightBridge VCL)
Type static read parameter
Default 125
Range [125;312.5]

The parameter represents the design system clock frequency in Mega Hertz. You can alter the
design system clock frequency in VisualApplets, menu Design, menu item Change FPGA Clock.
Using higher frequency settings as 135 MHz may result in a timing violation. In this case, reduce
frequency.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, LightBridge VCL

BuildTime
Type static read parameter
Default
Range

The BuildTime parameter is an automatically generated string showing when the applet has been
build (date and time of latest net list generation).

The parameter value is only visible in the Framegrabber SDK. The following image shows the
formatting of the string:

Library Hardware Platform 1163

VisualApplets User Documentation Release 3

BuildTime

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

AppletUid
Type static read parameter
Default
Range

Unique ID of the applet. A new ID is created with every new build (if the precondition check is set).

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

PcieInterfaceType (ironman platforms)
Type static write parameter
Default Generation_2
Range {Generation_1, Generation_2}

The parameter PcieInterfaceType allows you to select the PCIe interface type and thus the
supported DMA bandwidth.

Generation_2 (default) stands for the PCIe Generation 2 protocol and provides a bandwidth of
3,600,000 bytes/s.

Generation_1 stands for PCIe Generation 1 protocol and provides a bandwidth of 1,800,000 bytes/
s.

Generation_1 designs utilize slightly less FPGA resources. It is much easier to achieve timing
closure for the applet with a Generation_1 design. Generation_2 provides maximal performance,
but makes it more challenging to achieve timing closure for the applet. Multiple place and route
synthesis runs will probably be necessary to meet the timing.

Availability

mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

PcieInterfaceType (marathon and LightBridge platforms)
Type static write parameter
Default Generation_2
Range {Generation_1, Generation_2}

The parameter PcieInterfaceType allows you to select the PCIe interface type and thus the
supported DMA bandwidth.

Generation_1: The applet only supports PCIE generation 1. Thus, the maximum DMA transmission
bandwidth is ca. 900 MByte/s (1MByte = 1^10Byte). The DmaToPC operator is limited so that
LinkParallelism x LinkPixelWidth needs to be <= 64 bit.

Generation_2: The applet supports PCIE generation 2. Thus, the maximum DMA transmission
bandwidth is ca. 1800 MByte/s (1MByte = 1^10Byte). The DmaToPC operator is limited so that
LinkParallelism x LinkPixelWidth needs to be <= 128 bit.

Library Hardware Platform 1164

VisualApplets User Documentation Release 3

PcieInterfaceType (marathon and LightBridge platforms)
The implementation of Generation_1 consumes less resources than the implementation of
Generation_2. The Generation_1 mode is helpful in designs that do not need the high bandwidth of
Generation_2, but are short of resources.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, and LightBridge VCL.

ExtensionGpioType
Type dynamic write parameter
Default OpenDrain
Range {OpenDrain, PushPull}

This parameter allows the user to select the circuitry type for the external extension GPIO
connector. In PushPull mode, the GPIOs are driven directly.

Parameter Only Affects the GPIO Connector

This parameter has no effect on Front GPIO connector. Only the GPIO connector is
influenced by this parameter.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

GpioType
Type dynamic write parameter
Default OpenDrain
Range {OpenDrain, PushPull}

This parameter allows the user to select the circuitry type for the external GPIO connector. In
PushPull mode, the GPIOs are driven directly.

Parameter Only Affects the GPIO Connector

This parameter has no effect on Front GPIO connector. Only the GPIO connector is
influenced by this parameter.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-
CXP6B

BuildTimeStamp
Type static write parameter
Default
Range

Visibility

This parameter is not displayed in the operator's parameter list.

Library Hardware Platform 1165

VisualApplets User Documentation Release 3

BuildTimeStamp
However, the parameter is visible in the runtime environment.

BuildTimeStamp is an automatically generated identification number. It's a 32-bit time stamp that
can be read out of the applet during runtime for checking the consistency between the loaded
applet and the loaded applet runtime environment.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

ProjectNameHash
Type static read parameter
Default
Range

Visibility

This parameter is not displayed in the operator's parameter list.

However, the parameter is visible in the runtime environment.

32-bit hash over the entry in ProjectName (menu Design, menu item Properties). This value can be
read out of the applet during runtime for checking the consistency between the loaded applet and
the loaded applet runtime environment.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

AppletUidHigh
Type static read parameter
Default
Range

Visibility

This parameter is not displayed in the operator's parameter list.

However, the parameter is visible in the runtime environment.

Parameter AppletUid represents a 128-bit number. The upper 64 bit of this number are given out as
a number in AppletUidHigh.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

Library Hardware Platform 1166

VisualApplets User Documentation Release 3

AppletUidLow
Type static read parameter
Default 1
Range {0; 2^32 – 1}

Visibility

This parameter is not displayed in the operator's parameter list.

However, the parameter is visible in the runtime environment.

Parameter AppletUid represents a 128-bit number. The lower 64 bit of this number are given out as
a number in AppletUidLow.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge VCL, mE5 ironman VD8-
PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

FrontGpioPullControl
Type dynamic write parameter
Default PullUp
Range {PullUp, PullDown}

• PullUp: On all Front GPIO inputs, pullup resistors are enabled to SLTRG_VIN (external 5–24 V
input reference voltage).

• PullDown: On all front GPIO inputs, pulldown resistors are enabled to SLTRG_GND (isolated
GND).

Availability

imaFlex CXP-12 Penta

FrontGpioType
Type dynamic write parameter
Default SingleEnded
Range {SingleEnded, Differential}

• Differential: All Front GPIO inputs are differential.

• SingleEnded: All Front GPIO inputs are single-ended (referenced to SLTRG_GND).

Availability

imaFlex CXP-12 Penta

FrontGpioInversion
Type dynamic write parameter
Default Off
Range {On, Off}

• On: All Front GPIO Outputs are inverted polarity compared to FPGA output.

• Off: All Front GPIO Outputs are the same polarity compared to FPGA output.

Library Hardware Platform 1167

VisualApplets User Documentation Release 3

FrontGpioInversion

Availability

imaFlex CXP-12 Penta

29.1.4. Examples of Use

The use of operator AppletProperties is shown in the following examples:

• Section 10.4.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

Library Hardware Platform 1168

VisualApplets User Documentation Release 3

29.2. Operator BoardStatus
Operator Library: Hardware Platform

The operator BoardStatus has no inputs and no outputs. It provides read-only parameters to monitor
the current board status during runtime.

This operator is mandatory in every mE5 design and is automatically instantiated by VisualApplets.
The operator cannot be deleted.

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

mE5 marathon VCL

mE5 marathon VCLx

mE5 marathon VCX-QP

mE5 marathon VF2

LightBridge 2 VCL

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

mE5 ironman VD8-PoCL

Available Parameters

Operator BoardStatus provides a specific set of parameters for every hardware platform.

The parameter descriptions below state for which hardware platforms a specific
parameter is available.

29.2.1. I/O Properties

Property Value
Operator Type None (since there are no Inputs or Outputs)

29.2.2. Supported Link Format

None

29.2.3. Parameters

FpgaDNA
Type dynamic read parameter
Default
Range [0; 2^57-1]

The parameter FpgaDNA provides the 57-bit unique FPGA DNA as an integer value.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL, mE5 ironman VD8-PoCL, mE5 ironman
VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

Library Hardware Platform 1169

VisualApplets User Documentation Release 3

FpgaDNAHigh
Type dynamic read parameter
Default
Range [0; 2^32-1]

This parameter FpgaDNAHigh provides the 32-bit MSB part of the 96-bit unique FPGA DNA as an
integer value.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

FpgaDNALow
Type dynamic read parameter
Default
Range [0; 2^64-1]

This parameter provides the 64-bit LSB part of the 96-bit unique FPGA DNA as an integer value.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

FpgaTemperature
Type dynamic read parameter
Default
Range imaFlex CXP-12 Quad and imaFlex CXP-12 Penta: [0; 200];

mE5 marathon, mE5 ironman and LightBridge VCL: [0; 512]

The parameter FpgaTemperature provides the current FPGA temperature in degrees Celsius (°C).

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCLx, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge
2 VCL, mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-
CXP6B

FpgaVccInt
Type dynamic read parameter
Default
Range [0; 5]

The parameter FpgaVccInt provides the current VCC INT voltage of the FPGA in Volt.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCLx, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge
2 VCL, mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-
CXP6B

FpgaVccAux
Type dynamic read parameter

Library Hardware Platform 1170

VisualApplets User Documentation Release 3

FpgaVccAux
Default
Range [0; 5]

The parameter FpgaVccAux provides the current VCC AUX voltage of the FPGA in Volt.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCLx, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge
2 VCL, mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-
CXP6B

FpgaVccBram
Type dynamic read parameter
Default
Range [0; 5]

The parameter provides the current VCC BRAM voltage of the FPGA in Volt.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCLx, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge 2
VCL

ExternalPowerGood
Type dynamic read parameter
Default
Range {GOOD, NO_POWER}

• GOOD: External power connector is plugged on the board and provides 12 V power.

• NO_POWER: Board does not detect an external 12-V-power-connector. Either the board is not
plugged in or it is depowered.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

ExtensionGpioBoardPresent
Type dynamic read parameter
Default
Range {YES, NO}

• YES: Extension GPIO board is detected to be plugged in on the imaFlex CXP-12 Quad / imaFlex
CXP-12 Penta board.

• NO: extension GPIO board is not plugged in and is not detected.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

PcieNegotiatedLinkWidth
Type dynamic read parameter

Library Hardware Platform 1171

VisualApplets User Documentation Release 3

PcieNegotiatedLinkWidth
Default 0
Range {0, 1, 2, 4, 8}

This parameter provides the amount of PCIe lanes actively used by the frame grabber and the host
PC system.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

PcieNegotiatedLinkSpeed
Type dynamic read parameter
Default 8
Range {2.5, 5, 8}

This parameter provides the PCIe speed in Gigabit per second.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

PcieTrainedPayloadSize
Type dynamic read parameter
Default 128
Range imaFlex CXP-12 Quad and imaFlex CXP-12 Penta: {128, 256, 512, 1024}; mE5

marathon, mE5 ironman, and LightBridge VCL: {128, 256, 512}

Size in bytes of the PCIe packets payload used for the data transmission between the framegrabber
and the PCIe bridge.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta, mE5 marathon VCLx, mE5 marathon
VCL, mE5 marathon VCLx, mE5 marathon VCX-QP, mE5 marathon VF2, LightBridge 2
VCL only

PcieTrainedRequestSize
Type dynamic read parameter
Default 128
Range {128, 256, 512, 1024, 2048, 4096}

This parameter provides the size of the PCIe packet requests [in bytes] used for the data
transmission between the frame grabber and the PCIe bridge.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

BoardPower
Type dynamic read parameter
Default
Range {0; 100}

The parameter BoardPower measures the board total power consumption in Watt.

Library Hardware Platform 1172

VisualApplets User Documentation Release 3

BoardPower

Availability

mE5 ironman VD8-PoCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

CxpChipTemperature
Type dynamic read parameter
Default
Range {0; 512}

The parameter CxpChipTemperature measures the temperature near the CXP front-end chips in
degrees Celsius (°C).

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

RamChipTemperature
Type dynamic read parameter
Default
Range {0; 512}

The parameter RamChipTemperature measures the temperature near the RAM chips in degrees
Celsius (°C).

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

CxpPowerRegulatorTemperature
Type dynamic read parameter
Default
Range {0; 512}

The parameter CxpPowerRegulatorTemperature measures the temperature near the CXP power
chips in degrees Celsius (°C).

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

PowerRegulatorTemperature
Type dynamic read parameter
Default
Range {0; 512}

The parameter PowerRegulatorTemperature measures the temperature near the board power
regulator chips in degrees Celsius (°C).

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

Library Hardware Platform 1173

VisualApplets User Documentation Release 3

ChannelCurrent
Type dynamic read parameter
Default
Range {0; 30}

The parameter ChannelCurrent measures the CXP power chip current in Ampere of each channel
available on the board. (4 channels are present on all SiSo CXP grabbers.)

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

ChannelVoltage
Type dynamic read parameter
Default
Range {0; 30}

The parameter ChannelVoltage measures the CXP power chip voltage in Volt of each channel
available on the board. (4 channels are present on all SiSo CXP grabbers.)

Availability

mE5 ironman VQ8-CXP6D and mE5 ironman VQ8-CXP6B only

PcieCurrentLinkWidth
Type dynamic read parameter
Default 0
Range [0; 4]

The parameter provides the amount of PCIe lanes used by the framegrabber.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL

PcieCurrentLinkSpeed
Type dynamic read parameter
Default 5
Range [2.5; 5]

PCIe speed in Gigabit per second.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL

PcieLinkGen2Capable
Type dynamic read parameter
Default YES
Range {YES, NO}

Capability of the framegrabber to support PCIe generation 2 link.

Library Hardware Platform 1174

VisualApplets User Documentation Release 3

PcieLinkGen2Capable

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL

PcieLinkPartnerGen2Capable
Type dynamic read parameter
Default YES
Range {YES, NO}

Capability of the bridge (device connected to the framegrabber through PCIe link) to support PCIe
generation 2 link.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL

AlternativeBoardDetection
Type dynamic read parameter
Default OFF
Range {OFF, ON}

Parameter AlternativeBoardDetection informs which board detection algorithm is activated for board
detection.

• OFF: Standard board detection algorithm is activated (default).

• ON: Alternative board detection algorithm is activated.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL only

ExtensionConnectorPresent
Type dynamic read parameter
Default YES
Range {YES, NO}

The parameter indicates the existence of the extension GPIO board connected to GPIO slot
connector (labeled as GPIO in the board documentation).

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, mE5 marathon VCX-
QP, mE5 marathon VF2, LightBridge 2 VCL only

PoCLStatePortA
Type dynamic read parameter
Default Initialize
Range {PoCL_Disabled, Initialize, PoCL_Connection_Sense, PoCL_Wait_for_Connection,

PoCL_Camera_Detected, PoCL_Camera_Clock_Detected, CL_Wait_for_Connection,
CL_Camera_Detected, CL_Camera_Clock_Detected}

Library Hardware Platform 1175

VisualApplets User Documentation Release 3

PoCLStatePortA
The parameter allows to read the current state of the Power over Camera Link (PoCL) state
machine on the Port A connector.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCLx, LightBridge 2 VCL

Using Power over Camera Link (PoCL)

In applets built with VisualApplets version 3.0.6 or higher, PoCL is disabled per
default. Thus, read parameter PoCLStatePortA displays value PoCL_Disabled
per default. If the user of the applet wants to use the applet with PoCL support,
he/she needs to enable PoCL support via microDiagnostics. This is possible as of
Framegrabber SDK version 5.5.1 (or higher) (with version 5.10, the product name has
been changed from Basler Runtime to Basler Framegrabber SDK).

Thus, if the applet user is going to use PoCL:

• If the applet user has Framegrabber SDK version 5.5.1 or higher installed on his
host PC, you may use VisualApplets 3.0.6 or higher to design and build the applet.

• If the applet user is definitely not going to update the Framegrabber SDK version on
his host PC to 5.5.1 or higher, but wants to use PoCL, you need to design the applet
with a VisualApplets version 3.0.4 (or prior).

It will not be possible to use applets build with VisualApplets 3.0.6 or higher in PoCL
mode together with a Framegrabber SDK version lower than 5.5.1.

PoCL_Disabled: If PoCL is not enabled for the board, this state will be displayed during runtime.

Enabling PoCL Support

Starting from Framegrabber SDK version 5.5.1, PoCL support is disabled per default
for all mE5 marathon and LightBridge CL frame grabbers. To enable PoCL support,
hardware users using these frame grabber models need to enable PoCL support in
microDiagnostics, menu Tools -> Board Settings: Enable PoCL Detection when
using Framegrabber SDK version 5.5.1 or higher.

If PoCL has been enabled in microDiagnostics (or the applet has been built with VisualApplets 3.0.4
or prior), the individual states of the Power over Camera Link (PoCL) state machine indicate the
following:

Initialize: This state has a duration of 100 ms. During this period, PoCL detection as well as PoCL
operation is off. This way, the board establishes a defined initial state with no voltage applied.

PoCL_Connection_Sense: This state has a duration of 600 ms. It follows directly of state
Initialize. During this state, the controller finds out if the connected camera is PoCL-capable or not.

• If a PoCL camera is detected, the PoCL state machine switches to state
PoCL_Wait_for_Connection.

• If a CL camera without PoCL support is detected, the PoCL state machine switches to state
CL_Wait_for_Connection.

• If a disconnect or disturbances are detected, the state machine switches back to state Initialize
and starts again.

(The controller applies a test current and waits for 600 ms. Then, the voltage drop is measured.
There are two thresholds: Is the measured value between both thresholds, the PoCL state machine
switches to state PoCL_Wait_for_Connection. Is the measured value lower than both thresholds, the

Library Hardware Platform 1176

VisualApplets User Documentation Release 3

PoCLStatePortA
PoCL state machine switches to state CL_Wait_for_Connection. Is the measured value higher than
both thresholds, the connection is either broken or disturbed. In this case, the PoCL state machine
switches to state Initialize and starts again.)

PoCL_Wait_for_Connection: This state has a duration of 1.8 seconds. It follows directly of state
PoCL_Connection_Sense in case a a power-over capable camera is detected. During this time, the
controller waits and checks if the information about the availability of a power-over capable camera
remains stable:

• If it is stable, the state machine switches to state PoCL_Camera_Detected and powers the
camera.

• If it is not stable, the state machine switches back to state Initialize and starts again.

To ensure that a PoCL camera was not detected erroneously (due to disturbances), during state
PoCL_Wait_for_Connection the controller checks if the measured voltage drop remains stable
between the two thresholds values during the 1.8 seconds. If the measured voltage remains stable,
a PoCL-capable camera is assumed, the state machine switches to state PoCL_Camera_Detected,
and the camera is powered. Rises the measured voltage higher the upper threshold value, or falls
it below the lower threshold value, there is a disturbance. The state machine switches to state
Initialize and starts again.

PoCL_Camera_Detected: This state has a duration of up to 4 seconds. The camera is powered.
The controller waits for the camera to get ready and for receiving a clock signal from the camera.

• If a clock is detected (within maximally 4s), the camera is ready for operation. The state machine
switches to state PoCL_Camera_Clock_Detected.

• If no clock is detected (during maximally 4s), the state machine switches to state Initialize and
starts again.

PoCL_Camera_Clock_Detected: The camera is ready for operation.

• As long as the state machine receives the clock signal from the camera, the state machine
remains in this state.

• If there is no clock signal for more than 400 ms, the state machine switches to state Initialize. (It
is assumed that either the camera has been disconnected, or an error has occurred.)

CL_Wait_for_Connection: This state has a duration of 100ms. It follows directly of state
PoCL_Connection_Sense in case a CL camera without PoCL support is detected. The test current is
switched off. The system waits for 100ms to allow the charges to drain slowly. After this timespan,
the state machine switches to state CL_Camera_Detected, and ground (GND) is connected.

CL_Camera_Detected: This state has a duration of up to 4 seconds. The connected camera
has been identified as not PoCL-capable. The controller waits for the camera to get ready and for
receiving a clock signal from the camera.

• If a clock is detected (within maximally 4s), the camera is ready for operation. The state machine
switches to state CL_Camera_Clock_Detected.

• If during 4s no clock is detected, the camera is not ready for operation. The state machine
switches to state Initialize and starts again.

CL_Camera_Clock_Detected: The camera is ready for operation.

• As long as the state machine receives the clock signal from the camera, the state machine
remains in this state.

• If there is no clock signal for more than 1 s, the state machine switches to state Initialize. (It is
assumed that either the camera has been disconnected, or an error has occurred.)

If PoCL support is enabled, the PoCL state machine decision flow runs as follows:

Library Hardware Platform 1177

VisualApplets User Documentation Release 3

PoCLStatePortA

Power Watchdog

Additional security mechanism: The voltage level is permanently monitored.

• Is the voltage for 2 ms higher than the the lower threshold value while no PoCL
voltage is applied: A short circuit is assumed. The state machine switches to state
Initialize.

• Is the voltage for 2 ms lower than the the upper threshold value while PoCL voltage
is applied: The occurrence of an error is assumed. The state machine switches to
state Initialize.

PoCLStatePortB
Type dynamic read parameter
Default Initialize
Range {PoCL_Disabled, Initialize, PoCL_Connection_Sense, PoCL_Wait_for_Connection,

PoCL_Camera_Detected, PoCL_Camera_Clock_Detected, CL_Wait_for_Connection,
CL_Camera_Detected, CL_Camera_Clock_Detected}

Library Hardware Platform 1178

VisualApplets User Documentation Release 3

PoCLStatePortB
The parameter allows to read the current state of the Power over Camera Link (PoCL) state
machine on the Port B connector.

Availability

mE5 marathon VCL, mE5 marathon VCLx, LightBridge 2 VCL

Using Power over Camera Link (PoCL)

In applets built with VisualApplets version 3.0.6 or higher, PoCL is disabled per
default. Thus, read parameter PoCLStatePortB displays value PoCL_Disabled
per default. If the user of the applet wants to use the applet with PoCL support,
he/she needs to enable PoCL support via microDiagnostics. This is possible as of
Framegrabber SDK version 5.5.1 (or higher) (with version 5.10, the product name has
been changed from Basler Runtime to Basler Framegrabber SDK).

Thus, if the applet user is going to use PoCL:

• If the applet user has Framegrabber SDK version 5.5.1 or higher installed on his
host PC, you may use VisualApplets 3.0.6 or higher to design and build the applet.

• If the applet user is definitely not going to update the Framegrabber SDK version on
his host PC to 5.5.1 or higher, but wants to use PoCL, you need to design the applet
with a VisualApplets version 3.0.4 (or prior).

It will not be possible to use applets build with VisualApplets 3.0.6 or higher in PoCL
mode together with a Framegrabber SDK version lower than 5.5.1.

PoCL_Disabled: If PoCL is not enabled for the board, this state will be displayed during runtime.

Enabling PoCL Support

Starting from Framegrabber SDK version 5.5.1, PoCL support is disabled per default
for all mE5 marathon and LightBridge CL frame grabbers. To enable PoCL support,
hardware users using these frame grabber models need to enable PoCL support in
microDiagnostics, menu Tools -> Board Settings: Enable PoCL Detection when
using Framegrabber SDK version 5.5.1 or higher.

If PoCL has been enabled in microDiagnostics (or the applet has been built with VisualApplets 3.0.4
or prior), the individual states of the Power over Camera Link (PoCL) state machine indicate the
following:

Initialize: This state has a duration of 100 ms. During this period, PoCL detection as well as PoCL
operation is off. This way, the board establishes a defined initial state with no voltage applied.

PoCL_Connection_Sense: This state has a duration of 600 ms. It follows directly of state
Initialize. During this state, the controller finds out if the connected camera is PoCL-capable or not.

• If a PoCL camera is detected, the PoCL state machine switches to state
PoCL_Wait_for_Connection.

• If a CL camera without PoCL support is detected, the PoCL state machine switches to state
CL_Wait_for_Connection.

• If a disconnect or disturbances are detected, the state machine switches back to state Initialize
and starts again.

(The controller applies a test current and waits for 600 ms. Then, the voltage drop is measured.
There are two thresholds: Is the measured value between both thresholds, the PoCL state machine
switches to state PoCL_Wait_for_Connection. Is the measured value lower than both thresholds, the

Library Hardware Platform 1179

VisualApplets User Documentation Release 3

PoCLStatePortB
PoCL state machine switches to state CL_Wait_for_Connection. Is the measured value higher than
both thresholds, the connection is either broken or disturbed. In this case, the PoCL state machine
switches to state Initialize and starts again.)

PoCL_Wait_for_Connection: This state has a duration of 1.8 seconds. It follows directly of state
PoCL_Connection_Sense in case a a power-over capable camera is detected. During this time, the
controller waits and checks if the information about the availability of a power-over capable camera
remains stable:

• If it is stable, the state machine switches to state PoCL_Camera_Detected and powers the
camera.

• If it is not stable, the state machine switches back to state Initialize and starts again.

To ensure that a PoCL camera was not detected erroneously (due to disturbances), during state
PoCL_Wait_for_Connection the controller checks if the measured voltage drop remains stable
between the two thresholds values during the 1.8 seconds. If the measured voltage remains stable,
a PoCL-capable camera is assumed, the state machine switches to state PoCL_Camera_Detected,
and the camera is powered. Rises the measured voltage higher the upper threshold value, or falls
it below the lower threshold value, there is a disturbance. The state machine switches to state
Initialize and starts again.

PoCL_Camera_Detected: This state has a duration of up to 4 seconds. The camera is powered.
The controller waits for the camera to get ready and for receiving a clock signal from the camera.

• If a clock is detected (within maximally 4s), the camera is ready for operation. The state machine
switches to state PoCL_Camera_Clock_Detected.

• If no clock is detected (during maximally 4s), the state machine switches to state Initialize and
starts again.

PoCL_Camera_Clock_Detected: The camera is ready for operation.

• As long as the state machine receives the clock signal from the camera, the state machine
remains in this state.

• If there is no clock signal for more than 400 ms, the state machine switches to state Initialize. (It
is assumed that either the camera has been disconnected, or an error has occurred.)

CL_Wait_for_Connection: This state has a duration of 100ms. It follows directly of state
PoCL_Connection_Sense in case a CL camera without PoCL support is detected. The test current is
switched off. The system waits for 100ms to allow the charges to drain slowly. After this timespan,
the state machine switches to state CL_Camera_Detected, and ground (GND) is connected.

CL_Camera_Detected: This state has a duration of up to 4 seconds. The connected camera
has been identified as not PoCL-capable. The controller waits for the camera to get ready and for
receiving a clock signal from the camera.

• If a clock is detected (within maximally 4s), the camera is ready for operation. The state machine
switches to state CL_Camera_Clock_Detected.

• If during 4s no clock is detected, the camera is not ready for operation. The state machine
switches to state Initialize and starts again.

CL_Camera_Clock_Detected: The camera is ready for operation.

• As long as the state machine receives the clock signal from the camera, the state machine
remains in this state.

• If there is no clock signal for more than 1 s, the state machine switches to state Initialize. (It is
assumed that either the camera has been disconnected, or an error has occurred.)

If PoCL support is enabled, the PoCL state machine decision flow runs as follows:

Library Hardware Platform 1180

VisualApplets User Documentation Release 3

PoCLStatePortB

Power Watchdog

Additional security mechanism: The voltage level is permanently monitored.

• Is the voltage for 2 ms higher than the the lower threshold value while no PoCL
voltage is applied: A short circuit is assumed. The state machine switches to state
Initialize.

• Is the voltage for 2 ms lower than the the upper threshold value while PoCL voltage
is applied: The occurrence of an error is assumed. The state machine switches to
state Initialize.

PoCXPStatePort_0
Type dynamic read parameter
Default BOOTING
Range {BOOTING, NOCABLE, NOPOCXP, POCXPOK, MIN_CURR, MAX_CURR, LOW_VOLT,

OVER_VOLT, ADC_Chip_Error}

The parameter represents the current state of the power over CoaXPress state machine on the
frame grabber's port[0] connector.

Library Hardware Platform 1181

VisualApplets User Documentation Release 3

PoCXPStatePort_0

Availability

mE5 marathon VCX-QP

PoCXPCurrentPort_0
Type dynamic read parameter
Default 0
Range [-1000.0 mA; +1000.0 mA]

The parameter measures the currently flowing current on port[0] (in mA).

Availability

mE5 marathon VCX-QP

PoCXPVoltagePort_0
Type dynamic read parameter
Default 24 V
Range [0.0 V; 30.0 V]

The parameter measures the voltage of the CXP power regulator of port[0] (in V). When the port is
not connected, the measured voltage will be 24 V.

Availability

mE5 marathon VCX-QP

PoCXPStatePort_1
Type dynamic read parameter
Default BOOTING
Range {BOOTING, NOCABLE, NOPOCXP, POCXPOK, MIN_CURR, MAX_CURR, LOW_VOLT,

OVER_VOLT, ADC_Chip_Error}

The parameter represents the current state of the power over CoaXPress state machine on the
frame grabber's port[1] connector.

Availability

mE5 marathon VCX-QP

PoCXPCurrentPort_1
Type dynamic read parameter
Default 0
Range [-1000.0 mA; +1000.0 mA]

The parameter measures the currently flowing current on port[1] (in mA).

Availability

mE5 marathon VCX-QP

PoCXPVoltagePort_1
Type dynamic read parameter

Library Hardware Platform 1182

VisualApplets User Documentation Release 3

PoCXPVoltagePort_1
Default 24 V
Range [0.0 V; 30.0 V]

The parameter measures the voltage of the CXP power regulator of port[1] (in V). When the port is
not connected, the measured voltage will be 24 V.

Availability

mE5 marathon VCX-QP

PoCXPStatePort_2
Type dynamic read parameter
Default BOOTING
Range {BOOTING, NOCABLE, NOPOCXP, POCXPOK, MIN_CURR, MAX_CURR, LOW_VOLT,

OVER_VOLT, ADC_Chip_Error}

The parameter represents the current state of the power over CoaXPress state machine on the
frame grabber's port[2] connector.

Availability

mE5 marathon VCX-QP

PoCXPCurrentPort_2
Type dynamic read parameter
Default 0
Range [-1000.0 mA; +1000.0 mA]

The parameter measures the currently flowing current on port[2] (in mA).

Availability

mE5 marathon VCX-QP

PoCXPVoltagePort_2
Type dynamic read parameter
Default 24 V
Range [0.0 V; 30.0 V]

The parameter measures the voltage of the CXP power regulator of port[2] (in V). When the port is
not connected, the measured voltage will be 24 V.

Availability

mE5 marathon VCX-QP

PoCXPStatePort_3
Type dynamic read parameter
Default BOOTING
Range {BOOTING, NOCABLE, NOPOCXP, POCXPOK, MIN_CURR, MAX_CURR, LOW_VOLT,

OVER_VOLT, ADC_Chip_Error}

The parameter represents the current state of the power over CoaXPress state machine on the
frame grabber's port[3] connector.

Library Hardware Platform 1183

VisualApplets User Documentation Release 3

PoCXPStatePort_3

Availability

mE5 marathon VCX-QP

PoCXPCurrentPort_3
Type dynamic read parameter
Default 0
Range [-1000.0 mA; +1000.0 mA]

The parameter measures the currently flowing current on port[3] (in mA).

Availability

mE5 marathon VCX-QP

PoCXPVoltagePort_3
Type dynamic read parameter
Default 24 V
Range [0.0 V; 30.0 V]

The parameter measures the voltage of the CXP power regulator of port[3] (in V). When the port is
not connected, the measured voltage will be 24V.

Availability

mE5 marathon VCX-QP

29.2.4. Examples of Use

The use of operator BoardStatus is shown in the following examples:

• Section 10.4.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

Library Hardware Platform 1184

VisualApplets User Documentation Release 3

29.3. Operator ActionCommand
Operator Library: Hardware Platform

The operator Action Command sends an action command trigger signal to the firmware. On receiving
this trigger signal, the firmware sends a preconfigured action command to the GigE Vision camera.

The operator fires a trigger at detecting a rising edge at its input port. The operator guarantees that
the trigger signal has a minimum pulse width of three clock cycles. This ensures the firmware detects
the trigger signal.

For each camera channel, one action command is available. Maximally four resources of type Action
Command are available. Maximally four Action Command operators can be used in a design. The index
number of the action command is the same as the index number of the connected camera port.

For each action command the camera receives, it returns an action command acknowledge packet.

The operator offers a read parameter PendingActionCmdCount that displays the status of counter
PendingActionCmdCount: As soon as operator Action Command sends a trigger signal to the
firmware, counter PendingActionCmdCount is incremented. As soon as the receiving camera sends
the acknowledge packet, counter PendingActionCmdCount is decremented. The counter is protected
against overflow and underflow: At reaching the maximal value, the maximal value is hold. When the
counter has already value zero, the counter doesn't decrement further.

Operator Action Command is a mere trigger operator. The content (function) of the action command
is defined by software.

The firmware sends the action command at the rising edge of the action command trigger signal it
receives from the Action Command operator.

The firmware sends the action command to the camera with a fix latency of 2000 ns +/- 16 ns. This
means, the time gap between the detection of the rising edge of the action command trigger signal
by the firmware and the actual sending of the action command by the firmware is always 2000 ns
+/- 16 ns.

Keep software packets on transmitter channel small during acquisition

The transmitter channel between firmware and camera is used for sending software
packets as well as action command packets. To ensure the fix latency can be kept,
make sure the software packets do not exceed a payload size of approximately
100 Byte during acquisition.

Library Hardware Platform 1185

VisualApplets User Documentation Release 3

Interval of minimum 2000 ns between trigger signals required

Make sure between the sending of two action command trigger signals (back-to-back
trigger signals) by the operator Action Command, there is a minimum time gap of 2000
ns.

Available for Hardware Platforms
microEnable IV VQ4-GE

microEnable IV VQ4-GPoE

29.3.1. I/O Properties

Property Value
Operator Type M
Input Link Signal Input Link I, Signal Input

29.3.2. Supported Link Format

Link Parameter Input Link Signal Input Link I
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.3.3. Parameters

PendingActionCmdCount
Type dynamic read parameter
Default
Range [0; 65535]

Parameter PendingActionCmdCount displays the status of counter PendingActionCmdCount:
As soon as operator Action Command sends a trigger signal to the firmware, counter
PendingActionCmdCount is incremented. As soon as the receiving camera sends the acknowledge
packet, counter PendingActionCmdCount is decremented.

The counter is protected against overflow and underflow: At reaching the maximal value, the
maximal value is hold. When the counter has already value zero, the counter doesn't decrement
further.

29.3.4. Examples of Use

The use of operator ActionCommand is shown in the following examples:

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

Library Hardware Platform 1186

VisualApplets User Documentation Release 3

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

Library Hardware Platform 1187

VisualApplets User Documentation Release 3

29.4. Operator CameraControl
Operator Library: Hardware Platform

The CameraControl operator provides the camera control [CC] interface to the connected camera. When
using multiple instances of the CameraControl operator, the assignment to the proper camera port can
be made in the resource dialog window. Thus, this operator requires one VisualApplets resource of
type CameraControl. The resource index 0 maps to camera port A and the resource index 1 maps to
camera port B. Check Section 3.8, 'Allocation of Device Resources' for more information.

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

microEnable 5 ironman VD8-PoCL

microEnable IV VD4-CL/-PoCL

microEnable IV VD1-CL

One Instance with microEnable 5 VD8-PoCL

Due to the board design of microEnable 5 VD8-PoCL, only one instance of this operator
is available on this platform.

29.4.1. I/O Properties

Property Value
Operator Type M
Input Link CC[1-4], signal input

Port Name Direction Type Description
CC1 Input OM Camera Link CC1

channel.

CC2 Input OM Camera Link CC2
channel.

CC3 Input OM Camera Link CC3
channel.

CC4 Input OM Camera Link CC4
channel.

Synchronous and Asynchronous Inputs:

All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be automatically
synchronized. See also Section 3.6.4, 'M-type Operators with Multiple Inputs'.

29.4.2. Supported Link Format

Link Parameter Input Link CC[1-4]
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1

Library Hardware Platform 1188

VisualApplets User Documentation Release 3

Link Parameter Input Link CC[1-4]
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.4.3. Parameters

None

29.4.4. Examples of Use

The use of operator CameraControl is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1189

VisualApplets User Documentation Release 3

Library Hardware Platform 1190

VisualApplets User Documentation Release 3

29.5. Operator BaseGrayCamera
Operator Library: Hardware Platform

The operator transfers image data from a Camera Link BASE GRAY configuration camera into
VisualApplets. Any BASE GRAY configurations of the Camera Link standard are supported.

The operator uses one ressource of type CameraPort exclusively. You can select Camera Link port A
(0) or Camera Link port B (1) of the frame grabber. The same ressource index can only be used
once per applet.

microEnable 5 ironman VD8-PoCL: On mE5 VD8-PoCL (ironman), only port A offers all camera
functions, i.e., CC signals and serial interface. On mE5 VD8-PoCL (ironman), port B offers neither CC
signals nor a serial interface. Nevertheless, the camera can be operated in free-run mode when the
camera has been pre-programmed before. This limitations of port A are only true for mE5 VD8-PoCL
(ironman), not for any other frame grabber models (LightBridge, marathon ...) using the operator.

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

mE5 VD8-PoCL (ironman)

29.5.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.5.2. Supported Link Format

Link Parameter Output Link O
Bit Width Any
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width Any
Max. Img Height Any

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel are cut off. Only the most signicicant bits (MSB) are transferred
into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel is set on the MSB position. The LSBs are filled with zeros.

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

Library Hardware Platform 1191

VisualApplets User Documentation Release 3

29.5.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

BaseMode
Type dynamic write parameter
Default Tap1x8bit
Range {Tap1x8bit, Tap1x10bit, Tap1x12bit, Tap1x14bit, Tap1x16bit, Tap2x8bit, Tap2x10bit,

Tap2x12bit, Tap3x8bit}

The parameter specifies the BASE configuration mode.

CameraStatus
Type dynamic read parameter
Default
Range LightBridge VCL/mE5 marathon VCL/mE5 marathon VCLx: [0; 2^8-1]

mE5 VD8 ironman: [0;2^4-1]

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

Library Hardware Platform 1192

VisualApplets User Documentation Release 3

CameraStatus
bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4..7]: reserved (LightBridge and marathon only)

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClock
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel in MHz.

MinimalParallelism
Type static read parameter
Default 3
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

29.5.4. Examples of Use

The use of operator BaseGrayCamera is shown in the following examples:

• Section 10.3.1.1, 'Grayscale Camera Link Base Area'

Tutorial - Basic Acquisition

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1193

VisualApplets User Documentation Release 3

29.6. Operator BaseRgbCamera

Operator Library: Hardware Platform

The operator transfers image data from a Camera Link BASE RGB configuration camera into
VisualApplets. All RGB BASE configurations of the Camera Link standard are supported.

The operator uses one resource of type CameraPort exclusively. You can select Camera Link port A
(0) or Camera Link port B (1) of the frame grabber. The same resource index can only be used
once per applet.

microEnable 5 ironman VD8-PoCL: On mE5 VD8-PoCL (ironman), only port A offers all camera
functions, i.e., CC signals and serial interface. On mE5 VD8-PoCL (ironman), port B offers neither CC
signals nor a serial interface. Nevertheless, the camera can be operated in free-run mode when the
camera has been pre-programmed before. These limitations of port B are only true for mE5 VD8-PoCL
(ironman), not for any other frame grabber models (LightBridge, marathon ...) using the operator.

Definition of "Tap"

The meaning of one tap, as used in this manual, is one decoded color component of
any bit width.

Note that in the CameraLink Specification Version 2.1, one tap is defined as one color
pixel with all color components included.

The following table shows the mapping between the VisualApplets notation and the
CameraLink Specification Version 2.1:

VA notation CameraLink notation
Tap3x8 8-bit RGB Medium 1 tap

Table 29.2. Mapping VA notation and CL Specification Version 2.1

The following figure shows the pixel mapping in this mode (Tap3x8bit):

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

mE5 VD8-PoCL (ironman)

Library Hardware Platform 1194

VisualApplets User Documentation Release 3

29.6.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.6.2. Supported Link Format

Link Parameter Output Link O
Bit Width [3,63]
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width Any
Max. Img Height Any

The bitwidth must be a multiple of 3 due to the RGB tuple.

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel components are cut off. Only the most signicicant bits (MSB) per
pixel component are transferred into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel components are set on the MSB position of the outgoing components. The LSBs are filled
with zeros.

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

29.6.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

Library Hardware Platform 1195

VisualApplets User Documentation Release 3

FvalMode
• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

BaseMode
Type dynamic write parameter
Default Tap3x8bit
Range {Tap3x8bit}

The parameter specifies the BASE configuration mode.

CameraStatus
Type dynamic read parameter
Default
Range LightBridge/marathon: [0;2^8-1]

mE5 VD8 ironman: [0;2^4-1]

bit[0]: PCLK available

bit[1]: FVAL current value

bit[2]: LVAL current value

bit[3]: DVAL current value

bit[4-7]: reserved (LightBridge and marathon only)

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClock
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Library Hardware Platform 1196

VisualApplets User Documentation Release 3

PixelClock
Pixel clock rate of camera channel in MHz.

MinimalParallelism
Type static read parameter
Default 1
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

Library Hardware Platform 1197

VisualApplets User Documentation Release 3

29.7. Operator MediumGrayCamera

Operator Library: Hardware Platform

The operator transfers image data from a Camera Link MEDIUM GRAY configuration camera into
VisualApplets. Any MEDIUM GRAY configurations of the Camera Link standard are supported.

The operator uses 2 ressources of type CameraPort exclusively. Thus, both ports of the frame grabber,
port A (0) and port B (1), are occupied and cannot be used by other operators. The same ressource
index can only be used once per applet.

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

mE5 VD8-PoCL (ironman)

29.7.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.7.2. Supported Link Format

Link Parameter Output Link O
Bit Width Any
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width Any
Max. Img Height Any

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel are cut off. Only the most signicicant bits (MSB) are transferred
into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel is set on the MSB position. The LSBs are filled with zeros.

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

Library Hardware Platform 1198

VisualApplets User Documentation Release 3

29.7.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

MediumMode
Type dynamic write parameter
Default Tap4x8bit
Range {Tap3x10bit, Tap3x12bit, Tap4x8bit,Tap4x10bit, Tap4x12bit}

The parameter specifies the MEDIUM configuration mode.

CameraStatus
Type dynamic read parameter
Default
Range LightBridge/marathon: [0;2^24-1]

mE5 VD8 ironman: [0;2^8-1]

Parameter CameraStatus depends on the frame grabber hardware you are programming for. Find
below the descriptions first for marathon and Lightbridge, than for mE5 VD8-PoCL (ironman).

marathon and Lightbridge:

Library Hardware Platform 1199

VisualApplets User Documentation Release 3

CameraStatus
bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4-11]: reserved

bit[12]: PCLK [1] available

bit[13]: FVAL [1] current value

bit[14]: LVAL [1] current value

bit[15]: DVAL [1] current value

bit[16-23]: reserved

mE5 VD8-PoCL (ironman):

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4]: PCLK [1] available

bit[5]: FVAL [1] current value

bit[6]: LVAL [1] current value

bit[7]: DVAL [1] current value

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClockX
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel X in MHz.

PixelClockY
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Y in MHz.

MinimalParallelism
Type static read parameter

Library Hardware Platform 1200

VisualApplets User Documentation Release 3

MinimalParallelism
Default 3
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

29.7.4. Examples of Use

The use of operator MediumGrayCamera is shown in the following examples:

• Section 10.3.1.3, 'Grayscale Camera Link Medium Area'

Tutorial - Basic Acquisition

Library Hardware Platform 1201

VisualApplets User Documentation Release 3

29.8. Operator MediumRgbCamera

Operator Library: Hardware Platform

The operator transfers image data from a Camera Link MEDIUM RGB configuration camera into
VisualApplets. Three MEDIUM RGB configurations of the Camera Link standard are supported.

Definition of "Tap"

The meaning of one tap, as used in this manual, is one decoded color component of
any bit width.

Note that in the CameraLink Specification Version 2.1, one tap is defined as one color
pixel with all color components included.

The following table shows the mapping between the VisualApplets notation and the
CameraLink Specification Version 2.1:

VA notation CameraLink notation
Tap3x10 10-Bit RGB Medium 1 tap

Tap3x12 12-Bit RGB Medium 1 tap

Tap6x8 8-Bit RGB Medium 2 taps

Table 29.3. Mapping VA notation and CL Specification Version 2.1

The following figures show the pixel mapping in these modes:

Library Hardware Platform 1202

VisualApplets User Documentation Release 3

Tap3x10bit and Tap3x12bit:

Tap6x8bit:

Library Hardware Platform 1203

VisualApplets User Documentation Release 3

The operator uses 2 ressources of type CameraPort exclusively. Thus, both ports of the frame grabber,
port A (0) and port B (1), are occupied and cannot be used by other operators. The same ressource
index can only be used once per applet.

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

mE5 VD8-PoCL (ironman)

29.8.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.8.2. Supported Link Format

Link Parameter Output Link O
Bit Width [3,63]
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width Any
Max. Img Height Any

The bitwidth must be a multiple of 3 due to the RGB tuple.

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel components are cut off. Only the most signicicant bits (MSB) per
pixel component are transferred into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel components are set on the MSB position of the outgoing pixel components. The LSBs are
filled with zeros.

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

29.8.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

Library Hardware Platform 1204

VisualApplets User Documentation Release 3

DvalMode
The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

MediumMode
Type dynamic write parameter
Default Tap3x10bit
Range {Tap3x10bit, Tap3x12bit, Tap6x8bit}

The parameter specifies the MEDIUM configuration mode.

CameraStatus
Type dynamic read parameter
Default
Range LightBridge/marathon: [0;2^24-1]

mE5 VD8 ironman: [0;2^8-1]

Parameter CameraStatus depends on the frame grabber hardware you are programming for. Find
below the descriptions first for marathon and Lightbridge, than for mE5 VD8-PoCL (ironman).

marathon and Lightbridge:

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

Library Hardware Platform 1205

VisualApplets User Documentation Release 3

CameraStatus
bit[3]: DVAL [0] current value

bit[4-11]: reserved

bit[12]: PCLK [1] available

bit[13]: FVAL [1] current value

bit[14]: LVAL [1] current value

bit[15]: DVAL [1] current value

bit[16-23]: reserved

mE5 VD8-PoCL (ironman):

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4]: PCLK [1] available

bit[5]: FVAL [1] current value

bit[6]: LVAL [1] current value

bit[7]: DVAL [1] current value

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClockX
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel X in MHz.

PixelClockY
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Y in MHz.

MinimalParallelism
Type static read parameter
Default 2
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

Library Hardware Platform 1206

VisualApplets User Documentation Release 3

Library Hardware Platform 1207

VisualApplets User Documentation Release 3

29.9. Operator FullGrayCamera
Operator Library: Hardware Platform

The operator transfers image data from a Camera Link FULL GRAY configuration camera into
VisualApplets. Any FULL GRAY configurations of the Camera Link standard are supported.

The operator uses 2 resources of type CameraPort exclusively. Thus, both ports of the frame grabber,
port A (0) and port B (1), are occupied and cannot be used by other operators. The same resource
index can only be used once per applet.

Compatibility to VisualApplets 2.1: In case you designed applets for mE5VD8-PoCL containing
the FullGrayCamera operator with an older VisualApplets version: In earlier VisualApplets versions,
operator FullGrayCamera used 3 CameraPort resources. You can load these old applets in VisualApplets
2.2. The applet gets adapted immediately, and only 2 CameraPort resources are displayed. When
saving the applet in VisualApplets 2.2, the contained FullGrayCamera it is saved in its new version.
After saving, the updated applet can only be loaded in VisualApplets version 2.2 or higher.

Available for Hardware Platforms
mE5 VD8-PoCL (ironman)

mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

29.9.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.9.2. Supported Link Format

Link Parameter Output Link O
Bit Width Any
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width Any
Max. Img Height Any

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel are cut off. Only the most signicicant bits (MSB) are transferred
into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel is set on the MSB position. The LSBs are filled with zeros.

Library Hardware Platform 1208

VisualApplets User Documentation Release 3

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

29.9.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

FullMode
Type dynamic write parameter
Default Tap8x8bit
Range {Tap8x8bit, Tap10x8bit, Tap8x10bit}

The parameter specifies the FULL configuration mode.

Tap10x8bit and Tap8x10bit are FULL/80bit configurations as specified in the CameraLink
specification 2.0.

CameraStatus
Type dynamic read parameter

Library Hardware Platform 1209

VisualApplets User Documentation Release 3

CameraStatus
Default
Range LightBridge/marathon: [0;2^36-1]

mE5 VD8 ironman: [0;2^12-1]

Parameter CameraStatus depends on the frame grabber hardware you are programming for. Find
below the descriptions first for marathon and Lightbridge, than for mE5 VD8-PoCL (ironman).

marathon and Lightbridge:

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4-11]: reserved

bit[12]: PCLK [1] available

bit[13]: FVAL [1] current value

bit[14]: LVAL [1] current value

bit[15]: DVAL [1] current value

bit[16-23]: reserved

bit[24]: PCLK [2] available

bit[25]: FVAL [2] current value

bit[26]: LVAL [2] current value

bit[27]: DVAL [2] current value

bit[28-35]: reserved

mE5 VD8-PoCL (ironman):

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4]: PCLK [1] available

bit[5]: FVAL [1] current value

bit[6]: LVAL [1] current value

bit[7]: DVAL [1] current value

bit[8]: PCLK [2] available

bit[9]: FVAL [2] current value

bit[10]: LVAL [2] current value

bit[11]: DVAL [2] current value

Library Hardware Platform 1210

VisualApplets User Documentation Release 3

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClockX
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel X in MHz.

PixelClockY
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Y in MHz.

PixelClockZ
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Z in MHz.

MinimalParallelism
Type static read parameter
Default 7
Range {1; 1024}

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

29.9.4. Examples of Use

The use of operator FullGrayCamera is shown in the following examples:

• Section 10.1.1.5, 'Grayscale Camera Link Full Area'

Tutorial - Basic Acquisition

Library Hardware Platform 1211

VisualApplets User Documentation Release 3

29.10. Operator FullRgbCamera

Operator Library: Hardware Platform

The operator transfers image data from a Camera Link FULL based RGB configuration camera into
VisualApplets. Supported are three RGB modes. One mode, Tap8x8bit, is not standard conform.

Definition of "Tap"

The meaning of one tap, as used in this document, is one decoded color component
of any bit width.

Note that in the CameraLink Specification Version 2.1, one tap is defined as one color
pixel with all color components included.

The following table shows the mapping between the VA notation and the CameraLink
Specification Version 2.1

VA notation CameraLink notation
Tap8x8bit not covered by the CL Specification, used

by selected cameras

Tap10x8bit 8-Bit, 80-bit, RGB 10-tap

Tap8x10bit 10-Bit, 80-bit RGB 8-tap

Table 29.4. Mapping VA notation and CL Specification Version 2.1

The following figures show the pixel mapping in these modes:

Tap8x8bit and Tap8x10bit:

Tap10x8bit:

Library Hardware Platform 1212

VisualApplets User Documentation Release 3

The operator uses 2 ressources of type CameraPort exclusively. Thus, both ports of the frame grabber,
port A (0) and port B (1), are occupied and cannot be used by other operators. The same ressource
index can only be used once per applet.

Available for Hardware Platforms
mE5 marathon VCLx

mE5 marathon VCL

LightBridge VCL

mE5 VD8-PoCL (ironman)

29.10.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.10.2. Supported Link Format

Link Parameter Output Link O
Bit Width [3,63]
Arithmetic unsigned
Parallelism Any, see parameter description
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D,VALT_LINE1D}
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width Any
Max. Img Height Any

The bitwidth must be a multiple of 3 due to the RGB tuple.

Parameter BitWidth can be set to a larger or smaller value than the actual bitwidth sent by the
camera.

Library Hardware Platform 1213

VisualApplets User Documentation Release 3

If the parameter is set to a smaller value than the actual bitwidth sent by the camera, the least
significant bits (LSB) of the pixel components are cut off. Only the most signicicant bits (MSB) per
pixel component are transferred into VisualApplets.

If the parameter is set to a bigger value than the actual bitwidth sent by the camera, the original
pixel components are set on the MSB position of the outgoing pixel components. The LSBs are
filled with zeros.

In both cases, the relative brightness stays the same, i.e., white pixels remain withe and dark
pixels remain dark.

29.10.3. Parameters

DvalMode
Type dynamic write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

The parameter specifies whether DVAL is used to mask valid pixels or if it is ignored. When DVAL is
ignored, the valid pixels are selected according to LVAL and FVAL statuses.

FvalMode
Type dynamic/static write parameter
Default CameraLinkStandard
Range {CameraLinkStandard, IgnoreFval}

• CameraLinkStandard

The operator expects frame valid (FVAL) signals from the camera. In this case, the operator will
output frames according to the FVAL size.

• IgnoreFval

If this setting is used, the operator will ignore any FVAL signals from the camera. All input lines
will be used and merged into a sigle image with infinite height.

Only available for Output Image Protocol VALT_IMAGE2D

This parameter is only available if the output is set to image protocol
VALT_IMAGE2D. If VALT_LINE1D is selected, the parameter is disabled and the FVAL
is ignored anyway.

VisualApplets Link Rules Violation

When the camera operator outputs a frame of infinite height, the Max. Img Height
defined in the link properties might be exceeded. This causes a violation of the
VisualApplets link rules. Ensure to use valid heights. Use operator SplitImage to
limit the image height and split the endless image into multiple chunks.

The intention of this parameter is to allow the usage of area scan an line scan cameras dynamically
in the same applet.

FullMode
Type dynamic write parameter
Default Tap8x8bit
Range {Tap8x8bit, Tap8x10bit, Tap10x8bit}

Library Hardware Platform 1214

VisualApplets User Documentation Release 3

FullMode
The parameter specifies the FULL configuration mode.

CameraStatus
Type dynamic read parameter
Default
Range LightBridge/marathon: [0; 2^24-1]

mE5 VD8 ironman: [0;2^12-1]

Parameter CameraStatus depends on the frame grabber hardware you are programming for. Find
below the descriptions first for marathon and Lightbridge, than for mE5 VD8-PoCL (ironman).

marathon and Lightbridge:

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4..7]: reserved

bit[8]: PCLK [1] available

bit[9]: FVAL [1] current value

bit[10]: LVAL [1] current value

bit[11]: DVAL [1] current value

bit[12..15]: reserved

bit[16]: PCLK [2] available

bit[17]: FVAL [2] current value

bit[18]: LVAL [2] current value

bit[19]: DVAL [2] current value

bit[20..23]: reserved

mE5 VD8-PoCL (ironman):

bit[0]: PCLK [0] available

bit[1]: FVAL [0] current value

bit[2]: LVAL [0] current value

bit[3]: DVAL [0] current value

bit[4]: PCLK [1] available

bit[5]: FVAL [1] current value

bit[6]: LVAL [1] current value

bit[7]: DVAL [1] current value

bit[8]: PCLK [2] available

bit[9]: FVAL [2] current value

Library Hardware Platform 1215

VisualApplets User Documentation Release 3

CameraStatus
bit[10]: LVAL [2] current value

bit[11]: DVAL [2] current value

CameraLinkCoreReset
Type dynamic write parameter
Default 0
Range [0; 1]

Reserved for support issues.

PixelClockX
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel X in MHz.

PixelClockY
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Y in MHz.

PixelClockZ
Type dynamic read parameter
Default 0
Range [0; 85] MHz

Pixel clock rate of camera channel Z in MHz.

MinimalParallelism
Type static read parameter
Default 3
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

Library Hardware Platform 1216

VisualApplets User Documentation Release 3

29.11. Operator CameraGrayArea
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale area scan GigE Vision camera
and VisualApplets. This operator requires one VisualApplets resource of type CAM. Set the resource
index for the camera in the resource dialog. The resource index 0 maps the camera to port 0, index 1
to port 1, etc. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support the different data formats specified by the GigE Vision
standard. The following figure illustrates the data formats.

The packed formats require 3 bytes for transmitting 2 pixels. MONO8 and MONO8_SIGNED require
only 1 byte per pixel. MONO10, MONO12 and MONO16 need 2 bytes per pixel.

Note

• MONO8_SIGNED is managed by the operator as MONO8 and the output link format will be set to
UNSIGNED type. If a SIGNED link is required use CastType operator and change the link type to
SIGNED.

• Bayer formats can be mapped to these Gray formats because the camera operator does not interpret
the pixel content.

The parameterized format is converted to match with the parameterized output link format of the
camera operator. The output link can be configured to several bit widths. Conversion is performed by
adding bits to the lower bit positions if the camera format bit width is higher than the parameterized
bit width in the output link. However, if the camera format bit width is less than the available bits at
the output link, only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VQ4-GE/-GPoE

29.11.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.11.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}

Library Hardware Platform 1217

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Arithmetic unsigned
Parallelism 4
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.11.3. Parameters

PixelFormat
Type dynamic read/write parameter
Default MONO8
Range {MONO8, MONO8_SIGNED, MONO10, MONO10_PACKED, MONO12, MONO12_PACKED,

MONO16}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

Overflow
Type dynamic read parameter
Default 0
Range {0, 1}

This parameter indicates if an overflow at the camera operator has occurred i.e. image data has
been lost. Each time an overflow occurs, the parameter is set to one. This value is kept until the
value is read. Thus, reading the parameter will reset it to value 0. In normal operations this should
never happen. The parameter is used for maintenance.

29.11.4. Examples of Use

The use of operator CameraGrayArea is shown in the following examples:

• Section 10.2.1.1, ' GigE Vision Grayscale Area Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1218

VisualApplets User Documentation Release 3

29.12. Operator CameraGrayAreaBase
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale area scan camera in Camera
Link base configuration mode and VisualApplets. This operator requires one VisualApplets resource of
type CAM. Set the resource index for the camera in the resource dialog. The resource index 0 maps the
camera to port A and the resource index 1 maps to the camera to port B. Check Section 3.8, 'Allocation
of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.12.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.12.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}
Arithmetic unsigned
Parallelism 4
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.12.3. Parameters

UseDval
Type dynamic read/write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

Library Hardware Platform 1219

VisualApplets User Documentation Release 3

UseDval
By setting this parameter to DVAL_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional DVAL signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default SingleTap8bit
Range {SingleTap8bit, SingleTap10bit, SingleTap12bit, SingleTap14bit, SingleTap16bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.12.4. Examples of Use

The use of operator CameraGrayAreaBase is shown in the following examples:

• 2. Getting Started

Getting Started

• Figure 3.1, 'Simple VisualApplets Design'

Basic Principles - Learn the Idea of VisualApplets

• Section 3.5, 'Data Flow '

Data Flow - Learn about the Pipeline Structure used in VisualApplets

• Section 3.6.9, 'Infinite Sources / Connecting Cameras'

Infinite Sources - Connecting operators to cameras. (DRC2 Latency Error)

• Section 3.8, 'Allocation of Device Resources'

Learn the allocation of the device resources of the operator.

• Section 9.1, 'Applet Parameterization'

Tutorial Basic Acquisition - Camera Operator Parameterization

• Section 10.1.1.1, 'Grayscale Camera Link Base Area'

Tutorial - Basic Acquisition

Library Hardware Platform 1220

VisualApplets User Documentation Release 3

29.13. Operator CameraGrayAreaFull
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale area scan camera in Camera
Link full configuration mode and VisualApplets. This operator requires two VisualApplets resource of
type CAM. The resources are automatically occupied by the operator. Both camera ports (port A and port
B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter FullMode to set the camera operator to the same mode as used by the camera. Moreover,
the link can be set to different bit widths. The following table shows allowed combinations of Parameter
FullMode, its access type, the bit width and parallelism.

FullMode Access to FullMode Bit Width Parallelism
Tap8x8bit Dynamic/Static 8 8

Tap8x8bit Dynamic/Static 8 16

Tap10x8bit Dynamic/Static 8 8

Tap10x8bit Dynamic/Static 8 16

Tap8x10bit Static 10 12

Note that when using a parallelism of 8, it can be possible that the datarate of the camera is higher
than the available bandwidth of the operator's output link. On the microEnable IV frame grabbers, the
theoretical bandwidth of the link at parallelism eight is 500MPixel/s. In CameraLink full configuration
mode, up to 850MPixel/s can be transferred.

Besides the bit width and the parallelism, the output link the maximum possible image dimensions
have to be specified. The size of the actual transfered images however may be less but must not
exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.13.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.13.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}
Arithmetic unsigned
Parallelism {8, 12, 16}}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any

Library Hardware Platform 1221

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Max. Img Height any

Not all combinations between the bit width, the parallelism and parameter settings are allowed.
See table above.

29.13.3. Parameters

DvalMode
Type dynamic read/write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

By setting this parameter to DVAL_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional DVAL signal is used. In general users should not
modify this parameter!

FullMode
Type dynamic read/write parameter
Default Tap8x8bit
Range {Tap8x8bit, Tap10x8bit, Tap8x10bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

Not all combinations between the bit width, the parallelism and parameter settings are allowed. See
table above.

29.13.4. Examples of Use

The use of operator CameraGrayAreaFull is shown in the following examples:

• Section 10.1.1.5, 'Grayscale Camera Link Full Area'

Tutorial - Basic Acquisition

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

Library Hardware Platform 1222

VisualApplets User Documentation Release 3

29.14. Operator CameraGrayAreaMedium

Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale area scan camera in Camera
Link madium configuration mode and VisualApplets. This operator requires two VisualApplets resource
of type CAM. The resources are automatically occupied by the operator. Both camera ports (port A
and port B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more
information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.14.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.14.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12}
Arithmetic unsigned
Parallelism {4, 8}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

Note that when using a parallelism of 4, it can be possible that the datarate of the camera is higher
than the available bandwidth of the operator's output link. On the microEnable IV frame grabbers,
the theoretical bandwidth of the link at parallelism four is 250MPixel/s. In CameraLink medium
configuration mode, up to 340MPixel/s can be transferred.

Library Hardware Platform 1223

VisualApplets User Documentation Release 3

29.14.3. Parameters

UseDval
Type dynamic read/write parameter
Default DVAL_Enabled
Range {DVAL_Enabled, DVAL_Disabled}

By setting this parameter to DVAL_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional DVAL signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default QuadTap8Bit
Range {QuadTap8Bit, QuadTap10Bit, QuadTap12Bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.14.4. Examples of Use

The use of operator CameraGrayAreaMedium is shown in the following examples:

• Section 10.1.1.3, 'Grayscale Camera Link Medium Area'

Tutorial - Basic Acquisition

Library Hardware Platform 1224

VisualApplets User Documentation Release 3

29.15. Operator CameraGrayLine
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale line scan GigE Vision camera
and VisualApplets. This operator requires one VisualApplets resource of type CAM. Set the resource
index for the camera in the resource dialog. The resource index 0 maps the camera to port 0, index 1
to port 1, etc. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support the different data formats specified by the GigE Vision
standard. The following figure illustrates the data formats.

The packed formats require 3 bytes for transmitting 2 pixels. MONO8 and MONO8_SIGNED require
only 1 byte per pixel. MONO10, MONO12 and MONO16 need 2 bytes per pixel.

Note

• MONO8_SIGNED is managed by the operator as MONO8 and the output link format will be set to
UNSIGNED type. If a SIGNED link is required use CastType operator and change the link type to
SIGNED.

• Bayer formats can be mapped to these Gray formats because the camera operator does not interpret
the pixel content.

The parameterized format is converted to match with the parameterized output link format of the
camera operator. The output link can be configured to several bit widths. Conversion is performed by
adding bits to the lower bit positions if the camera format bit width is higher than the parameterized
bit width in the output link. However, if the camera format bit width is less than the available bits at
the output link, only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.
For the 1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VQ4-GE/-GPoE

29.15.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.15.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}

Library Hardware Platform 1225

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Arithmetic unsigned
Parallelism 4
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.15.3. Parameters

PixelFormat
Type dynamic read/write parameter
Default MONO8
Range {MONO8, MONO8_SIGNED, MONO10, MONO10_PACKED, MONO12, MONO12_PACKED,

MONO16}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.15.4. Examples of Use

The use of operator CameraGrayLine is shown in the following examples:

• Section 10.2.2.1, 'GigE Vision Grayscale Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

Library Hardware Platform 1226

VisualApplets User Documentation Release 3

29.16. Operator CameraGrayLineBase
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale line scan camera in Camera
Link base configuration mode and VisualApplets. This operator requires one VisualApplets resource of
type CAM. Set the resource index for the camera in the resource dialog. The resource index 0 maps the
camera to port A and the resource index 1 maps to the camera to port B. Check Section 3.8, 'Allocation
of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.
For the 1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.16.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.16.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}
Arithmetic unsigned
Parallelism 4
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.16.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled

Library Hardware Platform 1227

VisualApplets User Documentation Release 3

UseDval
Range {Dval_Enabled, Dval_Disabled}

By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default SingleTap8bit
Range {SingleTap8bit, SingleTap10bit, SingleTap12bit, SingleTap14bit, SingleTap16bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.16.4. Examples of Use

The use of operator CameraGrayLineBase is shown in the following examples:

• Section 3.8, 'Allocation of Device Resources'

Learn the allocation of the device resources of the operator.

• Section 10.1.2.1, 'Grayscale Camera Link Base Line'

Tutorial - Basic Acquisition

• Section 10.3.2.1, 'Grayscale Camera Link Base Line Scan Cameras '

Tutorial - Basic Acquisition

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1228

VisualApplets User Documentation Release 3

29.17. Operator CameraGrayLineFull
Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale line scan camera in Camera
Link full configuration mode and VisualApplets. This operator requires two VisualApplets resource of
type CAM. The resources are automatically occupied by the operator. Both camera ports (port A and port
B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter FullMode to set the camera operator to the same mode as used by the camera. Moreover,
the link can be set to different bit widths. The following table shows allowed combinations of Parameter
FullMode, its access type, the bit width and parallelism.

FullMode Access to FullMode Bit Width Parallelism
Tap8x8bit Dynamic/Static 8 8

Tap8x8bit Dynamic/Static 8 16

Tap10x8bit Dynamic/Static 8 8

Tap10x8bit Dynamic/Static 8 16

Tap8x10bit Static 10 12

Note that when using a parallelism of 8, it can be possible that the datarate of the camera is higher
than the available bandwidth of the operator's output link. On the microEnable IV frame grabbers, the
theoretical bandwidth of the link at parallelism eight is 500MPixel/s. In CameraLink full configuration
mode, up to 850MPixel/s can be transferred.

Besides the bit width and the parallelism, the output link the maximum possible image dimensions
have to be specified. The size of the actual transfered images however may be less but must not exceed
this parameterized maximum. For the 1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.17.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.17.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12, 14, 16}
Arithmetic unsigned
Parallelism {8, 12, 16}}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any

Library Hardware Platform 1229

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Max. Img Height any

Not all combinations between the bit width, the parallelism and parameter settings are allowed.
See table above.

29.17.3. Parameters

DvalMode
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

FullMode
Type dynamic read/write parameter
Default Tap8x8bit
Range {Tap8x8bit, Tap10x8bit, Tap8x10bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

Not all combinations between the bit width, the parallelism and parameter settings are allowed. See
table above.

29.17.4. Examples of Use

The use of operator CameraGrayLineFull is shown in the following examples:

• Section 10.1.2.4, 'Grayscale Camera Link Full Line'

Tutorial - Basic Acquisition

• Section 10.3.2.5, 'Grayscale Camera Link Full Line Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1230

VisualApplets User Documentation Release 3

29.18. Operator CameraGrayLineMedium

Operator Library: Hardware Platform

This operator represents the image data interface between a grayscale line scan camera in Camera Link
madium configuration mode and VisualApplets. This operator requires two VisualApplets resource of
type CAM. The resources are automatically occupied by the operator. Both camera ports (port A and port
B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.
For the 1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.18.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.18.2. Supported Link Format

Link Parameter Output Link O
Bit Width {8, 10, 12}
Arithmetic unsigned
Parallelism {4, 8}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

Note that when using a parallelism of 4, it can be possible that the datarate of the camera is higher
than the available bandwidth of the operator's output link. On the microEnable IV frame grabbers,
the theoretical bandwidth of the link at parallelism four is 250MPixel/s. In CameraLink medium
configuration mode, up to 340MPixel/s can be transferred.

Library Hardware Platform 1231

VisualApplets User Documentation Release 3

29.18.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default QuadTap8Bit
Range {QuadTap8Bit, QuadTap10Bit, QuadTap12Bit}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.18.4. Examples of Use

The use of operator CameraGrayLineMedium is shown in the following examples:

• Section 10.1.2.3, 'Grayscale Camera Link Medium Line'

Tutorial - Basic Acquisition

• Section 10.3.2, 'Camera Link Line Scan Cameras '

Tutorial - Basic Acquisition

• Section 10.3.2.3, 'Grayscale Camera Link Medium Line Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1232

VisualApplets User Documentation Release 3

29.19. Operator CameraRgbArea

Operator Library: Hardware Platform

This operator represents the image data interface between a RGB area scan GigE Vision camera and
VisualApplets. This operator requires one VisualApplets resource of type CAM. Set the resource index
for the camera in the resource dialog. The resource index 0 maps the camera to port 0, index 1 to port
1, etc. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support the different data formats specified by the GigE Vision
standard. The following figure illustrates the data formats.

Note

• RGBA8_PACKED and BGRA8_PACKED transmit an alpha component. However the camera port link
is specified as RGB. Therefore the alpha component (the 4th component) is cut off inside the camera
port and only the other three R, G and B components are provided on the output link. If the 4th
component is required, use CameraGrayArea and set the format to MONO8. The 4 provided pixels
will build a single RGBA pixel. Now reinterpret the gray pixels as required.

• The camera operator extracts and aligns pixels as needed. For example setting the format to
BGR8_PACKED will force the camera operator to swap B and R components internally. At the output
link a perfect RGB pixel is provided. The same applies for RGB10V1 and RGB10V2 formats. The
camera operator will output 3 concatenated components.

The parameterized format is converted to match with the parameterized output link format of the
camera operator. The output link can be configured to several bit widths. Conversion is performed by
adding bits to the lower bit positions if the camera format bit width is higher than the parameterized
bit width in the output link. However, if the camera format bit width is less than the available bits at
the output link, only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VQ4-GE/-GPoE

29.19.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

Library Hardware Platform 1233

VisualApplets User Documentation Release 3

29.19.2. Supported Link Format

Link Parameter Output Link O
Bit Width {24, 30, 36}
Arithmetic unsigned
Parallelism {2, 4}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.19.3. Parameters

PixelFormat
Type dynamic read/write parameter
Default RGB8_PACKED
Range {RGB8_PACKED, BGR8_PACKED, RGBA8_PACKED, BGRA8_PACKED, RGB10_PACKED,

BGR10_PACKED, RGB12_PACKED, BGR12_PACKED, RGB10V1_PACKED,
RGB10V2_PACKED}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.19.4. Examples of Use

The use of operator CameraRgbArea is shown in the following examples:

• Section 10.2.1.2, ' GigE Vision RGB Area Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1234

VisualApplets User Documentation Release 3

29.20. Operator CameraRgbAreaBase
Operator Library: Hardware Platform

This operator represents the image data interface between a RGB area scan camera in RGB Camera
Link base configuration mode and VisualApplets. This operator requires one VisualApplets resource of
type CAM. Set the resource index for the camera in the resource dialog. The resource index 0 maps the
camera to port A and the resource index 1 maps to the camera to port B. Check Section 3.8, 'Allocation
of Device Resources' for more information.

In the output link, the maximum possible image dimensions have to be specified. The size of the actual
transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.20.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.20.2. Supported Link Format

Link Parameter Output Link O
Bit Width 24
Arithmetic unsigned
Parallelism 2
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.20.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

29.20.4. Examples of Use

The use of operator CameraRgbAreaBase is shown in the following examples:

Library Hardware Platform 1235

VisualApplets User Documentation Release 3

• Section 12.4.4, 'RGB White Balancing'

Examples - The applet shows an example for white balancing on RGB images.

Library Hardware Platform 1236

VisualApplets User Documentation Release 3

29.21. Operator CameraRgbAreaMedium
Operator Library: Hardware Platform

This operator represents the image data interface between a RGB area scan camera in Camera Link
RGB medium configuration mode and VisualApplets. This operator requires two VisualApplets resource
of type CAM. The resources are automatically occupied by the operator. Both camera ports (port A
and port B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more
information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.21.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.21.2. Supported Link Format

Link Parameter Output Link O
Bit Width {30, 36}
Arithmetic unsigned
Parallelism {2, 3, 4}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.21.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

Library Hardware Platform 1237

VisualApplets User Documentation Release 3

UseDval
By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default RGB30
Range {RGB30, RGB36}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.21.4. Examples of Use

The use of operator CameraRgbAreaMedium is shown in the following examples:

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

Library Hardware Platform 1238

VisualApplets User Documentation Release 3

29.22. Operator CameraRgbLine

Operator Library: Hardware Platform

This operator represents the image data interface between a RGB line scan GigE Vision camera and
VisualApplets. This operator requires one VisualApplets resource of type CAM. Set the resource index
for the camera in the resource dialog. The resource index 0 maps the camera to port 0, index 1 to port
1, etc. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support the different data formats specified by the GigE Vision
standard. The following figure illustrates the data formats.

Note

• RGBA8_PACKED and BGRA8_PACKED transmit an alpha component. However the camera port link
is specified as RGB. Therefore the alpha component (the 4th component) is cut off inside the camera
port and only the other three R, G and B components are provided on the output link. If the 4th
component is required, use CameraGrayArea and set the format to MONO8. The 4 provided pixels
will build a single RGBA pixel. Now reinterpret the gray pixels as required.

• The camera operator extracts and aligns pixels as needed. For example setting the format to
BGR8_PACKED will force the camera operator to swap B and R components internally. At the output
link a perfect RGB pixel is provided. The same applies for RGB10V1 and RGB10V2 formats. The
camera operator will output 3 concatenated components.

The parameterized format is converted to match with the parameterized output link format of the
camera operator. The output link can be configured to several bit widths. Conversion is performed by
adding bits to the lower bit positions if the camera format bit width is higher than the parameterized
bit width in the output link. However, if the camera format bit width is less than the available bits at
the output link, only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.

Available for Hardware Platforms
microEnable IV VQ4-GE/-GPoE

29.22.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

Library Hardware Platform 1239

VisualApplets User Documentation Release 3

29.22.2. Supported Link Format

Link Parameter Output Link O
Bit Width {24, 30, 36}
Arithmetic unsigned
Parallelism {2, 4}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.22.3. Parameters

PixelFormat
Type dynamic read/write parameter
Default RGB8_PACKED
Range {RGB8_PACKED, BGR8_PACKED, RGBA8_PACKED, BGRA8_PACKED, RGB10_PACKED,

BGR10_PACKED, RGB12_PACKED, BGR12_PACKED, RGB10V1_PACKED,
RGB10V2_PACKED}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

Library Hardware Platform 1240

VisualApplets User Documentation Release 3

29.23. Operator CameraRgbLineBase

Operator Library: Hardware Platform

This operator represents the image data interface between a RGB line scan camera in RGB Camera
Link base configuration mode and VisualApplets. This operator requires one VisualApplets resource of
type CAM. Set the resource index for the camera in the resource dialog. The resource index 0 maps the
camera to port A and the resource index 1 maps to the camera to port B. Check Section 3.8, 'Allocation
of Device Resources' for more information.

In the output link, the maximum possible image dimensions have to be specified. The size of the actual
transfered images however may be less but must not exceed this parameterized maximum. For the
1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.23.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.23.2. Supported Link Format

Link Parameter Output Link O
Bit Width 24
Arithmetic unsigned
Parallelism 2
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.23.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

Library Hardware Platform 1241

VisualApplets User Documentation Release 3

29.23.4. Examples of Use

The use of operator CameraRgbLineBase is shown in the following examples:

• Section 10.1.2.2, 'RGB Camera Link Base Line'

Tutorial - Basic Acquisition

• Section 10.3.2.2, 'RGB Camera Link Base Line Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1242

VisualApplets User Documentation Release 3

29.24. Operator CameraRgbLineMedium
Operator Library: Hardware Platform

This operator represents the image data interface between a RGB line scan camera in Camera Link RGB
medium configuration mode and VisualApplets. This operator requires two VisualApplets resource of
type CAM. The resources are automatically occupied by the operator. Both camera ports (port A and port
B) are used by this operator. Check Section 3.8, 'Allocation of Device Resources' for more information.

This operator can be configured to support different data formats specified by the CamerLink standard.
Use parameter Format to set the camera operator to the same mode as used by the camera.

The parameterized format is converted to match with the output link format of the camera operator.
The output link can be configured to several bit widths. Conversion is performed by adding bits to the
lower bit positions if the camera format bit width is higher than the parameterized bit width in the
output link. However, if the camera format bit width is less than the available bits at the output link,
only the most significant bits are used.

Moreover, in the output link the maximum possible image dimensions have to be specified. The size of
the actual transfered images however may be less but must not exceed this parameterized maximum.
For the 1D image protocol, the height is ignored.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.24.1. I/O Properties

Property Value
Operator Type M
Output Link O, image data output

29.24.2. Supported Link Format

Link Parameter Output Link O
Bit Width {30, 36}
Arithmetic unsigned
Parallelism {2, 3, 4}
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE1D
Color Format VAF_COLOR
Color Flavor FL_RGB
Max. Img Width any
Max. Img Height any

29.24.3. Parameters

UseDval
Type dynamic read/write parameter
Default Dval_Enabled
Range {Dval_Enabled, Dval_Disabled}

Library Hardware Platform 1243

VisualApplets User Documentation Release 3

UseDval
By setting this parameter to Dval_Disabled it is possible to support cameras which do not fully
comply with the CameraLink specification. In disabled mode, control signals Lval and Fval are used
to decode pixels. In enabled mode, the additional Dval signal is used. In general users should not
modify this parameter!

Format
Type dynamic read/write parameter
Default RGB30
Range {RGB30, RGB36}

This parameter specifies the data format of the connected camera. The format has to match with
the camera configuration.

29.24.4. Examples of Use

The use of operator CameraRgbLineMedium is shown in the following examples:

• Section 10.3.2, 'Camera Link Line Scan Cameras '

Tutorial - Basic Acquisition

• Section 10.3.2.4, 'RGB Camera Link Medium Line Scan Cameras '

Tutorial - Basic Acquisition

Library Hardware Platform 1244

VisualApplets User Documentation Release 3

29.25. Operator CLHSDualCamera

Operator Library: Hardware Platform

This operator represents the image data interface between a CLHS Dual Link configuration camera and
VisualApplets. This operator receives data from the CLHS Dual Link configuration camera and feeds
it into the image processing application.

Available for Hardware Platform
marathon VF2

The operator uses both resources of type camera exclusively. More camera resources cannot be used
in the applet.

The operator provides image data on its output port O. This output port is always present.

In addition to this standard output port, you can specify various optional ports if required by your
design.

The CLHS protocoll supports pulses and GPIO messages.

During instantiation of the operator, a pop-up dialog appears:

Here, you can define the availability of up to 16 optional GPIs (General Purpose Inputs) and up to 16
optional GPOs (General Purpose Outputs).

In addition, you can activate one output port Output (SyncO) (MultiFGSync bit of video message).

If you set the port availability to "0" (default), the port will not be present in the operator. If you set
the port availability to 1, the particular port is available at the operator interface.

The GPIO state is transferred when the state of a GPI is changed by a connected operator. When the
operator receives a GPIO message from the camera, all GPOs are updated.

GPIO messages are only exchanged on channel 0. On channel 1 there is no communication of this kind.

Parameter Bit Width can be set to a value higher or lower than the bit width the camera is actually
sending.

If you select a lower value, the LSB bits of each pixel are cut off, so that only the MSB bits are
transferred into the application.

If you select a higher value, the original pixel is set to the MSB position of the outgoing pixel. The
LSB bits are filled with zeros.

Library Hardware Platform 1245

VisualApplets User Documentation Release 3

In both cases, the relative brightness remains the same, i.e., white pixels remain white and dark pixels
remain dark.

29.25.1. I/O Properties

Property Value
Operator Type M
Input Link GPI0...GPI15 (optional), status of the frame

grabber GPOs (exchange via CLHS)
Output Links O, acquisition image data to be used inside

VisualApplets
GPO0...GPO15 (optional), status of the camera
GPOs (exchange via CLHS)
SyncO, MultiFGSync bit is set in video package
(valid for 1 clock cycle)

29.25.2. Supported Link Format

Link Parameter Output Link O Output Link GPO0...GPO15
(optional)

Bit Width any 1
Arithmetic unsigned unsigned
Parallelism any, see parameter description 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any 1
Max. Img Height any 1

Link Parameter Input Link GPI0...GPI15
(optional)

Output Link SyncO

Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width 1 1
Max. Img Height 1 1

29.25.3. Parameters

CameraID
Type static write parameter

Library Hardware Platform 1246

VisualApplets User Documentation Release 3

CameraID
Default 0
Range 0

The parameter specifies which camera resource is used. Furthermore, the ID will be used to map
camera channels to applet ports.

PixelFormat
Type static write parameter
Default Mono10p
Range {Mono8,Mono10p,Mono12p,Mono14p,Mono16,Raw8,Raw10p,Raw12p,Raw14p,Raw16,

Raw64, B8, B10p, B12p, B14p, B16, G8, G10p, G12p, G14p, G16, R8, R10p, R12p,
R14p, R16, BGR8, BGR10p, BGR12p, BGR14p, BGR16, BGRa8, BGRa10p, BGRa12p,
BGRa14p, BGRa16, BayerGR8, BayerGR10p, BayerGR12p,BayerGR14p, BayerGR16,
BayerRG8, BayerRG10p, BayerRG12p, BayerRG14p, BayerRG16, BayerGB8,
BayerGB10p, BayerGB12p, BayerGB14p, BayerGB16, BayerBG8, BayerBG10p,
BayerBG12p, BayerBG14p, BayerBG16}

The parameter specifies the output pixel format.

AquisitionFormat
Type static write parameter
Default Area
Range {Area; Linescan}

When this parameter is set to "Area", the first data available is a complete frame. Frames started
in the middle will be ignored. Therefor a "Start Of Frame" in the first video message is required. In
"linescan" mode, Start/End of Frame will be ignored, since they are set to 0 for linescan cameras.

MinimalParallelism
Type static read parameter
Default 16
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

LineSupervision
Type dynamic/static read/write parameter
Default off
Range {on, off}

Consistent check for lines. Checks if RowIDs following by RowStep steps. Furthermore check for
integrity: Start of line (SoL) and End of Line (EoL) must be in the correct order. Missing EoL or SoL
will be detected, an error flag is generated and an End of Line is inserted. Missing Lines will be
inserted as smaller lines (length depends on parallelism and bitwidth) until 2 following RowIDs are
detected and line consistency is guaranteed again.

RowStep
Type dynamic/static read/write parameter
Default 1
Range {1, 65535}

Step between 2 RowIDs. Should be 1 unless a multi-channel camera is used and lines are split
amongst links.

Library Hardware Platform 1247

VisualApplets User Documentation Release 3

OverflowOccurred
Type dynamic read parameter
Default 0
Range [0;1]

This parameter signalizes that the internal FIFO has an overflow. Overflow indicates loss of data
and need to be avoided. Possible reasons might be: One link is not sending at all, or the data is
received faster than it can be processed by the operator.

Library Hardware Platform 1248

VisualApplets User Documentation Release 3

29.26. Operator CLHSPulseIn

Operator Library: Hardware Platform

This operator manages the sending of pulse messages.

Available for Hardware Platforms
microEnable 5 marathon VF2

The operator uses one resource of type PulseIn exclusively. The same resource index can only be used
once in an applet.

For sending messages, at least ports PulseI, PulseEffectI, and PulseSyncRequestI need to be connected
in a sensible way.

Depending on the type of the messages, also ports PulseColorSelectI, PulseFramePeriodeI,
PulseStartIntRI, PulseStartIntGI, and PulseStartIntBI need to be connected sensibly. If these ports
are not used, they nevertheless need to be connected. But in this case it doesn't matter what they
are connected to.

For the individual CLHS message formats, you need sensible input at the following ports:

A pulse message is sent at each write to port PulseI. Thus, the parameters of the pulse message need
to be valid when a pixel (0D) with the type of the pulse message is written to PulseI.

For each pixel incoming at port PulseI, a pulse message is generated. If the pixels are coming in too
fast, messages are lost as a synchronization is required that needs a few clock cycles.

Library Hardware Platform 1249

VisualApplets User Documentation Release 3

Supported Link Format

Library Hardware Platform 1250

VisualApplets User Documentation Release 3

Library Hardware Platform 1251

VisualApplets User Documentation Release 3

29.26.1. I/O Properties

Property Value
Operator Type M
Input Link all Links, all Links

29.26.2. Supported Link Format

Link Parameter Input Link all Links
Bit Width see tables above
Arithmetic see tables above
Parallelism see tables above
Kernel Columns see tables above
Kernel Rows see tables above
Img Protocol see tables above
Color Format see tables above
Color Flavor see tables above
Max. Img Width see tables above
Max. Img Height see tables above

29.26.3. Parameters

None

Library Hardware Platform 1252

VisualApplets User Documentation Release 3

29.27. Operator CLHSPulseOut

Operator Library: Hardware Platform

This operator manages the receiving of pulse messages.

Available for Hardware Platforms
microEnable 5 marathon VF2

The operator uses one resource of type PulseOut exclusively. The same resource index can only be
used once in an applet.

For receiving messages, at least port PulseO needs to be connected.

Depending on the way you want to use the operator, further information of the pulse message
can be received via ports PulseEffectO, PulseSyncRequestO, PulseColorSelectI, PulseFramePeriodeI,
PulseStartIntRI, PulseStartIntGI, and PulseStartIntBI Depending on the type of the pulse messages,
you need to connect specific out ports.

For the individual CLHS message formats, the following combinations are possible:

When a pulse message has been received, at out port PulseO a 0D pixel with a mode-of-message field
is generated. The parameters of the pulse message are output on the according link o-synchroneously.

Library Hardware Platform 1253

VisualApplets User Documentation Release 3

Supported Link Format

Library Hardware Platform 1254

VisualApplets User Documentation Release 3

Library Hardware Platform 1255

VisualApplets User Documentation Release 3

29.27.1. I/O Properties

Property Value
Operator Type M
Input Link all Links, all Links

29.27.2. Supported Link Format

Link Parameter Input Link all Links
Bit Width see tables above
Arithmetic
Parallelism see tables above
Kernel Columns see tables above
Kernel Rows see tables above
Img Protocol see tables above
Color Format see tables above
Color Flavor see tables above
Max. Img Width see tables above
Max. Img Height see tables above

29.27.3. Parameters

None

Library Hardware Platform 1256

VisualApplets User Documentation Release 3

29.28. Operator CLHSSingleCamera
Operator Library: Hardware Platform

This operator represents the image data interface between a CLHS Single Link configuration camera
and VisualApplets. This operator receives data from the CLHS camera and feeds it into the image
processing application.

Available for Hardware Platform
marathon VF2

The operator uses one resource of type camera exclusively. You can select port 0 or port 1 of the frame
grabber as image source. The same resource ID cannot be used more than once in the applet.

This operator has always one output port O, which is the image output.

Adding Optional GPIO Ports

In addition to this standard output port, you can specify various optional ports if required by your
design.

The CLHS protocol supports pulses and GPIO messages.

During instantiation of the operator, a pop-up dialog appears:

Here, you can define the availability of up to 16 optional GPIs (General Purpose Inputs) and up to 16
optional GPOs (General Purpose Outputs).

If you set the port availability to "0" (default), the port will not be present in the operator. If you set
the port availability to 1, the particular port is available at the operator interface.

The GPIO state is transferred when the state of a GPI is changed by a connected operator. When the
operator receives a GPIO message from the camera, all GPOs are updated.

Parameter Bit Width

Link parameter Bit Width can be set to a value higher or lower than the bit width the camera is actually
sending:

• If you select a lower value, the LSB bits of each pixel are cut off, so that only the MSB bits are
transferred into the application.

• If you select a higher value, the original pixel is set to the MSB position of the outgoing pixel. The
LSB bits are filled with zeros.

In both cases, the relative brightness remains the same, i.e., white pixels remain white and dark pixels
remain dark.

Library Hardware Platform 1257

VisualApplets User Documentation Release 3

Adding Optional Output Ports

In addition, you can (optionally) activate two additional output ports:

• one output port Output (SyncO) (MultiFGSync bit of video message), and

• one output port Output (HeaderO). Output (HeaderO) provides the header information of the
video package that is currently worked on. The port provides the header information in a pixel of
a width of 64 bit.

The Structure of Output Port HeaderO

Before the image data are output on output port O, one single pixel is output on port HeaderO. This
pixel contains the data of the header of the video package. Output port HeaderO is used to transfer
information about more complex dependencies of the incoming data, or to react to events via the
video link of the applet.

The structure of output port HeaderO is as follows:

Position CLHS Header Description
[0,2] ColorID [0,2] Video Source: At the moment

this part is always 0
[3,4] ColorID [3,4] Packet Type 0 = video (all other

combinations are reserved)
[5,7] ColorID [5,7] Color ID:

ColorID Description
0 Mono, Multi-

component,
Bayer, Raw

1 Blue
2 Green
3 Red
4 Alpha
(5..7) reserved

Table 29.6.

[8,9] VideoStatus [1,0] Row Marker:

Bits Description
00 Continuation of

Row
01 Start of Row
10 End of Row
11 Complete row

(start & end)

Table 29.7.

[10,11] VideoStatus [3,2] Frame Marker:

Bits Description
00 Continuation of

Frame
01 Start of Frame

Library Hardware Platform 1258

VisualApplets User Documentation Release 3

10 End of Frame
11 Complete

Frame (start &
end)

Table 29.8.

12 VideoStatus [4] Missed Trigger. Camera was not
able to react to a trigger request
since last package

13 VideoStatus [5] Buffer overflow in Camera
14 VideoStatus [6] MultiFGSync Synchronisation for

multi FG usage(see also SyncO
output)

15 VideoStatus [7] Resend Flag, set to 0, not used
[16,31] RowID Number of the current Row
[32,39] - Reserved, set to 0
[40,55] ColID Number of the Column of the

first pixel in this package
[56,63] AcquisitionSet This Byte may be used by

the camera to set proprietary
information

Table 29.5.

29.28.1. I/O Properties

Property Value
Operator Type M
Output Links O, Acquisition image data to be used inside

VisualApplets
GPO[0;15] (optional), Status of the Camera
GPOs (Exchange via CLHS)
GPI[0;15] (optional), Status of the Framegrabber
GPOs (Exchange via CLHS)
SyncO (optional), MultiFGSync Bit is set in Video
Package (valid for 1 clock cycle)
HeaderO (optional), One 64 bit wide Pixel at the
start of each video package containing the video
package header

29.28.2. Supported Link Format

Link Parameter Output Link O Output Link
GPO[0;15] (optional)

Output Link
GPI[0;15] (optional)

Bit Width any 1 1
Arithmetic unsigned unsigned unsigned
Parallelism any, see parameter

description
1 1

Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_SIGNAL VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY VAF_GRAY

Library Hardware Platform 1259

VisualApplets User Documentation Release 3

Link Parameter Output Link O Output Link
GPO[0;15] (optional)

Output Link
GPI[0;15] (optional)

Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any 1 1
Max. Img Height any 1 1

Link Parameter Output Link SyncO (optional) Output Link HeaderO
(optional)

Bit Width 1 64
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_Pixel0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width 1 1
Max. Img Height 1 1

29.28.3. Parameters

CameraID
Type static write parameter
Default 0
Range {0, 1}

The parameter specifies which camera resource is used. Furthermore, the ID will be used to map
camera channels to applet ports.

PixelFormat
Type static write parameter
Default Mono10p
Range {Mono8,Mono10p,Mono12p,Mono14p,Mono16,Raw8,Raw10p,Raw12p,Raw14p,Raw16,

Raw64, B8, B10p, B12p, B14p, B16, G8, G10p, G12p, G14p, G16, R8, R10p, R12p,
R14p, R16, BGR8, BGR10p, BGR12p, BGR14p, BGR16, BGRa8, BGRa10p, BGRa12p,
BGRa14p, BGRa16, BayerGR8, BayerGR10p, BayerGR12p,BayerGR14p, BayerGR16,
BayerRG8, BayerRG10p, BayerRG12p, BayerRG14p, BayerRG16, BayerGB8,
BayerGB10p, BayerGB12p, BayerGB14p, BayerGB16, BayerBG8, BayerBG10p,
BayerBG12p, BayerBG14p, BayerBG16}

The parameter specifies the output pixel format.

In RAW mode, all line and frame markers coming in from the camera will be ignored. RAW mode is
used to support complex link structures and is exclusively available in operator CLHSSingleCamera.

AquisitionFormat
Type static write parameter
Default Area
Range {Area; Linescan; RAW}

When this parameter is set to "Area", the first data available is a complete frame. Frames started
in the middle will be ignored. Therefore, a "Start Of Frame" marker in the first video message is
required.

Library Hardware Platform 1260

VisualApplets User Documentation Release 3

AquisitionFormat
When this parameter is set to "Line", the first data available is a complete line. Lines started in the
middle will be ignored. Therefore, a "Start Of Line" marker in the first video message is required.
"Start of Frame" and "End of Frame" will be ignored, since they are set to 0 for linescan cameras.

When this parameter is set to “RAW”, all markers will be ignored ("Start/End of Line" as well as
"Start/End of Frame"). "RAW" mode is used to support complex link structures. This mode is only
available in the CLHSSingleCamera operator.

LineSupervision
Type dynamic/static read/write parameter
Default off
Range {on, off}

If this parameter is set to "on", the operator monitors if all lines incoming from the camera are
transferred to the applet.

The lines comming in from the camera are numbered in ascending order (line 0, line 1, line 2 ...
line N). The parameter makes sure that no lines are lost. For example, if a camera with one link is
connected and the parameter monitors a sequence like 332, 333, 335, 336 …, an error is thrown.

If a camera has more than 1 link the step size for incoming lines per link can be increased using
parameter RowStep accordingly. For example, if a camera has 2 links, link 0 receives lines 0, 2, 4,
6, … , and link 1 receives lines 1, 3, 5, 7 … etc. Accordingly, if a camera has 4 links, link 0 receives
lines 0, 4, 8, 12, … , link 1 receives lines 1, 5, 9, 13, link 2 receives lines 2, 6, 10, 14, … etc.

Furthermore, parameter LineSupervision checks for integrity: Start of line (SoL) and End of Line
(EoL) must be in the correct order. Missing EoL or SoL will be detected, an error flag is generated
and an End of Line is inserted. Missing Lines will be inserted as smaller lines (length depends on
parallelism and bitwidth) until 2 following RowIDs are detected and line consistency is guaranteed
again.

RowStep
Type dynamic/static read/write parameter
Default 1
Range {1, 65535}

Step between 2 RowIDs. Should be 1 unless a multi-channel camera is used and lines are split
amongst links.

SyncFirstLineToFGSyncRequest
Type dynamic/static read/write parameter
Default no
Range {no,yes}

If this parameter is set to yes, all lines before the first FGSyncRequest are discarded. Works only in
LINE_1D mode. This synchronizes the first line with the first external FGSyncRequest pulse.

MinimalParallelism
Type static read parameter
Default 2
Range [1; 1024]

Minimal parallelism for the output link O to be able to transport the maximal bandwidth of the
camera without losing data. This value depends on the currently selected design clock frequency.
The higher the frequency the lower the parallelism value can become.

Library Hardware Platform 1261

VisualApplets User Documentation Release 3

29.29. Operator CxpCamera

Operator Library: Hardware Platform

This operator represents the image data interface between a CXP camera and VisualApplets. The
operator can be used for single channel, dual channel or quad channel CXP interfaces. The type of
interface is selected by the parameter ConnectionCount. The operator outputs raw image data no
matter what format the camera delivers. You then need to convert this image data into the format sent
by the camera. To convert the image data, use appropriate operators for aggregating and casting raw
byte values to pixel values . Certain situations during operation may be communicated via the event
system as described below. Additionally, the operator has various parameters signalling the status of
the connection to the camera.

If the operator detects that a frame is larger or smaller than what was promoted by the camera in the
CXP image header, a safety circuit gets activated. The operator will then cut off exceeding pixels and
lines, so that VisualApplets sees always the frame size which was defined in the image header. If the
frame is smaller in its dimensions than what was specified in the image header, the operator will fill up
the received frame with undefined data to achieve the specified frame dimensions which were defined
in the image header. Filling up a smaller frame can cause the following frames to get lost. The loss will
be reported per event to the software, also the size mismatch will cause an event, too.

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

Instantiation in VisualApplets

The operator provides image data on its output O. This output is always present. In addition to this
standard output port, you can configure an optional MetaDataO output for the CXP header meta-data.
The following pop-up dialog appears during operator instantiation:

Here, you can specify the optional meta data port. If you set the port availability to "0" (default), the
port will not be present in the operator. If you set the port availability to 1, the meta data port is
available in the operator interface.

Optional MetaDataO Port

The format for the 32-bit output is shown in the following picture.

Library Hardware Platform 1262

VisualApplets User Documentation Release 3

Each CXP frame provides a corresponding error-free image header. For incorrect image header, no
image stream data is sourced into the VisualApplets pipeline. The compressed image header consist of
6 words. The last byte is used for additional information, which is for internal usage only. Particularly,
the HeaderError bit informs if the image header itself got an error or not.

Imageeader Description
StreamId ID of the CXP stream

Tag 16-bit source image index. It is incremented
for each transferred image, wraps around to 0
at 0xFFFF. The same number shall be used by
each stream containing data relating to the same
image (in case of multi-tap streams).

XSize 24-bit value representing the image width in
pixels.

XOff 24-bit value representing the horizontal offset in
pixels of the image with respect to the left hand
pixel of the full device image.

YSize 24-bit value representing the image height in
pixels. This value is set to 0 for line scan images.

YOff 24-bit value representing the vertical offset in
pixels of the image with respect to the top line
of the full device image. This value is set to 0 for
line scan images.

DSizeL 24-bit value representing the number of data
words per image line.

PixelF 16-bit value representing the pixel format.

TapG 16 bit value representing the tap geometry.

Flags Image flags.

x-Mirror (Not used yet). Describes whether the incoming
image is x-mirrored or not.

y-Mirror (Not used yet). Describes whether the incoming
image is y-mirrored or not.

HeaderError 1: Image header has an error and the frame
is declared as lost. There is no corresponding
image data exists in the operator output data
stream.

0: Image header is correct and there is a
corresponding image data exists in the operator
output data stream.

Device Resource Usage

Library Hardware Platform 1263

VisualApplets User Documentation Release 3

The operator uses one or more resources of type CameraPort depending on the selection of the
parameter ConnectionCount. For the event system a resource of the type EventPort is used. If
ConnectionCount is set to X4 (quad channel), the following resource dialog opens up:

Modifying Image Width and Image Height

Via the maximum image width and height properties of the output link you can adjust
width and height to the camera-specific settings. However, the maximum image width
on operator port O must be divisible by the parallelism of port O. Thus, make sure
the maximum image width is divisible by the parallelism of port O!

Error Handling and Event System

When the operator detects that the received reconstructed frame is larger or smaller than what was
promoted by the camera in the CXP image header, a safety circuit gets activated. The operator then
cuts off exceeding pixels and lines, so that the subsequent processing pipeline always sees the frame
size which was defined in the image header. If the received frame is smaller in its dimensions than
what was specified in the image header, the operator fills up the received frame with undefined data to
achieve the specified frame dimensions which were defined in the image header. Filling up of a smaller
frame can cause the follow-up frames to get lost. The loss is then reported per event to the software
(see the following paragraph). The size mismatch causes an event, too.

For a set of very critical errors, the operator will forward asynchronous events to the host runtime
software (Framegrabber SDK). The event name in the Framegrabber API is <hierarchical operator
name>\CxpStreamStatus, e.g. Device1\Process0\Camera\CxpStreamStatus. The event payload is
provided as four 16-bit data words. The event format is defined as follows:

Library Hardware Platform 1264

VisualApplets User Documentation Release 3

• word [0]:

• bits [0:15]: CXP image tag in which the event occurred.

• word [1]:

• bits [8:15]: Stream ID in which the event occurred.

• bits [0:7]: reserved, treat as don't care.

• word [2]:

• bit [0]: CRC error occurred.

• bit [1]: Stream marker error detected in the image header.

• bit [2]: An error in the image header was detected which could not be corrected.

• bit [3]: A frame size error was detected, i.e. the image size defined in the CXP image header is
not matching the reconstructed frame size from the transmitted packets. This happens when the
camera puts one info into the image header but transmits different amount of data as promoted
in the header.

• bits [4:15]: reserved, treat as don't care.

• word [3]:

• bit [0]: Event type, 0 = Corrupted Entity, 1 = Lost Entity.

• Corrupted Entity means that the error happens within a frame and that frame is already sourced
into the VisualApplets pipeline.

• Lost Entity means that the error occurred before the frame was forwarded to the following
operators and the frame was discarded by the camera operator.

• When a corrupted entity is observed, the operator will fill up the frame according to the CXP
image header definition so the following operators will not cause undefined behavior. During this
fill-up, a new frame may arrive and will then get lost. The lost entity event will also be raised
when the camera sends data with a gap according to the frame tag.

• bit [1]: Event loss for type Corrupted Entity occurred. This means that preceding events of type
Corrupted Entity got lost. This happens when the runtime software is not reacting to events and
the internal event queues ran full.

• bit [2]: Event loss for type Lost Entity occurred. This means that preceding events of type Lost
Entity got lost. This happens when the runtime software is not reacting to events and the internal
event queues ran full.

• bits [3:15]: Amount of lost Lost Entity events.

There are two types of events: events for corrupted entities and events for lost entities. Bit 0 of word
3 describes which kind of event occurred. If the event buffers are full, it might happen that events

Library Hardware Platform 1265

VisualApplets User Documentation Release 3

get lost. When an event gets lost that marks a corrupted entity, bit 1 of word 3 will be set. When
an event gets lost that marks a lost entity, bit 2 of word 3 will be set and bit 3 to 15 will provide
the number of lost events indicating a lost frame. If bit 2 is set but the counter is 0, it means that
a counter overflow happened.

Every event causes a software interrupt. To reduce the number of events, several events with the same
frame tag might be merged together. In that case some error flags are combined. If an event was lost,
the event before the lost event contains the information about the lost event and cannot be merged
with further events with the same frame tag.

The events caused due to CRC errors report a frame tag, which may not be exactly related to the frame
in which the CRC errors happens. The frame tag can be that of the preceding or following frame. This
can only happen, when a camera sends a CXP packet, which contains a transition between 2 or more
frames. The CRC computation is finished at the end of the packet, but the stream data is reconstructed
on-the-fly. This means that a situation can happen, when a CRC error is detected after the preceding
frame was already sent by the operator. In normal situations, where the camera packets don't contain
data both of the end of the ongoing frame and the beginning of the next frame, the frame tag during
CRC error will always be correct. For all other cases as long as the complete frame stream data is less
than the maximal packet size of 8k, there might be only 1 frame overlap within 1 packet. In that case
the software application should consider the preceding frame with the frame tag - 1 and the following
frame with the frame tag + 1 as potentially corrupted as well.

29.29.1. I/O Properties

Property Value
Operator Type M
Output Links O, image data output

MetaDataO, optional meta data output

29.29.2. Supported Link Format

Link Parameter Output Link O Output Link MetaDataO
Bit Width 32
Arithmetic unsigned unsigned
Parallelism auto 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D} (default:
VALT_IMAGE2D)

{VALT_IMAGE2D, VALT_LINE1D,
VALT_PIXEL0D} (default:
VALT_IMAGE2D)

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any (default: 1032) 6
Max. Img Height any (default: 1032) 1

29.29.3. Parameters

ConnectionCount
Type Static Write parameter
Default X1
Range {X1, X2, X4}

Library Hardware Platform 1266

VisualApplets User Documentation Release 3

ConnectionCount
The parameter ConnectionCount defines the number of CXP lanes aggregated to the CXP link. The
indices of the used connection ports are handled by resources of the type CameraPort. The number
of port resources matches the connection count (e.g. X2: two CameraPort resource items).

When you instantiate more than one CxpCamera operator (e.g. for dual-camera applet), resource
conflicts may occur when multiple resources with the same index are used or when the number of
consumed CameraPort resources exceeds the maximum of 4. In this case, the design rules check
reports an error.

ResetStatus
Type Dynamic Write parameter
Default Off
Range {Off, On}

The parameter ResetStatus resets the camera statistics, i.e. the error counters.

UsedConnections
Type Dynamic Read parameter
Default
Range {1,2,4}

The parameter UsedConnections shows the amount of CXP lanes configured by the discovery
software at runtime.

PacketTagErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter PacketTagErrorCount shows how many received packets have a tag that is non-
compliant with the expected tag according to the CXP standard. In particular this value is counting
up when gaps are observed in following stream packet tag enumerations. The parameter is 13
bit wide, where the bits [11:0] represent the actual counter value and the bit [12] stands for the
counter overflow. When the overflow bit is set, the counter value shall be treated as don't care.

ImageTagErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how many mismatches occur between the image header tag, the expected
tag according to the CXP standard and the received tag. The parameter is 13 bit wide, where the
bits [11:0] represent the actual counter value and the bit [12] stands for the counter overflow.
When the overflow bit is set, the counter value shall be treated as don't care.

StreamIdErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the received stream-ID value in the stream packets mismatches
the stream-ID value specified in the image header. The parameter is 13 bit wide, where the bits
[11:0] represent the actual counter value and the bit [12] stands for the counter overflow. When
the overflow bit is set, the counter value shall be treated as don't care.

CorrectedErrorCount
Type Dynamic Read parameter

Library Hardware Platform 1267

VisualApplets User Documentation Release 3

CorrectedErrorCount
Default
Range [0 : 8191]

The parameter counts how many detected errors in the image header or the line markers have
been corrected. The parameter is 13 bit wide, where the bits [11:0] represent the actual counter
value and the bit [12] stands for the counter overflow. When the overflow bit is set, the counter
value shall be treated as don't care.

UncorrectedErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how many detected errors in the image header or the line markers could not
be corrected due to multiple bit errors in same byte. The parameter is 13 bit wide, where the bits
[11:0] represent the actual counter value and the bit [12] stands for the counter overflow. When
the overflow bit is set, the counter value shall be treated as don't care.

PacketBufferOverflowCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the packet buffer overflow occurs in the channel bonding in
aggregated mode. This parameter is only relevant for ConnectionCount = X2 or X4. The parameter
is 13 bit wide, where the bits [11:0] represent the actual counter value and the bit [12] stands for
the counter overflow. When the overflow bit is set, the counter value shall be treated as don't care.

PacketBufferOverflowSource
Type Dynamic Read parameter
Default
Range [0x0 : 0xf]

The parameter implements a bit mask to query in which of the potential 4 CXP channels the packet
buffer overflow occurred. The parameter width depends on the parameter ConnectionCount. In X1
mode, the parameter width is 1 bit wide, in X2 mode, the parameter width is 2 bit wide and in X4
mode the parameter width is 4 bit wide. The order is: LSB = lowest CXP channel number, MSB =
highest CXP channel number allocated by the operator.

CameraScanMode
Type Dynamic Read parameter
Default
Range {area,line}

The received image header carries the information whether the stream is for the area scan or
for the line scan applications. This parameter shows the last valid received stream image header
information.

MarkerErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the sequence of the CXP stream marker and the header or the line
markers was incorrect. The parameter is 13 bit wide, where the bits [11:0] represent the actual
counter value and the bit [12] stands for the counter overflow. When the overflow bit is set, the
counter value shall be treated as don't care.

Library Hardware Platform 1268

VisualApplets User Documentation Release 3

UnexpectedStartupData
Type Dynamic Read parameter
Default
Range {false, true}

The parameter detects the error situation in which the first data value after the operator reset was
unexpected, i.e. no image header is received before. This situation can happen due to a buggy
implementation of the camera, frame grabber firmware or wrong software control of the discovery
procedure. Also, a hardware defect of the camera could theoretically cause such a situation.

FrameLostCount
Type Dynamic Read parameter
Default
Range [0 : 33554431]

The parameter counts the frames that were lost during acquisition and are not sent into the
VisualApplets pipeline. Frames are lost when an error in the image header is detected or when a
frame overlaps with another frame. The parameter is 25 bit wide where the bits [23:0] represent
the actual counter value and the bit [24] stands for the counter overflow. When the overflow bit is
set, the counter value shall be treated as don't care.

FrameCorruptedCount
Type Dynamic Read parameter
Default
Range [0 : 33554431]

The parameter counts the corrupted frames during acquisition. Corrupted frames are frames with
error pixels which are sent to the VisualApplets pipeline. The parameter is 25 bit wide where the
bits [23:0] represent the actual counter value and the bit [24] stands for the counter overflow.
When the overflow bit is set, the counter value shall be treated as don't care.

29.29.4. Examples of Use

The use of operator CxpCamera is shown in the following examples:

• Section 10.5.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

Library Hardware Platform 1269

VisualApplets User Documentation Release 3

29.30. Operator CxpCameraMultiTap
Operator Library: Hardware Platform

This operator represents the image data interface between a CXP dual-tap camera and VisualApplets.
You can use the operator for single channel, dual channel or quad channel CXP interfaces. You select the
type of interface with the parameter ConnectionCount. The operator outputs raw image data for each
tap port, no matter which format the camera delivers. You then need to convert this image data into
the format sent by the camera. To convert the image data, use appropriate operators for aggregating
and casting raw byte values to pixel values. Certain situations during operation may be communicated
via the event system as described below. Additionally, the operator has various parameters signaling
the status of the connection to the camera.

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

CXP Standard Multi-Tap Definition

Usually, the image pixels are scanned sequentially from the top left to the bottom right. However,
with the steadily growing number of pixels on modern image sensors, this approach does not produce
acceptable frame rates. To tackle this issue, sensor manufacturers help themselves by scanning
multiple pixels at the same time. The CXP standard accommodates this technique by introducing the
concept of taps. A tap can be seen as a scanning device, which reads the image pixels sequentially.
The way an image is scanned is defined as the Tap Geometry, which the host reads from the device.

Taps Apply to Vertical Scanning Only

Taps apply to vertical scanning only. Horizontal scanning is fixed from left to right.

It is recommended in the CXP standard, that a frame grabber host supports the three tap formats
1X-1Y, 1X-1Y2, and 1X-2YE. The tap format 1X-1Y represents the default characteristic scanning the
image pixel by pixel from top left to bottom right, while the other formats represent two tap geometries,
that are depicted in the following figure:

Although data from each tap is formed into separate streams, it is important to note that there is no
fixed mapping between the stream-ID and the tap. However, it is safe to assume, that this mapping
remains constant during acquisition. The TapG code, and thus, the required information to find this
mapping, is provided in the CXP image header, which can be read on the optional MetaDataTap0/1
ports.

Tap Format TapG Code
1X-1Y 0x0000

Library Hardware Platform 1270

VisualApplets User Documentation Release 3

Tap Format TapG Code
1X-1Y2, tap 1 0x0004

1X-1Y2, tap 2 0x1004

1X-2YE, tap 1 0x0041

1X-2YE, tap 2 0x1041

Flipping the Lower Half of the Image Is Not the Responsibility of this
Operator

Flipping the lower half of the image in the case of the 1X-2YE tap format is not the
responsibility of this CxpCameraMultiTap operator. The user application needs to reformat
the tap(1) by using additional VisualApplets operators.

Instantiation in VisualApplets

The operator provides image data on its output tap. This output is always present. It is 1 for the single
tap and needs to be set to 2 for the dual-tap cameras. In addition to this standard output ports, you can
configure an optional MetaData output for the CXP header metadata for each tap output exclusively,
i.e. for dual-tap application you can define up to 2 MetaDataTap ports. The following pop-up dialog
appears during operator instantiation and can be configured to the following permutations:

Figure 29.1. This configuration is equivalent to a simpler CxpCamera operator with only O output and no
meta data.

Figure 29.2. This configuration is equivalent to a simpler CxpCamera operator with port O and
MetaDataO selected.

Library Hardware Platform 1271

VisualApplets User Documentation Release 3

Figure 29.3. In this configuration only the tap 0 is output with its metadata. For the tap 1 only the
metadata is output. This configuration can be useful for debugging a camera/frame grabber combination.

Figure 29.4. In this configuration the operator provides both camera taps as 2 separate data streams on
its Tap0 and Tap1 ports. However, no metadata information is output.

Figure 29.5. In this configuration the operator provides both camera taps as 2 separate streams on
its Tap0 and Tap1 ports. The operator provides also the meta information for the Tap0 port. This
configuration might be meaningful for symmetrical camera tap configurations, where the CXP header is
in most parts identical for both taps except for the TapG Code fields.

Library Hardware Platform 1272

VisualApplets User Documentation Release 3

Figure 29.6. This is the maximal configuration of the operator, where for each tap an own output is
presented together with its own metadata.

Optional MetaDataTap Port

The format for both metadata ports is identical. It is provided in VisualApplets as 32-bit output and
is shown in the following picture:

Each CXP frame provides a corresponding error-free image header. For incorrect image headers, no
image stream data is sourced into the VisualApplets pipeline. The compressed image header consist of
6 words. The last byte is used for additional information, which is for internal usage only. Particularly,
the HeaderError bit informs whether the image header itself has an error or not.

Image Header Description
StreamId ID of the CXP stream

Tag 16-bit source image index. It is incremented for each transferred image,
wraps around to 0 at 0xFFFF. The same number shall be used by each stream
containing data relating to the same image (in case of multi-tap streams).

XSize 24-bit value representing the image width in pixels.

XOff 24-bit value representing the horizontal offset in pixels of the image with
respect to the left hand pixel of the full device image.

YSize 24-bit value representing the image height in pixels. This value is set to 0 for
line scan images.

YOff 24-bit value representing the vertical offset in pixels of the image with respect
to the top line of the full device image. This value is set to 0 for line scan
images.

DSizeL 24-bit value representing the number of data words per image line.

Library Hardware Platform 1273

VisualApplets User Documentation Release 3

Image Header Description
PixelF 16-bit value representing the pixel format.

TapG 16 bit value representing the tap geometry.

Flags Image flags.

x-Mirror (Not used yet). Describes whether the incoming image is x-mirrored or not.

y-Mirror (Not used yet). Describes whether the incoming image is y-mirrored or not.

HeaderError 1: Image header has an error and the frame is declared as lost. No
corresponding image data exists in the operator output data stream.

0: Image header is correct and a corresponding image data exists in the
operator output data stream.

Modifying Image Width and Image Height

Via the maximum image width and height properties of the output link you can adjust
width and height to the camera-specific settings. However, the maximum image width
on operator port O must be divisible by the parallelism of port O. Thus, make sure
the maximum image width is divisible by the parallelism of port O!

Device Resource Usage

The operator uses one or more resources of type CameraPort depending on the selection of the
parameter ConnectionCount. For the event system a resource of the type EventPort is used. If
ConnectionCount is set to X4 (quad channel), the following resource dialog opens up:

Error Handling and Event System

When the operator detects that the received reconstructed frame is larger or smaller than what was
promoted by the camera in the CXP image header, a safety circuit gets activated. The operator then
cuts off exceeding pixels and lines, so that the subsequent processing pipeline always sees the frame

Library Hardware Platform 1274

VisualApplets User Documentation Release 3

size which was defined in the image header. If the received frame is smaller in its dimensions than
what was specified in the image header, the operator fills up the received frame with undefined data
to achieve the specified frame dimensions which were defined in the image header. Filling up a smaller
frame can cause the follow-up frames to get lost. The loss is then reported per event to the runtime
software (Framegrabber SDK)(see the following paragraph). The size mismatch causes an event, too.

For a set of very critical errors, the operator will forward asynchronous events to the host runtime
software (Framegrabber SDK). The event name in the Framegrabber API is <hierarchical operator
name>\CxpStreamStatus, e.g. Device1\Process0\Camera\CxpStreamStatus. The event payload is
provided as four 16-bit data words. The event format is defined as follows:

• word [0]:

• bits [0:15]: CXP image tag in which the event occurred.

• word [1]:

• bits [8:15]: stream-ID in which the event occurred.

• bits [0:7]: reserved, treat as don't care.

• word [2]:

• bit [0]: CRC error occurred.

• bit [1]: stream marker error detected in the image header.

• bit [2]: An error in the image header was detected which could not be corrected.

• bit [3]: A frame size error was detected, i.e. the image size defined in the CXP image header is
not matching the reconstructed frame size from the transmitted packets. This happens when the
camera puts one info into the image header but transmits different amount of data as promoted
in the header.

• bits [4:15]: reserved, treat as don't care.

• word [3]:

• bit [0]: Event type, 0 = Corrupted Entity, 1 = Lost Entity.

• Corrupted Entity means that the error happens within a frame and that this frame is already
sourced into the VisualApplets pipeline.

• Lost Entity means that the error occurred before the frame was forwarded to the following
operators and the frame was discarded by the camera operator.

• When a corrupted entity is observed, the operator will fill up the frame according to the CXP
image header definition so that the following operators will not cause undefined behavior. During
this fill-up, a new frame may arrive and will then get lost. The lost entity event will also be raised
when the camera sends data with a gap according to the frame tag.

• bit [1]: An event loss for type Corrupted Entity occurred. This means that preceding events of
type Corrupted Entity got lost. This happens when the runtime software is not reacting to events
and the internal event queues ran full.

Library Hardware Platform 1275

VisualApplets User Documentation Release 3

• bit [2]: An event loss for type Lost Entity occurred. This means that preceding events of type
Lost Entity got lost. This happens when the runtime software is not reacting to events and the
internal event queues ran full.

• bits [3:15]: amount of lost Lost Entity events.

There are two types of events: events for corrupted entities and events for lost entities. Bit 0 of word
3 describes which kind of event occurred. If the event buffers are full, it might happen that events
get lost. When an event gets lost that marks a corrupted entity, bit 1 of word 3 will be set. When
an event gets lost that marks a lost entity, bit 2 of word 3 will be set and bit 3 to 15 will provide
the number of lost events indicating a lost frame. If bit 2 is set but the counter is 0, it means that
a counter overflow happened.

Every event causes a software interrupt. To reduce the number of events, several events with the same
frame tag might be merged together. In that case some error flags are combined. If an event was lost,
the event before the lost event contains the information about the lost event and cannot be merged
with further events with the same frame tag.

The events caused due to CRC errors report a frame tag, which may not be exactly related to the frame
in which the CRC errors happen. The frame tag can be that of the preceding or following frame. This
can only happen, when a camera sends a CXP packet, which contains a transition between 2 or more
frames. The CRC computation is finished at the end of the packet, but the stream data is reconstructed
on-the-fly. This means that a situation can happen, in which a CRC error is detected only after the
preceding frame was already sent by the operator. In normal situations, in which the camera packets
don't contain data both of the end of the ongoing frame and the beginning of the next frame, the frame
tag during CRC error will always be correct. For all other cases as long as the complete frame stream
data is less than the maximal packet size of 8k, there might be only 1 frame overlap within 1 packet.
In that case, the software application should consider the preceding frame with the frame tag - 1 and
the following frame with the frame tag + 1 as potentially corrupted as well.

Differentiating Error Events Between Taps

The error handling and event system are common to both CXP tap streams. Use the
stream-ID field to relate the received event to the appropriate tap. Normally, Tap 0 will
get a lower stream-ID, typically 0. Tap 1 will get a stream-ID, which is larger than the
one of Tap 0.

29.30.1. I/O Properties

Property Value
Operator Type M
Output Links Tap0/Tap1, image data output

MetaDataTap0/MetaDataTap1, optional meta data
output

29.30.2. Supported Link Format

Link Parameter Output Link Tap0/Tap1 Output Link MetaDataTap0/
MetaDataTap1

Bit Width 8 32
Arithmetic unsigned unsigned
Parallelism auto 1
Kernel Columns 1 1
Kernel Rows 1 1

Library Hardware Platform 1276

VisualApplets User Documentation Release 3

Link Parameter Output Link Tap0/Tap1 Output Link MetaDataTap0/
MetaDataTap1

Img Protocol {VALT_IMAGE2D,
VALT_LINE1D} (default:
VALT_IMAGE2D)

{VALT_IMAGE2D, VALT_LINE1D,
VALT_PIXEL0D} (default:
VALT_IMAGE2D)

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any (default: 1032) 6
Max. Img Height any (default: 1032) 1

29.30.3. Parameters

ConnectionCount
Type Static Write parameter
Default X1
Range {X1, X2, X4}

The parameter ConnectionCount defines the number of CXP lanes aggregated to the CXP link. The
indices of the used connection ports are handled by resources of the type CameraPort. The number
of port resources matches the connection count (e.g. X2: two CameraPort resource items).

When you instantiate more than one CxpCamera operator (e.g. for dual-camera applet), resource
conflicts may occur when multiple resources with the same index are used or when the number of
consumed CameraPort resources exceeds the maximum of 4. In this case, the design rules check
reports an error.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the ConnectionCount parameter counts
the used connection ports across both tap streams.

ResetStatus
Type Dynamic Write parameter
Default Off
Range {Off, On}

The parameter ResetStatus resets the camera statistics, i.e. the error counters.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the ResetStatus parameter resets the
camera statistics across both tap streams.

UsedConnections
Type Dynamic Read parameter
Default
Range {1,2,4}

The parameter UsedConnections shows the amount of CXP lanes configured by the discovery
software at runtime.

Library Hardware Platform 1277

VisualApplets User Documentation Release 3

UsedConnections

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the UsedConnections parameter
represents the configured ports across both tap streams.

PacketTagErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter PacketTagErrorCount shows how many received packets have a tag that is non-
compliant with the expected tag according to the CXP standard. In particular, this value is counting
up when gaps are observed in following stream packet tag enumerations. The parameter is 13
bit wide, where the bits [11:0] represent the actual counter value and the bit [12] stands for the
counter overflow. When the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the PacketTagErrorCount parameter
counts the packets with not expected tags across both tap streams.

ImageTagErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how many mismatches occur between the image header tag, the expected
tag according to the CXP standard and the received tag. The parameter is 13 bit wide, where the
bits [11:0] represent the actual counter value and the bit [12] stands for the counter overflow.
When the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the ImageTagErrorCount parameter
counts the mismatches of tags across both tap streams.

StreamIdErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the received stream-ID value in the stream packets mismatches
the stream-ID value specified in the image header. The parameter is 13 bit wide, where the bits
[11:0] represent the actual counter value and the bit [12] stands for the counter overflow. When
the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the StreamIdErrorCount parameter
counts the stream-IDs across both tap streams.

CorrectedErrorCount
Type Dynamic Read parameter
Default

Library Hardware Platform 1278

VisualApplets User Documentation Release 3

CorrectedErrorCount
Range [0 : 8191]

The parameter counts how many detected errors in the image header or the line markers have
been corrected. The parameter is 13 bit wide, where the bits [11:0] represent the actual counter
value and the bit [12] stands for the counter overflow. When the overflow bit is set, the counter
value shall be treated as don't care.

UncorrectedErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how many detected errors in the image header or the line markers could not
be corrected due to multiple bit errors in same byte. The parameter is 13 bit wide, where the bits
[11:0] represent the actual counter value and the bit [12] stands for the counter overflow. When
the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the error monitoring parameter
represents the sum of the corresponding error types across both tap streams.

PacketBufferOverflowCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the packet buffer overflow occurs in the channel bonding in
aggregated mode. This parameter is only relevant for ConnectionCount = X2 or X4. The parameter
is 13 bit wide, where the bits [11:0] represent the actual counter value and the bit [12] stands for
the counter overflow. When the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the PacketBufferOverflowCount
parameter counts the packet buffer overflows across both tap streams.

PacketBufferOverflowSource
Type Dynamic Read parameter
Default
Range [0x0 : 0xf]

The parameter implements a bit mask to query in which of the potential 4 CXP channels the packet
buffer overflow occurred. The parameter width depends on the parameter ConnectionCount. In X1
mode, the parameter width is 1 bit wide, in X2 mode, the parameter width is 2 bit wide and in X4
mode the parameter width is 4 bit wide. The order is: LSB = lowest CXP channel number, MSB =
highest CXP channel number allocated by the operator.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the PacketBufferOverflowSource
parameter searches for overflows across both tap streams.

CameraScanMode
Type Dynamic Read parameter
Default

Library Hardware Platform 1279

VisualApplets User Documentation Release 3

CameraScanMode
Range {area,line}

The received image header carries the information whether the stream is for the area scan or
for the line scan applications. This parameter shows the last valid received stream image header
information.

This parameter is read out only for the Tap0 stream with the assumption, that Tap1 stream is
exactly the same mode. This means this parameter applies either to area scan or to line scan for
the complete camera and is thus identical for both taps and is not tap-specific.

MarkerErrorCount
Type Dynamic Read parameter
Default
Range [0 : 8191]

The parameter counts how often the sequence of the CXP stream marker and the header or the line
markers was incorrect. The parameter is 13 bit wide, where the bits [11:0] represent the actual
counter value and the bit [12] stands for the counter overflow. When the overflow bit is set, the
counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the error monitoring parameter
represents the sum of the corresponding error types across both tap streams.

UnexpectedStartupData
Type Dynamic Read parameter
Default
Range {false, true}

The parameter detects the error situation in which the first data value after the operator reset was
unexpected, i.e. no image header is received before. This situation can happen due to a buggy
implementation of the camera, frame grabber firmware or wrong software control of the discovery
procedure. Also, a hardware defect of the camera could theoretically cause such a situation.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the error monitoring parameter
represents the sum of the corresponding error types across both tap streams.

FrameLostCount
Type Dynamic Read parameter
Default
Range [0 : 33554431]

The parameter counts the frames that were lost during acquisition and are not sent into the
VisualApplets pipeline. Frames are lost when an error in the image header is detected or when a
frame overlaps with another frame. The parameter is 25 bit wide where the bits [23:0] represent
the actual counter value and the bit [24] stands for the counter overflow. When the overflow bit is
set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the FrameLostCount parameter counts
the lost frames across both tap streams.

Library Hardware Platform 1280

VisualApplets User Documentation Release 3

FrameCorruptedCount
Type Dynamic Read parameter
Default
Range [0 : 33554431]

The parameter counts the corrupted frames during acquisition. Corrupted frames are frames with
error pixels which are sent to the VisualApplets pipeline. The parameter is 25 bit wide where the
bits [23:0] represent the actual counter value and the bit [24] stands for the counter overflow.
When the overflow bit is set, the counter value shall be treated as don't care.

All Parameters Are Common to Both Taps

All parameters are common to both taps, i.e. the FrameCorruptedCount parameter
counts the corrupted frames across both tap streams.

29.30.4. Examples of Use

The use of operator CxpCameraMultiTap is shown in the following examples:

• Section 11.5, 'Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting '

Examples - Demonstration of how to use the operator

Library Hardware Platform 1281

VisualApplets User Documentation Release 3

29.31. Operator CxpAcquisitionStatus
Operator Library: Hardware Platform

The operator CxpAcquisitionStatus provides the acquisition status as reported by the runtime software.

The operator is using one resource of type AcquisitionCameraPort which is in range 0 to 3 and
corresponds to the CXP channel. The AcquisitionCameraPort resource corresponds to the CameraPort
resource which is used by the operator CxpCamera.

The output of this operator is obtained by a firmware register controlled by the runtime software. The
output changes whenever the runtime software changes the CXP streaming status between running
and stopped.

You may use the output of this operator to gate a circuit for trigger signal generation, so the trigger
pulses are only generated when streaming is ongoing.

29.31.1. I/O Properties

Property Value
Operator Type M
Output Link O, status output

29.31.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width 16777216
Max. Img Height 16777216

29.31.3. Parameters

Library Hardware Platform 1282

VisualApplets User Documentation Release 3

29.32. Operator CxpPortStatus
Operator Library: Hardware Platform

The operator monitors the status of a CXP channel. It displays the current channel configuration and
provides access to error counters via read parameters.

The operator is using one resource of type CxpStatusPort which is in range 0 to 3 for imaFlex CXP-12
Quad, and in range 0 to 4 for imaFlex CXP-12 Penta. This resource corresponds to the CXP channel.
The CxpStatusPort resources correspond to the CameraPort resources which are used by operator
CxpCamera.

Available for Hardware Platform
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

29.32.1. I/O Properties

Property Value
Operator Type None (since there are neither Inputs nor

Outputs)

29.32.2. Supported Link Format

None

29.32.3. Parameters

PoCXPState
Type Dynamic read parameter
Default BOOTING
Range {BOOTING, POCXPOK, MAX_CURR, LOW_VOLT, OVER_VOLT, ADC_Chip_Error}

The first 5 states are defined by the CXP standard for the PoCXP state machine. The last state
ADC_Chip_Error represents an error when the communication between the FPGA and ADC chip is
broken, which measures the voltage and current of the channel.

PoCXPCurrent
Type Dynamic read parameter
Default 0
Range [0:1000]

Current flowing through the CXP cable in mA.

PoCXPVoltage
Type Dynamic read parameter
Default 0
Range [0 : 30]

Voltage sourced through the CXP cable in V.

PoCXPControllerEnabled
Type Dynamic read parameter
Default YES

Library Hardware Platform 1283

VisualApplets User Documentation Release 3

PoCXPControllerEnabled
Range {NO,YES}

State of the power over CXP engine. YES means the power controller will source the camera which
requires power over CXP cable when connected, NO means the camera is not powered via the CXP
cable. Note that this parameter is not showing whether the camera is sourced or not, instead it is
showing that the capability of powering the camera via the CXP cable is enabled or not.

MappedToFgPort
Type Dynamic read parameter
Default 0
Range imaFlex CXP-12 Quad:[0:3]

imaFlex CXP-12 Penta:[0:4]

Frame grabber port to which the corresponding CXP channel is connected.

MappedToFwPort
Type Dynamic read parameter
Default 0
Range imaFlex CXP-12 Quad:[0:3]

imaFlex CXP-12 Penta:[0:4]

The firmware CXP channel which is currently monitored by the module. Note that there is not
necessarily a one-by-one mapping between firmware port (resource CameraPort) and frame
grabber port (physical connector). Instead it can be any permutation. The software discovery
process reorders the channels and ports to achieve correct virtual interconnect.

Decoder8b10bError
Type Dynamic read parameter
Default 0
Range [0 : 2^48-1]

Number of measured symbols received by the channel transceiver, which are not in 8b10b encoding
or/and have wrong disparity.

ByteAlignment8b10bLocked
Type Dynamic read parameter
Default NO
Range {NO, YES}

This parameter shows whether the channel transceiver found the byte boundaries or not, so
decoding the of 8b10b input stream can be performed.

CurrentPortBitRate
Type Dynamic read parameter
Default 0
Range [0 : 12.5]

This parameter shows the bit rate of the channel in Gb/s which is currently configured in the
transceiver by the runtime discovery software.

StreamPacketSize
Type Dynamic read parameter
Default 8192
Range [4 : 65532]

Library Hardware Platform 1284

VisualApplets User Documentation Release 3

StreamPacketSize
This parameter shows the supported maximum stream packet size, which will be written also to
the CXP camera during the CXP discovery step. The value is set by the firmware and complies with
the CXP standard. This means the value must be divisible by 4 bytes because all packets are 32 bit
aligned.

CxpStandard
Type Dynamic read parameter
Default CXP_1_1_1
Range {CXP_1_0, CXP_1_1_1, CXP_2_0, unknown}

This parameter shows the version of the CXP standard which is currently in use.

RxTriggerOverRequestCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts the received trigger packets for which no acknowledgment could be sent,
because the acknowledgment of the previous trigger was still ongoing. See CXP 2.0 standard,
chapter 9.3.2. Bits [11:0] count the amount of violations. Bit [12] is set when a counter overflow
occurs.

TxTriggerOverRequestCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts the trigger requests which were skipped, because the transmitter was still
busy by sending the previous trigger packet. See CXP 2.0 standard, chapter 9.3.2. Bits [11:0]
count the amount of violations. Bit [12] is set when a counter overflow occurs. If multiple trigger
requests occur at the same time on parallel ports of a single CxpTxTrigger operator, the parameter
might not count each skipped trigger. This can also happen if the requests occur within only a few
clock cycles (e.g. < 10), which leads to multiple skipped trigger requests within a few clock cycles.

RxTriggerAckLostCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts the situations in which a trigger packet was sent, but no acknowledgment
packet was received for it yet and the timeout (480ns for 1-6Gb/s, 240ns for 10-12.5Gb/s) is
reached. See CXP 2.0 standard, chapter 9.3.2. Bits [11:0] count the amount of violations. Bit [12]
is set when a counter overflow occurs.

RxGpioOverRequestCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which a GPIO packet was received but no acknowledgment
could be sent, because the transmitter still was busy sending the acknowledgment of the previously
received GPIO packet. See CXP 1.0 standard, chapter 8.3.3. Bits [11:0] count the amount of
violations. Bit [12] is set when a counter overflow occurs.

TxGpioOverRequestCount
Type Dynamic read parameter

Library Hardware Platform 1285

VisualApplets User Documentation Release 3

TxGpioOverRequestCount
Default 0
Range [0 : 8191]

This parameter counts GPIO requests which were skipped, because the transmitter was still busy
by sending the previous GPIO packet. See CXP 1.0 standard, chapter 8.3.3. Bits [11:0] count the
amount of violations. Bit [12] is set when a counter overflow occurs.

RxGpioAckLostCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which a GPIO packet was sent but no acknowledgment packet
was received for it yet and the timeout (480ns for 1-6Gb/s, 240ns for 10-12.5Gb/s) is reached. See
CXP 1.0 standard, chapter 8.3.3. Bits [11:0] count the amount of violations. Bit [12] is set when a
counter overflow occurs.

RxStreamIncompleteCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which a received stream packet is not correctly formatted, e.g.
it misses the end of packet indicator etc. Bits [11:0] count the amount of violations. Bit [12] is set
when a counter overflow occurs.

RxControlAckLostCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which a control packet was sent but no acknowledgment packet
was received for it yet and the timeout of 200 ms is reached. See CXP 2.0 standard, chapter
9.6.1.1. Bits [11:0] count the amount of violations. Bit [12] is set when a counter overflow occurs.

RxControlTagErrorCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which an acknowledgment for a control packet was received
with a tag which is not matching the expected tag sent in the correspondent request control packet.
See CXP 2.0 standard, chapter 9.6.1.2. Bits [11:0] count the amount of violations. Bit [12] is set
when a counter overflow occurs.

RxControlAckIncompleteCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which an acknowledgment for a control packet was received
which was not correctly formatted, e.g. it misses the end of packet indicator etc. Bits [11:0] count
the amount of violations. Bit [12] is set when a counter overflow occurs.

RxEventOverRequestCount
Type Dynamic read parameter

Library Hardware Platform 1286

VisualApplets User Documentation Release 3

RxEventOverRequestCount
Default 0
Range [0 : 8191]

This parameter counts situations in which another event packet is received but the corresponding
acknowledgment can't be sent because the transmitter is still sending a previous event
acknowledgment. See CXP standard 2.0, chapter 9.8.1.1. Bits [11:0] count the amount of
violations. Bit [12] is set when a counter overflow occurs.

RxEventIncompleteCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which the received event packet is incomplete, e.g. it misses
the end of the packet indicator. Bits [11:0] count the amount of violations. Bit [12] is set when a
counter overflow occurs.

RxHeartBeatIncompleteCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which the received heart beat packet is incomplete, e.g. it
misses the end of the packet indicator. Bits [11:0] count the amount of violations. Bit [12] is set
when a counter overflow occurs.

RxUnknownDataReceivedCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which the unknown packet data is received, which is not part
of the CXP standard. Bits [11:0] count the amount of violations. Bit [12] is set when a counter
overflow occurs.

RxErrorCorrectedCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts errors received in packet headers and trailers which could be corrected. Bits
[11:0] count the amount of violations. Bit [12] is set when a counter overflow occurs.

RxTriggerPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received trigger packets.

RxTriggerAckPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received trigger acknowledge packets.

Library Hardware Platform 1287

VisualApplets User Documentation Release 3

RxGpioPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received GPIO packets.

RxGpioAckPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received GPIO acknowledge packets.

RxStreamPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received stream packets.

RxControlAckPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received stream acknowledge packets.

RxLinkTestPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received link test packets.

RxEventPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received event packets.

RxHeartBeatPacketCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether errors were corrected in received heart beat packets.

RxUncorrectableErrorCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts errors received in packet headers and trailers which could not be corrected.
Bits [11:0] count the amount of violations. Bit [12] is set when a counter overflow occurs.

Library Hardware Platform 1288

VisualApplets User Documentation Release 3

RxTriggerPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received trigger packets which could not be
corrected.

RxTriggerAckPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received trigger acknowledgement packets
which could not be corrected.

RxGpioPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received GPIO packets which could not be
corrected.

RxGpioAckPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received GPIO acknowledgement packets
which could not be corrected.

RxStreamPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received stream packets which could not be
corrected.

RxControlAckPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received control acknowledgement packets
which could not be corrected.

RxLinkTestPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received link test packets which could not be
corrected.

Library Hardware Platform 1289

VisualApplets User Documentation Release 3

RxEventPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received event packets which could not be
corrected.

RxHeartBeatPacketNotCorrected
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were errors in received heart beat packets which could not
be corrected.

RxPacketCrcErrorCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts CRC errors in received packets. Bits [11:0] count the amount of violations.
Bit [12] is set when a counter overflow occurs.

RxStreamPacketCrcError
Type Dynamic read parameter
Default NO
Range {NO,YES}

Notify whether there were CRC errors in received stream packets.

RxControlAckPacketCrcError
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were CRC errors in received control acknowledgement
packets.

RxEventPacketCrcError
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter notifies whether there were CRC errors in received event packets.

RxUnsupportedPacketCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts received unsupported packets, i.e. those which are not allowed by CXP
standard. For example event/heart beat packets in CXP 1.x or GPIO packets in CXP 2.0 and CXP
1.1.x. Bits [11:0] count the amount of violations. Bit [12] is set when a counter overflow occurs.

RxUnsupportedGpioPacketReceived
Type Dynamic read parameter

Library Hardware Platform 1290

VisualApplets User Documentation Release 3

RxUnsupportedGpioPacketReceived
Default NO
Range {NO,YES}

This parameter indicates whether a GPIO packet was received while using a CXP standard higher
than 1.0.

RxUnsupportedEventPacketReceived
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter indicates whether an event packet was received while using a CXP standard less
than 2.0.

RxUnsupportedHeartBeatPacketReceived
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter indicates whether a heart beat packet was received while using a CXP standard less
than 2.0.

RxUnsupportedGpioAckPacketReceived
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter indicates whether a GPIO acknowledgment was received while using a CXP standard
higher than 1.0.

RxUnsupportedGpioPacketRequestReceived
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter indicates whether a GPIO request from VisualApplets was received while using a
CXP standard higher than 1.0.

RxLengthErrorCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts situations in which the length of the packet does not match the length
defined in the packet header. Bits [11:0] count the amount of violations. Bit [12] is set when a
counter overflow occurs.

RxStreamPacketLengthError
Type Dynamic read parameter
Default NO
Range {NO,YES}

This parameter indicated whether there is a length error in the stream packets.

RxEventPacketLengthError
Type Dynamic read parameter

Library Hardware Platform 1291

VisualApplets User Documentation Release 3

RxEventPacketLengthError
Default NO
Range {NO,YES}

This parameter indicated whether there is a length error in event packets.

RxEventTagErrorCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

This parameter counts tag errors in received event packets, which happens when the event packet
tag got a gap. Bits [11:0] count the amount of violations. Bit [12] is set when a counter overflow
occurs.

RxStreamPacketCount
Type Dynamic read parameter
Default 0
Range [0 : 2^31-1]

This parameter counts the amount of received stream packets. Bits [29:0] count the number of
packets. Bit [30] is set when a counter overflow occurs.

RxHeartBeatMaxPeriodViolationCount
Type Dynamic read parameter
Default 0
Range [0 : 8191]

The heart beat period is defined in CXP 2.0 standard as 100ms maximum, i.e. within that time at
least 1 heart beat packet needs to be send by the camera. This parameter counts the situations in
which this condition is not met. Bits [11:0] count the amount of violations. Bit [12] is set when a
counter overflow occurs.

Library Hardware Platform 1292

VisualApplets User Documentation Release 3

29.33. Operator CxpRxTrigger
Operator Library: Hardware Platform

This operator provides received CXP trigger data to the VisualApplets design.

In CXP 2.0, the Rx-trigger is a 4-bit value with custom defined interpretation. Every received trigger
packet causes the operator to output one 4-bit data word of a 0D data stream.

In CXP 1.x, the Rx-trigger is a 1-bit value. In this case, the operator also provides a 4-bit interface.
However, bit[0] is used for encoding the reception of CXP 1.x trigger packets, and bits [1:3] are always
zero. The rising edge of a trigger leads to the output of one data word with value 1 and the falling
edge will lead to the the output of one data word with value 0.

The operator is using one resource CxpRxTriggerPort, which is in range {0, 1, 2, 3} for imaFlex CXP-12
Quad, and in range {0, 1, 2, 3, 4} for imaFlex CXP-12 Penta. This resource corresponds to the CXP
channel in which the trigger packets are received.

Available for Hardware Platform
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

29.33.1. I/O Properties

Property Value
Operator Type M
Output Link O, trigger data

29.33.2. Supported Link Format

Link Parameter Output Link O
Bit Width 4
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALD_PIXEL0D
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.33.3. Parameters

None

29.33.4. Examples of Use

The use of operator CxpRxTrigger is shown in the following examples:

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

Library Hardware Platform 1293

VisualApplets User Documentation Release 3

Library Hardware Platform 1294

VisualApplets User Documentation Release 3

29.34. Operator CxpTxTrigger
Operator Library: Hardware Platform

This operator generates trigger packets according to signal edges detected at the input port.

There are two possible implementations of the CxpTxTrigger operator that depend on the number of
input ports:

• Single Input Port: The Tx Trigger specification from CXP 1.X standard is used. CXPLinkTrigger0 is
sent with every rising edge on the input port I. When the TxTriggerPacketMode parameter is not
set to RisingEdgeOnly, CXPLinkTrigger1 is sent with every falling edge on the input port I. If the
operator is instantiated with a single input port, the name of said port is I.

• Multiple Input Ports: The Tx Trigger specification from CXP 2.X standard is used (LSB of delay is
used to implement trigger 2 and 3). Every input port is assigned to one of the CXPLinkTriggers from
0 to 3. Every rising edge on an input port will result in the corresponding CXPLinkTrigger packet
being sent. For this configuration the TxTriggerPacketMode parameter is deactivated. If the operator
is instantiated with multiple input ports, the names of the input ports range from LinkTrigger0 to
LinkTrigger3 depending on the number of configured input ports.

The operator uses one resource CxpTxTriggerPort, which is in range {0, 1, 2, 3} for imaFlex CXP-12
Quad, and in range {0, 1, 2, 3, 4} for imaFlex CXP-12 Penta. This resource corresponds to the CXP
channel in which the trigger packets are sent.

Since a rising edge (and potentially falling edge for single input ports) on the input ports leads
to a full trigger packet being sent, there must be a gap between edges. If the gap between
edges is not large enough it leads to 'over-triggering'. This means only the first edge results in
a trigger packet, while the suceeding edges are ignored. The CxpPortStatus operator contains the
parameter TxTriggerOverRequestCount, which counts the number of times that over-triggering has
occurred. If multiple trigger edges are lost in a very short period of time due to over-triggering (e.g.
trigger edges on parallel input ports), the TxTriggerOverRequestCount might not count the exact
number of lost trigger edges. Instead, the multiple over-triggers will lead to a single increment of
TxTriggerOverRequestCount.

Available for Hardware Platform
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

29.34.1. I/O Properties

Property Value
Operator Type M
Input Links I, n == 1, trigger input

LinkTrigger[n], n > 1, trigger input

29.34.2. Supported Link Format

Link Parameter Input Link I, n == 1 Input Link LinkTrigger[n], n
> 1

Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL

Library Hardware Platform 1295

VisualApplets User Documentation Release 3

Link Parameter Input Link I, n == 1 Input Link LinkTrigger[n], n
> 1

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

29.34.3. Parameters

TxTriggerPacketMode
Type Dynamic Write parameter
Default RisingFallingEdge
Range {RisingFallingEdge,RisingEdgeOnly}

This parameter defines for which trigger input edge a trigger packet is sent. If you select
the RisingFallingEdge mode, a packet is sent for rising and falling edges. If you select the
RisingEdgeOnly mode, only packets are sent for the rising edge. This parameter is only active,
when only a single input port is used.

29.34.4. Examples of Use

The use of operator CxpTxTrigger is shown in the following examples:

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

Library Hardware Platform 1296

VisualApplets User Documentation Release 3

29.35. Operator RS485
Operator Library: Hardware Platform

This operator provides an interface to the I/O signals of the corresponding RS-485 drivers for the GPIO
connector of the framegrabber.

The operator is using one resource of type RS485Port. The resource index is always 0, because there
is only one RS-485 interface.

29.35.1. I/O Properties

Property Value
Operator Type M
Input Links DI, transmit data input

DE, data enable for transmission
Output Link RO, received data output

29.35.2. Supported Link Format

Link Parameter Input Link DI Input Link DE Output Link RO
Bit Width 1 1 1
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

29.35.3. Parameters

None

Library Hardware Platform 1297

VisualApplets User Documentation Release 3

29.36. Operator CXPDualCamera
Operator Library: Hardware Platform

This operator represents the image data interface between a CXP dual channel camera and
VisualApplets.

Available for Hardware Platforms
mE5 marathon VCX-QP

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

The operator provides image data on its output O. This output is always present.

In addition to this standard output port, you can specify various optional ports if required by your
design.

The following pop-up dialog appears during operator instantiation:

Library Hardware Platform 1298

VisualApplets User Documentation Release 3

Here, you can specify the optional ports for general purpose inputs and outputs over CXP cable, as
well as optional trigger ports to and from the camera.

You can define the availability of the particular GPIs (General Purpose Inputs), the particular GPOs
(General Purpose Outputs), the trigger input port, and the trigger output port.

If you set the port availability to "0" (default), the port will not be present in the operator. If you set
the port availability to 1, the particular port is available at the operator interface.

The operator uses 2 resources of type CameraPort.

Modifying Image Width and Image Height

You can modify width and height to the camera-specific settings. However, the maximal
image width on operator port O must be divisible by the parallelism of port O.

Make sure the maximal image width is divisible by the parallelism of port O!

Value for Parallelism

The parallelism on port O needs to be set at least to the minimum value (stated in
parameter MinimalParallelism). A lower value for the parallelism is not allowed. The
minimal parallelism is calculated by VisualApplets on the basis of the values you define
for other parameters of this operator. This way, incoming data can always be received.

Bit Width and Format Type

The bit width on port O (image port) depends on the selected format type (parameter
FormatType):

• If FormatType = Gray: Bit Width can have any value (VAF_Gray and FL_NONE).

• If FormatType = RGB: Bit Width is a multiple of 3 (VAF_Color und FL_RGB)

• If FormatType = RGBA: Bit Width is a multiple of 4 (VAF_Gray and FL_NONE)

• If FormatType = RAW: Bit Width is 32 (VAF_Gray und FL_NONE)

29.36.1. I/O Properties

Property Value
Operator Type M

Library Hardware Platform 1299

VisualApplets User Documentation Release 3

Property Value
Input Links - TriggerI (optional), Trigger sent from frame

grabber to camera over CXP channel. This port is
often used to trigger line scan cameras.
- GPIx (optional), General purpose input [x]
sent from the frame grabber to camera over CXP
channel. Available are GPI0, GPI1, GPI2, GPI3,
GPI4, GPI5, GPI6, and GPI7.

Output Links - O, image data output
- TriggerO (optional), Trigger sent from the
camera to the frame grabber over CXP channel.
- GPOx (optional), General purpose output [x]
sent from the camera to the frame grabber over
CXP channel. Available are GPO0, GPO1, GPO2,
GPO3, GPO4, GPO5, GPO6, and GPO7.

29.36.2. Supported Link Format

Link Parameter Output Link - O Input Link - TriggerI
(optional)

Output Link -
TriggerO (optional)

Bit Width any 1 1
Arithmetic unsigned unsigned unsigned
Parallelism any 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D} (default:
VALT_IMAGE2D)

VALT_SIGNAL VALT_SIGNAL

Color Format {VAF_GRAY,
VAF_COLOR}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

VAF_GRAY VAF_GRAY

Color Flavor {FL_NONE, FL_RGB}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

FL_NONE FL_NONE

Max. Img Width any (default: 1024) 1 1
Max. Img Height any (default: 1024) 1 1

Link Parameter Input Link - GPIx (optional) Output Link - GPOx
(optional)

Bit Width 1 1

Library Hardware Platform 1300

VisualApplets User Documentation Release 3

Link Parameter Input Link - GPIx (optional) Output Link - GPOx
(optional)

Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width 1 1
Max. Img Height 1 1

Needs to be set at least to the minimum value stated in parameter MinimalParallelism.

29.36.3. Parameters

CameraID
Type static write parameter
Default
Range {-1, 0, 1, 2, 3}

The CameraID parameter defines the CXP master port ID to the firmware of the camera operator
to allow automatic CXP topology discovery (camera-to-applet and applet-to-camera).

By using this parameter, you can specify the ID directly here in the operator. However, we
recommend to specify the resources of the operator in the Recources dialog. (To open the
Recources dialog, simply highlight the camera operator and select from the Design menu the menu
item Resources.) The CameraID parameter will automatically update to the correct master port,
using the resource dialog parameters. The following example is using one single camera and one
dual camera:

The CameraID (CXP master port ID) of module3 (single camera) is 2. The CameraID (CXP master
port ID) of module5 (dual camera) is 1.

Library Hardware Platform 1301

VisualApplets User Documentation Release 3

CameraID
The dual camera requires 2 CXP camera ports. (A quad camera requires 4 ports.) Only the master
port is reflected in the CameraID parameter of the operator.

When you define more CameraPort resources than possible (the maximum is 4), e.g., when you
instantiate 5 "CXPSingleCamera"" operators, the camera operator which requests the CameraPort
resource last (while all four available ones are already occupied) sets its CameraID to -1. In this
case, the design rule check reports an error.

The parameter CameraID is in range {-1,0,1,2,3}.

MinimalParallelism
Type static read parameter
Default 12
Range [1 : 512]

Minimal parallelism for the output link O that still allows to transport the maximal bandwidth of the
camera without losing data. The minimal parallelism is calculated automatically.

The value depends on the pixel format you select in parameter FormatMode.

If you define parameter FormatMode to be a dynamic parameter (see description of parameter
FormatMode below), the smallest minimal parallelism that might occur is calculated.

Status
Type dynamic read parameter
Default
Range {0; 2^7-1}

The Status parameter is a runtime, read-only parameter to reflect the current status of the camera
operator. Bit[0] signalizes CXP stream packet loss detection. Bit[1] signalizes single byte error
correction in CXP stream packets. Bit[2] signalizes multiple byte error detection in CXP stream
packets. Bit[3..6] are reserved. This parameter might change in future versions.

FormatType
Type static write parameter
Default GRAY
Range GRAY, RGB, RGBA, RAW

Here, you can select which kind of pixel format (as defined by the CXP specification) you want
to receive. The value you select here defines which pixel formats can be selected in parameter
FormatMode. Hence, the setting of this parameter directly influences parameter FormatMode. See
also documentation of parameter FormatMode below.

FormatMode
Type static or dynamic (user-defined) write parameter
Default Mono8
Range {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10, BayerGR12,

BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10,
BayerBG12, BayerBG14, BayerBG16, RGB8, RGB10, RGB12, RGB14, RGB16, RGBA8,
RGBA10, RGBA12, RGBA14, RGBA16, Raw}

The parameter offers all pixel formats (as defined by the CXP specification) that belong to the
format type you selected in in parameter FormatType.

Library Hardware Platform 1302

VisualApplets User Documentation Release 3

FormatMode

The pixel formats you can select here depend on the setting of parameter FormatType. Hence, you
always have only a pre-set of the full value range available.

To get another set of pixel formats, change the setting of parameter FormatType. See also
documentation of parameter FormatType above.

In detail, the following settings of parameter FormatType provide the following pixel formats in
parameter FormatMode:

FormatType == GRAY: {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10,
BayerGR12, BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10, BayerBG12,
BayerBG14, BayerBG16}

FormatType == RGB: {RGB8, RGB10, RGB12, RGB14, RGB16}

FormatType == RGBA: {RGBA8, RGBA10, RGBA12, RGBA14, RGBA16}

FormatType == RAW: {Raw} Pixel format Raw has a fix bit width of 32Bit. The data are
interpreted as received.

You can decide if you want to use this parameter as a dynamic or as a static parameter. Select in
column Parameter Type:

Library Hardware Platform 1303

VisualApplets User Documentation Release 3

TxTriggerPacketMode
Type dynamic write parameter
Default CxpStandard
Range {CxpStandard, RisingEdgeOnly}

With parameter TxTriggerPacketMode you can increase the bandwidth of the CXP cables that
connect the frame grabber with the camera. The increase of bandwidth is achieved by a slight
modification of the camera trigger signal interpretation.

Please note that this feature can only be used with specific cameras that support this feature. For
details, please contact your local distributor or the Basler Support [https://www.baslerweb.com/en/
sales-support/support-contact/].

Parameter TxTriggerPacketMode allows two values (CxpStandard, RisingEdgeOnly):

• CxpStandard: The recommended setting is value CxpStandard. If set to value CxpStandard, the
camera trigger works in accordance with the CXP specification. (The CXP specification defines that
the frame grabber sents two packets via CXP cable to the camera in order to trigger the camera
once.)

• RisingEdgeOnly: If set to value RisingEdgeOnly, the frame grabber sents only one packet to the
camera in order to trigger the camera once. The result is an increased bandwidth and a higher
line rate.

TxTriggerEventCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerEventCount parameter indicates how many trigger edge events have been sent to
the camera.

TxTriggerAcknowledgementCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerAcknowledgementCount parameter indicates how many trigger acknowledgement
packets sent by the camera (in answer to the trigger edge packets sent before) have been received
by the frame grabber.

TxTriggerWaveformViolation
Type dynamic read parameter
Default 0
Range {0,1}

The parameter is set to 1 by the camera operator if the operator detects a distance between
two trigger edges on port TriggerI which violates the minimal edge frequency. The minimal edge
frequency is 550 ns (nanoseconds) on all microEnable 5 platforms. The parameter holds its value
until it has been read. After being read, the parameter updates the value. Frequency control is
running permanently and is not influenced by the read status of the parameter.

29.36.4. Examples of Use

The use of operator CXPDualCamera is shown in the following examples:

• Section 10.4.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/

Library Hardware Platform 1304

VisualApplets User Documentation Release 3

• Section 10.4.1.2, 'Basic Acquisition Examples for two Dual Line CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2.2, 'Basic Acquisition Examples for two Dual Line CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

Library Hardware Platform 1305

VisualApplets User Documentation Release 3

29.37. Operator CXPQuadCamera
Operator Library: Hardware Platform

This operator represents the image data interface between a CXP quad channel camera and
VisualApplets.

Available for Hardware Platforms
mE5 marathon VCX-QP

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

The operator provides image data on its output O. This output is always present.

In addition to this standard output port, you can configure a set of optional inputs and outputs.

The following pop-up dialog appears during operator instantiation:

Library Hardware Platform 1306

VisualApplets User Documentation Release 3

Here, you can specify the optional ports for general purpose inputs and outputs over CXP cable, as
well as optional trigger ports to and from the camera.

You can define the availability of the particular GPIs (General Purpose Inputs), the particular GPOs
(General Purpose Outputs), the trigger input port, and the trigger output port.

If you set the port availability to "0" (default), the port will not be present in the operator. If you set
the port availability to 1, the particular port is available at the operator interface.

The operator uses 4 resources of type CameraPort.

Modifying Image Width and Image Height

You can modify width and height to the camera-specific settings. However, the maximal
image width on operator port O must be divisible by the parallelism of port O.

Make sure the maximal image width is divisible by the parallelism of port O!

Value for Parallelism

The parallelism on port O needs to be set at least to the minimum value (stated in
parameter MinimalParallelism). A lower value for the parallelism is not allowed. The
minimal parallelism is calculated by VisualApplets on the basis of the values you define
for other parameters of this operator. This way, incoming data can always be received.

Bit Width and Format Type

The bit width on port O (image port) depends on the selected format type (parameter
FormatType):

• If FormatType = Gray: Bit Width can have any value (VAF_Gray and FL_NONE).

• If FormatType = RGB: Bit Width is a multiple of 3 (VAF_Color und FL_RGB)

• If FormatType = RGBA: Bit Width is a multiple of 4 (VAF_Gray and FL_NONE)

• If FormatType = RAW: Bit Width is 32 (VAF_Gray und FL_NONE)

Library Hardware Platform 1307

VisualApplets User Documentation Release 3

29.37.1. I/O Properties

Property Value
Operator Type M
Input Links - TriggerI (optional), Trigger sent from frame

grabber to camera over CXP channel. This port is
often used to trigger line scan cameras.
- GPIx (optional), General purpose input [x]
sent from the frame grabber to camera over CXP
channel. Available are GPI0, GPI1, GPI2, GPI3,
GPI4, GPI5, GPI6, and GPI7.

Output Links - O, image data output
- TriggerO (optional), Trigger sent from the
camera to the frame grabber over CXP channel.
- GPOx (optional), General purpose output [x]
sent from the camera to the frame grabber over
CXP channel. Available are GPO0, GPO1, GPO2,
GPO3, GPO4, GPO5, GPO6, and GPO7.

29.37.2. Supported Link Format

Link Parameter Output Link - O Input Link - TriggerI
(optional)

Output Link -
TriggerO (optional)

Bit Width any 1 1
Arithmetic unsigned unsigned unsigned
Parallelism any 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D} (default:
VALT_IMAGE2D)

VALT_SIGNAL VALT_SIGNAL

Color Format {VAF_GRAY,
VAF_COLOR}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

VAF_GRAY VAF_GRAY

Color Flavor {FL_NONE, FL_RGB}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

FL_NONE FL_NONE

Max. Img Width any (default: 1024) 1 1
Max. Img Height any (default: 1024) 1 1

Library Hardware Platform 1308

VisualApplets User Documentation Release 3

Link Parameter Input Link - GPIx (optional) Output Link - GPOx
(optional)

Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width 1 1
Max. Img Height 1 1

Needs to be set at least to the minimum value stated in parameter MinimalParallelism.

29.37.3. Parameters

CameraID
Type static write parameter
Default
Range {-1, 0, 1, 2, 3}

The CameraID parameter defines the CXP master port ID to the firmware of the camera operator
to allow automatic CXP topology discovery (camera-to-applet and applet-to-camera).

By using this parameter, you can specify the ID directly here in the operator. However, we
recommend to specify the resources of the operator in the Recources dialog. (To open the
Recources dialog, simply highlight the camera operator and select from the Design menu the menu
item Resources.) The CameraID parameter will automatically update to the correct master port,
using the resource dialog parameters. The following example is using one single camera and one
dual camera:

Library Hardware Platform 1309

VisualApplets User Documentation Release 3

CameraID
The CameraID (CXP master port ID) of module3 (single camera) is 2. The CameraID (CXP master
port ID) of module5 (dual camera) is 1.

The dual camera requires 2 CXP camera ports. (A quad camera requires 4 ports.) Only the master
port is reflected in the CameraID parameter of the operator.

When you define more CameraPort resources than possible (the maximum is 4), e.g., when you
instantiate 5 "CXPSingleCamera"" operators, the camera operator which requests the CameraPort
resource last (while all four available ones are already occupied) sets its CameraID to -1. In this
case, the design rule check reports an error.

The parameter CameraID is in range {-1,0,1,2,3}.

MinimalParallelism
Type static read parameter
Default 20
Range [1 : 512]

Minimal parallelism for the output link O that still allows to transport the maximal bandwidth of the
camera without losing data. The minimal parallelism is calculated automatically.

The value depends on the pixel format you select in parameter FormatMode.

If you define parameter FormatMode to be a dynamic parameter (see description of parameter
FormatMode below), the smallest minimal parallelism that might occur is calculated.

Status
Type dynamic read parameter
Default
Range {0; 2^7-1}

The Status parameter is a runtime, read-only parameter to reflect the current status of the camera
operator. Bit[0] signalizes CXP stream packet loss detection. Bit[1] signalizes single byte error
correction in CXP stream packets. Bit[2] signalizes multiple byte error detection in CXP stream
packets. Bit[3..6] are reserved. This parameter might change in future versions.

FormatType
Type static write parameter
Default GRAY
Range GRAY, RGB, RGBA, RAW

Here, you can select which kind of pixel format (as defined by the CXP specification) you want
to receive. The value you select here defines which pixel formats can be selected in parameter
FormatMode. Hence, the setting of this parameter directly influences parameter FormatMode. See
also documentation of parameter FormatMode below.

FormatMode
Type static or dynamic (user-defined) write parameter
Default Mono8
Range {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10, BayerGR12,

BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10,
BayerBG12, BayerBG14, BayerBG16, RGB8, RGB10, RGB12, RGB14, RGB16, RGBA8,
RGBA10, RGBA12, RGBA14, RGBA16, Raw}

The parameter offers all pixel formats (as defined by the CXP specification) that belong to the
format type you selected in in parameter FormatType.

Library Hardware Platform 1310

VisualApplets User Documentation Release 3

FormatMode

The pixel formats you can select here depend on the setting of parameter FormatType. Hence, you
always have only a pre-set of the full value range available.

To get another set of pixel formats, change the setting of parameter FormatType. See also
documentation of parameter FormatType above.

In detail, the following settings of parameter FormatType provide the following pixel formats in
parameter FormatMode:

FormatType == GRAY: {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10,
BayerGR12, BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10, BayerBG12,
BayerBG14, BayerBG16}

FormatType == RGB: {RGB8, RGB10, RGB12, RGB14, RGB16}

FormatType == RGBA: {RGBA8, RGBA10, RGBA12, RGBA14, RGBA16}

FormatType == RAW: {Raw} Pixel format Raw has a fix bit width of 32Bit. The data are
interpreted as received.

You can decide if you want to use this parameter as a dynamic or as a static parameter. Select in
column Parameter Type:

Library Hardware Platform 1311

VisualApplets User Documentation Release 3

TxTriggerPacketMode
Type dynamic write parameter
Default CxpStandard
Range {CxpStandard, RisingEdgeOnly}

With parameter TxTriggerPacketMode you can increase the bandwidth of the CXP cables that
connect the frame grabber with the camera. The increase of bandwidth is achieved by a slight
modification of the camera trigger signal interpretation.

This feature can only be used with specific cameras that support this feature. For details, contact
your local distributor or the Basler Support department.

Parameter TxTriggerPacketMode allows two values (CxpStandard, RisingEdgeOnly):

• CxpStandard: The recommended setting is value CxpStandard. If set to value CxpStandard, the
camera trigger works in accordance with the CXP specification. (The CXP specification defines that
the frame grabber sents two packets via CXP cable to the camera in order to trigger the camera
once.)

• RisingEdgeOnly: If set to value RisingEdgeOnly, the frame grabber sents only one packet to the
camera in order to trigger the camera once. The result is an increased bandwidth and a higher
line rate.

TxTriggerEventCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerEventCount parameter indicates how many trigger edge events have been sent to
the camera.

TxTriggerAcknowledgementCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerAcknowledgementCount parameter indicates how many trigger acknowledgement
packets sent by the camera (in answer to the trigger edge packets sent before) have been received
by the frame grabber.

TxTriggerWaveformViolation
Type dynamic read parameter
Default 0
Range {0,1}

The parameter is set to 1 by the camera operator if the operator detects a distance between
two trigger edges on port TriggerI which violates the minimal edge frequency. The minimal edge
frequency is 550 ns (nanoseconds) on all microEnable 5 platforms. The parameter holds its value
until it has been read. After being read, the parameter updates the value. Frequency control is
running permanently and is not influenced by the read status of the parameter.

29.37.4. Examples of Use

The use of operator CXPQuadCamera is shown in the following examples:

• Section 10.4.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.1.3, 'Basic Acquisition Examples for One Quad Line CoaXPress Area Scan Camera'

Library Hardware Platform 1312

VisualApplets User Documentation Release 3

Tutorial - Basic Acquisition

• Section 10.4.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2.3, 'Basic Acquisition Examples for One Quad Line CoaXPress Line Scan Camera'

Tutorial - Basic Acquisition

Library Hardware Platform 1313

VisualApplets User Documentation Release 3

29.38. Operator CXPSingleCamera
Operator Library: Hardware Platform

This operator represents the image data interface between a CXP single channel camera and
VisualApplets.

Available for Hardware Platforms
mE5 marathon VCX-QP

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

The operator provides image data on its output O. This output is always present.

In addition to this standard output port, you can specify a set of optional inputs and outputs.

The following pop-up dialog appears during operator instantiation:

Here, you can specify the optional ports for general purpose inputs and outputs over CXP cable, as
well as optional trigger ports to and from the camera.

Library Hardware Platform 1314

VisualApplets User Documentation Release 3

You can define the availability of the particular GPIs (General Purpose Inputs), the particular GPOs
(General Purpose Outputs), the trigger input port, and the trigger output port.

If you set the port availability to "0" (default), the port will not be present in the operator. If you set
the port availability to 1, the particular port is available at the operator interface.

The operator uses 1 resource of type CameraPort.

Modifying Image Width and Image Height

You can modify width and height to the camera-specific settings. However, the maximal
image width on operator port O must be divisible by the parallelism of port O.

Make sure the maximal image width is divisible by the parallelism of port O!

Value for Parallelism

The parallelism on port O needs to be set at least to the minimum value (stated in
parameter MinimalParallelism). A lower value for the parallelism is not allowed. The
minimal parallelism is calculated by VisualApplets on the basis of the values you define
for other parameters of this operator. This way, incoming data can always be received.

Bit Width and Format Type

The bit width on port O (image port) depends on the selected format type (parameter
FormatType):

• If FormatType = Gray: Bit Width can have any value (VAF_Gray and FL_NONE).

• If FormatType = RGB: Bit Width is a multiple of 3 (VAF_Color und FL_RGB)

• If FormatType = RGBA: Bit Width is a multiple of 4 (VAF_Gray and FL_NONE)

• If FormatType = RAW: Bit Width is 32 (VAF_Gray und FL_NONE)

29.38.1. I/O Properties

Property Value
Operator Type M
Input Links - TriggerI (optional), Trigger sent from frame

grabber to camera over CXP channel. This port is
often used to trigger line scan cameras.

Library Hardware Platform 1315

VisualApplets User Documentation Release 3

Property Value
- GPIx (optional), General purpose input [x]
sent from the frame grabber to camera over CXP
channel. Available are GPI0, GPI1, GPI2, GPI3,
GPI4, GPI5, GPI6, and GPI7.

Output Links - O, image data output
- TriggerO (optional), Trigger sent from the
camera to the frame grabber over CXP channel.
- GPOx (optional), General purpose output [x]
sent from the camera to the frame grabber over
CXP channel. Available are GPO0, GPO1, GPO2,
GPO3, GPO4, GPO5, GPO6, and GPO7.

29.38.2. Supported Link Format

Link Parameter Output Link - O Input Link - TriggerI
(optional)

Output Link -
TriggerO (optional)

Bit Width any 1 1
Arithmetic unsigned unsigned unsigned
Parallelism any 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D} (default:
VALT_IMAGE2D)

VALT_SIGNAL VALT_SIGNAL

Color Format {VAF_GRAY,
VAF_COLOR}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

VAF_GRAY VAF_GRAY

Color Flavor {FL_NONE, FL_RGB}

VAF_GRAY = FL_NONE

VAF_COLOR = FL_RGB

(If Color Format is
VAF_GRAY, Color Flavor
is FL_NONE; if Color
Format is VAF_COLOR,
Color Flavor is FL_RGB.)

FL_NONE FL_NONE

Max. Img Width any (default: 1024) 1 1
Max. Img Height any (default: 1024) 1 1

Link Parameter Input Link - GPIx (optional) Output Link - GPOx
(optional)

Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1

Library Hardware Platform 1316

VisualApplets User Documentation Release 3

Link Parameter Input Link - GPIx (optional) Output Link - GPOx
(optional)

Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width 1 1
Max. Img Height 1 1

Needs to be set at least to the minimum value stated in parameter MinimalParallelism.

29.38.3. Parameters

CameraID
Type static write parameter
Default
Range {-1, 0, 1, 2, 3}

The CameraID parameter defines the CXP master port ID to the firmware of the camera operator
to allow automatic CXP topology discovery (camera-to-applet and applet-to-camera).

By using this parameter, you can specify the ID directly here in the operator. However, we
recommend to specify the resources of the operator in the Recources dialog. (To open the
Recources dialog, simply highlight the camera operator and select from the Design menu the menu
item Resources.) The CameraID parameter will automatically update to the correct master port,
using the resource dialog parameters. The following example is using one single camera and one
dual camera:

The CameraID (CXP master port ID) of module3 (single camera) is 2. The CameraID (CXP master
port ID) of module5 (dual camera) is 1.

The dual camera requires 2 CXP camera ports. (A quad camera requires 4 ports.) Only the master
port is reflected in the CameraID parameter of the operator.

Library Hardware Platform 1317

VisualApplets User Documentation Release 3

CameraID
When you define more CameraPort resources than possible (the maximum is 4), e.g., when you
instantiate 5 "CXPSingleCamera"" operators, the camera operator which requests the CameraPort
resource last (while all four available ones are already occupied) sets its CameraID to -1. In this
case, the design rule check reports an error.

The parameter CameraID is in range {-1,0,1,2,3}.

MinimalParallelism
Type static read parameter
Default 8
Range [1 : 512]

Minimal parallelism for the output link O that still allows to transport the maximal bandwidth of the
camera without losing data. The minimal parallelism is calculated automatically.

The value depends on the pixel format you select in parameter FormatMode.

If you define parameter FormatMode to be a dynamic parameter (see description of parameter
FormatMode below), the smallest minimal parallelism that might occur is calculated.

Status
Type dynamic read parameter
Default
Range {0; 2^7-1}

The Status parameter is a runtime, read-only parameter to reflect the current status of the camera
operator. Bit[0] signalizes CXP stream packet loss detection. Bit[1] signalizes single byte error
correction in CXP stream packets. Bit[2] signalizes multiple byte error detection in CXP stream
packets. Bit[3..6] are reserved. This parameter might change in future versions.

FormatType
Type static write parameter
Default GRAY
Range GRAY, RGB, RGBA, RAW

Here, you can select which kind of pixel format (as defined by the CXP specification) you want
to receive. The value you select here defines which pixel formats can be selected in parameter
FormatMode. Hence, the setting of this parameter directly influences parameter FormatMode. See
also documentation of parameter FormatMode below.

FormatMode
Type static or dynamic (user-defined) write parameter
Default Mono8
Range {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10, BayerGR12,

BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10,
BayerBG12, BayerBG14, BayerBG16, RGB8, RGB10, RGB12, RGB14, RGB16, RGBA8,
RGBA10, RGBA12, RGBA14, RGBA16, Raw}

The parameter offers all pixel formats (as defined by the CXP specification) that belong to the
format type you selected in in parameter FormatType.

Library Hardware Platform 1318

VisualApplets User Documentation Release 3

FormatMode

The pixel formats you can select here depend on the setting of parameter FormatType. Hence, you
always have only a pre-set of the full value range available.

To get another set of pixel formats, change the setting of parameter FormatType. See also
documentation of parameter FormatType above.

In detail, the following settings of parameter FormatType provide the following pixel formats in
parameter FormatMode:

FormatType == GRAY: {Mono8, Mono10, Mono12, Mono14, Mono16, BayerGR8, BayerGR10,
BayerGR12, BayerGR14, BayerGR16, BayerRG8, BayerRG10, BayerRG12, BayerRG14, BayerRG16,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerGB16, BayerBG8, BayerBG10, BayerBG12,
BayerBG14, BayerBG16}

FormatType == RGB: {RGB8, RGB10, RGB12, RGB14, RGB16}

FormatType == RGBA: {RGBA8, RGBA10, RGBA12, RGBA14, RGBA16}

FormatType == RAW: {Raw} Pixel format Raw has a fix bit width of 32Bit. The data are
interpreted as received .

You can decide if you want to use this parameter as a dynamic or as a static parameter. Select in
column Parameter Type:

Library Hardware Platform 1319

VisualApplets User Documentation Release 3

TxTriggerPacketMode
Type dynamic write parameter
Default CxpStandard
Range {CxpStandard, RisingEdgeOnly}

With parameter TxTriggerPacketMode you can increase the bandwidth of the CXP cables that
connect the frame grabber with the camera. The increase of bandwidth is achieved by a slight
modification of the camera trigger signal interpretation.

Please note that this feature can only be used with specific cameras that support this feature. For
details, please contact your local distributor or the Basler Support department.

Parameter TxTriggerPacketMode allows two values (CxpStandard, RisingEdgeOnly):

• CxpStandard: The recommended setting is value CxpStandard. If set to value CxpStandard, the
camera trigger works in accordance with the CXP specification. (The CXP specification defines that
the frame grabber sents two packets via CXP cable to the camera in order to trigger the camera
once.)

• RisingEdgeOnly: If set to value RisingEdgeOnly, the frame grabber sents only one packet to the
camera in order to trigger the camera once. The result is an increased bandwidth and a higher
line rate.

TxTriggerEventCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerEventCount parameter indicates how many trigger edge events have been sent to
the camera.

TxTriggerAcknowledgementCount
Type dynamic read parameter
Default 0
Range {0;2^20-1}

The TxTriggerAcknowledgementCount parameter indicates how many trigger acknowledgement
packets sent by the camera (in answer to the trigger edge packets sent before) have been received
by the frame grabber.

TxTriggerWaveformViolation
Type dynamic read parameter
Default 0
Range {0,1}

The parameter is set to 1 by the camera operator if the operator detects a distance between
two trigger edges on port TriggerI which violates the minimal edge frequency. The minimal edge
frequency is 550 ns (nanoseconds) on all microEnable 5 platforms. The parameter holds its value
until it has been read. After being read, the parameter updates the value. Frequency control is
running permanently and is not influenced by the read status of the parameter.

29.38.4. Examples of Use

The use of operator CXPSingleCamera is shown in the following examples:

• Section 10.4.1, 'CoaXPress Area Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.1.1, 'Basic Acquisition Example for Single Line CoaXPress Area Scan Cameras'

Library Hardware Platform 1320

VisualApplets User Documentation Release 3

Tutorial - Basic Acquisition

• Section 10.4.2, 'CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.4.2.1, 'Basic Acquisition Example for Single Line CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.5.2.1, 'Basic Acquisition Example for Single Line CoaXPress Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1321

VisualApplets User Documentation Release 3

29.39. Operator DigIOPort
Operator Library: Hardware Platform

This operator shows the status of four digital inputs using parameter DigInGet. Moreover, two digital
outputs can be set using parameter DigOutSet. This operator represents the image data interface
between a grayscale area scan GigE Vision camera and VisualApplets.

The operator exclusively occupies outputs index 3 and 7. These outputs cannot be used by other
operators. Check Appendix A, 'Device Resources' for a list of available device resources.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

29.39.1. I/O Properties

Property Value
Operator Type M

29.39.2. Supported Link Format

None

29.39.3. Parameters

DigInGet
Type dynamic read parameter
Default 0
Range [0, 15]

This parameter makes the digital input signals available to the software. Bit 0 reflects digital input0,
bit 1 digital input1, bit 2 digital input2, and bit 3 digital input3.

DigOutSet
Type dynamic read/write parameter
Default 0
Range [0, 3]

This parameter makes it possible to send a signal to the digital output ports 3 and 7. Bit 0 defines
the signal of the digital output 3, and bit 1 the signal of the digital output 7.

Library Hardware Platform 1322

VisualApplets User Documentation Release 3

29.40. Operator DmaFromPC

Operator Library: Hardware Platform

For the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platform:

This operator provides a source of user data transferred from the user application back to the
frame grabber for advanced processing. The DmaFromPC operator does not interpret transported
data. Instead, this operator provides data in raw format 8-bit per value at parallelism degree, which
corresponds to the amount of used PCIe lanes for the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta
platforms.

All data received by a DMA from the PC memory are output at the output link O. The DmaFromPC
operator supports only one output format: 8-bit unsigned gray (raw), parallelism 32, maximal image
height 1, maximal image width must not exceed 2^31-1 and must also be divisible by the parallelism
32, i.e. 2,147,483,616 pixels (bytes).

The maximal image width can be configured by the user. The setting of the output link and thus the
maximal image width must be greater than or equal to the raw frame size. Otherwise, the operator
injects an image into VisualApplets, which violates the link properties. Depending on the application
algorithm, this image may cause issues in the processing.

The DmaFromPC operator requires one VisualApplets resource of type DmaFromHostPort. Set the
resource index for the operator in the resource dialog. Check Section 3.8, 'Allocation of Device
Resources' for more information.

For microEnable IV VD-CL/-PoCL platforms:

The operator DmaFromPC provides a source for image data from the PC, e.g. when the frame grabber
is used as a co-processor, or well defined test images should be fed into the processing pipeline.

All data received by a DMA from the PC memory are output at the output link O. The format of the output
link can be selected from 6 gray scale and color formats accessible via the parameter LinkFormat.

Because the data stream send from the PC memory does not support image dimensions, the size of the
frame has to be defined using the parameters MaxNumPixel and MaxNumLines. Mind that the number
of bytes transferred via DMA must match the image dimension calculated from these two parameters.

Although the parameters MaxNumPixel and MaxNumLine allow to define extremely large images there
are some restrictions to observe. First of all the image size is not allowed to extend 2 Gbyte. The second
restriction is that the parameter MaxNumPixel must be set in multiples of the output link parallelism.

This operator requires one VisualApplets resource of type DMA. Set the resource index for the camera
in the resource dialog. Check Section 3.8, 'Allocation of Device Resources' for more information.

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

microEnable IV VD-CL/-PoCL

29.40.1. I/O Properties

Property Value
Operator Type M
Output Links O for microEnable IV VD-CL/-PoCL, image data

output
O for imaFlex CXP-12 Quad and imaFlex CXP-12
Penta, image data output

Library Hardware Platform 1323

VisualApplets User Documentation Release 3

29.40.2. Supported Link Format

Link Parameter Output Link O for
microEnable IV VD-CL/-PoCL

Output Link O for imaFlex
CXP-12 Quad and imaFlex
CXP-12 Penta

Bit Width auto 8
Arithmetic {unsigned, signed} {unsigned}
Parallelism 4 32
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
{VALT_IMAGE2D}

Color Format auto GRAY
Color Flavor auto NONE
Max. Img Width any 2.147.483.616
Max. Img Height any 1

The input bit width is defined by parameter LinkFormat.

The color format and color flavor are defined by the parameter LinkFormat.

29.40.3. Parameters

MaxNumPixel
Type dynamic read/write parameter
Default 1024
Range [1, 65536]

This parameter defines the width of the transferred image in pixels. The value has to be less than
the link property Max. Image Width.

Availability

This parameter is only available on the platform microEnable IV VD-CL/-PoCL, not on
the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

MaxNumLines
Type dynamic read/write parameter
Default 1024
Range [1, 65536]

This parameter defines the height of the transferred image in lines. The value has to be less than
the link property Max. Image Height.

Availability

This parameter is only available on the platform microEnable IV VD-CL/-PoCL, not on
the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

LinkFormat
Type static parameter
Default GRAY8x4
Range {GRAY8x4, GRAY16x2, GRAY32x1, RGB8x1, RGB8x2, RGB16x1}

Library Hardware Platform 1324

VisualApplets User Documentation Release 3

LinkFormat
This parameter specifies the data format of the output link O. Available formats are:

GRAY8x4 gray scale image, 8 bit per pixel, parallelism = 4

GRAY16x2 gray scale image, 16 bit per pixel, parallelism =
2

GRAY32x1 gray scale image, 32 bit per pixel, parallelism =
1

RGB8x1 RGB color image, 8 bit per pixel, parallelism = 1

RGB8x2 RGB color image, 8 bit per pixel, parallelism = 2

RGB16x1 RGB color image, 16 bit per pixel, parallelism =
1

Availability

This parameter is only available on the platform microEnable IV VD-CL/-PoCL, not on
the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms.

29.40.4. Examples of Use

The use of operator DmaFromPC is shown in the following examples:

• Section 12.5.1, 'Co-Processor Median Filter'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a median
filter is calculated.

• Section 12.5.2, 'Co-Processor Large Filter Calculation'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a large
filter kernel is calculated.

Library Hardware Platform 1325

VisualApplets User Documentation Release 3

29.41. Operator DmaToPC
Operator Library: Hardware Platform

The DmaToPC operator is the image interface between a VisualApplets applet and the host PC. The
DMAToPC operator transfers images from the applet to the host PC. Image transfer is performed using
direct memory access, i.e., the image data is directly written to the host PC memory.

The operator uses one VisualApplets resource of type DMA. Set the resource index for the DMA in the
resource dialog. Depending on the used frame grabber, multiple DMA channels can be used. Check
Section 3.8, 'Allocation of Device Resources' for more information.

Multitple color formats, bit widths and parallelisms are supported. The allowed combinations depend
on the used hardware platform:

• imaFlex CXP-12 Quad and imaFlex CXP-12 Penta:

• The product of the bit width and parallelism must be an integer multiple of 8 and must be less
than or equal to 256.

• The product of the maximal image width and the maximal image height must be divisible by 4
bytes.

• microEnable 5 marathon VCLx, microEnable 5 marathon VCL, microEnable 5 marathon
VCX-QP, microEnable 5 marathon VF2, and LightBridge VCL:

The link properties of the operator input depend on the PCIe mode that is supported by the applet.
The supported PCIe mode you can select in operator AppletProperties, parameter PcieInterfaceType.

Multiple color formats, bit widths and parallelism are supported. The maximum of the product
Parallelism x Bit Width must be a multiple of 8 and depends on the PCIe mode you selected in
operator AppletProperties:

• Generation_1: Parallelism x Bit Width <= 64 Bit.

• Generation_2: Parallelism x Bit Width <= 128 bit

The product of the maximal image width and the maximal image height must be divisible by 4 bytes.

• microEnable 5 ironman VD8-PoCL, microEnable 5 ironman VQ8-CXP6D (DIN connector)
and microEnable 5 ironman VQ8-CXP6B (BNC connector):

• When parameter PcieInterfaceType in the operator AppletProperties is set to Generation_1,
the product of the bit width and the parallelism must be a multiple of 8 and less or equal to 128.

• When parameter PcieInterfaceType in the operator AppletProperties is set to Generation_2,
the product of the bit width and the parallelism must be a multiple of 8 and less or equal to 256.

• microEnable IV VD4-CL/-PoCL and microEnable IV VQ4-GE/-GPoE:

For the frame grabbers using a PCIe x4 interface, the product of the bit width and parallelism must
be an integer multiple of 8 and must be less than or equal to 128.

• microEnable IV VD1-CL/-PoCL:

For grayscale images, the product of the parallelism and bit width must either be 16, 32, 64 or 128.
In case of color formats, the product either has to be 24 or 48.

RGB is converted to BGR

The operator converts RGB data to BGR data (i.e., the components R and B are switched
before DMA transfer). After DMA transfer, the former RGB image is available as a BGR
image in the PC's RAM. This conversion is carried out to ease further processing with
software tools, as most software tools directly support BGR format.

Library Hardware Platform 1326

VisualApplets User Documentation Release 3

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

microEnable 5 marathon VCLx

microEnable 5 marathon VCL

microEnable 5 marathon VCX-QP

microEnable 5 marathon VF2

LightBridge VCL

microEnable 5 ironman VQ8-CXP6D/-CXP6B

microEnable 5 ironman VD8-PoCL

microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

microEnable IV VQ4-GE/-GPoE

29.41.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input

29.41.2. Supported Link Format

Link Parameter Input Link I
Bit Width see description
Arithmetic unsigned
Parallelism see description
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_IMAGE2D
Color Format {VAF_COLOR, VAF_GRAY}
Color Flavor {FL_NONE, FL_RGB} If VAF_GRAY selected:

FL_NONE; If VAF_COLOR selected: FL_RGB
Max. Img Width any
Max. Img Height any

29.41.3. Parameters

CurrentTransferLength
Type dynamic read parameter
Default
Range [0; 2^34-1]

The parameter reflects the amount of byte that has already been transferred of a frame that is
being processed. This information allows to analyze DMA buffer data in a software application
before the entire frame is transmitted.

Library Hardware Platform 1327

VisualApplets User Documentation Release 3

CurrentTransferLength

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, LightBridge VCL, mE5 ironman VQ8-CXP6D, and mE5 ironman VQ8-CXP6B

PixelsPerLine
Type dynamic read parameter
Default 0
Range

The previously transferred image line length in pixels.

Availability

microEnable IV VD4-CL/-PoCL and microEnable IV VQ4-GE/-GPoE only

PixelsPerLine
Type dynamic read parameter
Default 0
Range

The previously transferred image line length in bytes.

Availability

microEnable IV VD4-CL/-PoCL and microEnable IV VQ4-GE/-GPoE only

ReadLongsPerLine
Type dynamic read parameter
Default 0
Range

This parameter provides the geometry of the transferred frame. The number of long words (4 byte)
per line can be read.

Availability

microEnable IV VD1-CL only

29.41.4. Examples of Use

The use of operator DmaToPC is shown in the following examples:

• 2. Getting Started

Getting Started

• Figure 3.1, 'Simple VisualApplets Design'

Basic Principles - Learn the Idea of VisualApplets

• Section 3.5, 'Data Flow '

Data Flow - Learn about the Pipeline Structure used in VisualApplets

Library Hardware Platform 1328

VisualApplets User Documentation Release 3

• Section 3.8, 'Allocation of Device Resources'

Learn the allocation of the device resources of the operator.

• Section 9.2, ' Multiple DMA Channel Designs '

Tutorial - Using multiple DMA channel outputs for one camera.

• Section 12.1.2, 'JPEG Encoder Gray'

Examples - A simple example which shows the usage of the JPEG operators.

• Section 12.1.4, 'JPEG Compression Using Operator JPEG_Encoder'

Examples - Simple examples which show the usage of the operator JPEG_Encoder.

• Section 12.1.5, 'JPEG Color Compression Using User Library Elements'

Examples - Simple examples which shows the usage of the JPEG user library elements for color JPEG
compression.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.4.2.1, 'Color Plane Separation Option 1 - Three DMAs'

Splitting the RGB color planes into three DMA channel outputs.

• Section 12.5.1, 'Co-Processor Median Filter'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a median
filter is calculated.

• Section 12.5.2, 'Co-Processor Large Filter Calculation'

Examples - The coprocessor feature of the microEnable IV VD1-CL is shown. As an example, a large
filter kernel is calculated.

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

Library Hardware Platform 1329

VisualApplets User Documentation Release 3

29.42. Operator GPI

Operator Library: Hardware Platform

The operator GPI provides an interface to the digital inputs. Via parameter Pin_ID, you select the digital
input (which is wired to a physical pin on a GPIO unit) you want to use for receiving a signal. The same
digital inputs can be used by multiple operators.

For all platforms except the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms: If you use
a device with several GPIO units, use parameter ConnectorType to select the GPIO unit you want to
address (Front GPIO or GPIO). On the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms, the
parameter ConnectorType is not available.

For the mapping of digital inputs and pin connectors, check the User Manual of your frame grabber
[https://docs.baslerweb.com/frame-grabbers].

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

mE5 marathon VCLx

mE5 marathon VCL

mE5 marathon VCX-QP

mE5 marathon VF2

LightBridge VCL

mE5 ironman VQ8-CXP6D/-CXP6B

mE5 ironman VD8-PoCL

pixelPlant 100

pixelPlant 200

29.42.1. I/O Properties

Property Value
Operator Type M
Output Link O, general purpose input signal to be used inside

VisualApplets.

29.42.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

https://docs.baslerweb.com/frame-grabbers
https://docs.baslerweb.com/frame-grabbers

Library Hardware Platform 1330

VisualApplets User Documentation Release 3

29.42.3. Parameters

PinID (imaFlex CXP-12 Quad platform and imaFlex CXP-12 Penta)
Type static write parameter
Default FrontGpi0
Range {FrontGpi0, FrontGpi1, FrontGpi2, FrontGpi3, ExtensionGpi0, ExtensionGpi1,

ExtensionGpi2, ExtensionGpi3, ExtensionGpi4, ExtensionGpi5, ExtensionGpi6,
ExtensionGpi7}

Via parameter PinID, you define the digital input (which is wired to a physical pin on a GPIO socket)
you want to use for receiving a signal. The same digital inputs can be used by multiple operators.

FrontGpiN represents the GPI for the Front GPIO connector.

ExtensionGpiN represents the GPI for Extension GPIO side connector.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

Pin_ID (mE5 platforms, pixelPlant and LightBridge VCL)
Type static write parameter
Default 0
Range [0;7] or [0;3]

Via parameter Pin_ID, you define the digital input (which is wired to a physical pin on a GPIO
socket) you want to use for receiving a signal. The same digital inputs can be used by multiple
operators.

[0;3] The value range is 0-3 for the Front GPIO on marathon, the Front GPIO on LightBridge, and
the GPIO on LightBridge.

[0;7] For the GPIO on marathon and in all other cases, the value range is 0-7.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, LightBridge VCL, mE5 ironman VQ8-CXP6D/-CXP6B, mE5 ironman VD8-PoCL,
pixelPlant 100, pixelPlant 200

ConnectorType
Type static write parameter
Default GPIO
Range {FrontGPIO, GPIO}

Via parameter ConnectorType, you define which GPIO socket (GPIO or Front GPIO) you want to
address with the value you enter for parameter Pin_ID.

Availability

This parameter is only available for platforms that have a Front GPIO:

• mE5 marathon VCLx

• mE5 marathon VCL

• mE5 marathon VCX-QP

• mE5 marathon VF2

Library Hardware Platform 1331

VisualApplets User Documentation Release 3

ConnectorType
• LightBridge VCL

29.42.4. Examples of Use

The use of operator GPI is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.2, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable4 IV VD4-CL/PoCL platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.9.2, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable IV VQ4-GE/-GPoE platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.10.2, ' Line Scan Trigger for microEnable 5 marathon/LightBridge VCL with TrgBoxLine
Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.11.2, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.2, 'Line Scan Trigger for microEnable 5 marathon VCX QP with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

Library Hardware Platform 1332

VisualApplets User Documentation Release 3

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.13.2, 'Line Scan Trigger for imaFlex CXP-12 Quad with TrgBoxLine Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.14.2, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 with TrgBoxLine Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

Library Hardware Platform 1333

VisualApplets User Documentation Release 3

29.43. Operator GPO
Operator Library: Hardware Platform

The operator GPO provides an interface to the digital outputs. Via parameter Pin_ID, you select the
digital output (which is wired to a physical pin on a GPIO unit) you want to use for sending a signal.

For all platforms except the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms: If you use a
frame grabber with two GPIO units, use parameter ConnectorType to select the GPIO unit you want
to address (GPIO or Front GPIO). On the imaFlex CXP-12 Quad and imaFlex CXP-12 Penta platforms,
the parameter ConnectorType is not available.

Each digital output can only be used once. Thus, the selected digital output is to be used by exclusively
one instance of the GPO operator.

For each digital output, one device resource of type TriggerOut is used. See Appendix A, 'Device
Resources' for a full list of device resources.

For the mapping of digital outputs and physical pins on the GPIO units, check User Manual of your
frame grabber [https://docs.baslerweb.com/frame-grabbers/index.html].

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

mE 5 marathon VCLx

mE 5 marathon VCL

mE 5 marathon VCX-QP

mE 5 marathon VF2

LightBridge VCL

mE 5 ironman VQ8-CXP6D/-CXP6B

mE 5 ironman VD8-PoCL

pixelPlant 100

pixelPlant 200

29.43.1. I/O Properties

Property Value
Operator Type M
Input Link I, general purpose output signal to be send out

of the frame grabber.

29.43.2. Supported Link Format

Link Parameter Input Link I
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY

https://docs.baslerweb.com/frame-grabbers/index.html
https://docs.baslerweb.com/frame-grabbers/index.html
https://docs.baslerweb.com/frame-grabbers/index.html

Library Hardware Platform 1334

VisualApplets User Documentation Release 3

Link Parameter Input Link I
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.43.3. Parameters

PinID (imaFlex CXP-12 Quad and imaFlex CXP-12 Penta)
Type static write parameter
Default FrontGpo0
Range imaFlex CXP-12 Penta: {FrontGpo0, FrontGpo1, FrontGpo2, FrontGpo3,

ExtensionGpo0, ExtensionGpo1, ExtensionGpo2, ExtensionGpo3, ExtensionGpo4,
ExtensionGpo5, ExtensionGpo6, ExtensionGpo7}

imaFlex CXP-12 Quad:{FrontGpo0, FrontGpo1, ExtensionGpo0, ExtensionGpo1,
ExtensionGpo2, ExtensionGpo3, ExtensionGpo4, ExtensionGpo5, ExtensionGpo6,
ExtensionGpo7}

Via parameter PinID, you define the digital output (which is wired to a physical pin on a GPIO
socket) you want to use for sending a signal. The same digital output can be used only once, i.e.,
by one instance of the GPO operator.

FrontGpoN represents the GPO for the Front GPIO connector.

ExtensionGpoN represents the GPO for Extension GPIO side connector.

Availability

imaFlex CXP-12 Quad, imaFlex CXP-12 Penta

Pin_ID (mE5 platforms, pixelPlant and LightBridge VCL)
Type static write parameter
Default 0
Range [0;7], [0;3] or [0;1]

Via parameter Pin_ID, you define the digital ouput (which is wired to a physical pin on the GPIO or
FrontGPIO socket) you want to use for sending a signal. The same digital output can be used only
once, i.e., by one instance of the GPO operator.

[0;7] When you address the GPIO on marathon, or if you use a device with only one GPIO unit
(ironman, PixelPlant), the value range is 0 - 7.

[0;3] When you address the GPIO on LightBridge, the value range is 0-3.

[0;1] When you address the Front GPIO on marathon or LightBridge, the value range is 0-1.

Availability

mE5 marathon VCLx, mE5 marathon VCL, mE5 marathon VCX-QP, mE5 marathon
VF2, LightBridge VCL, mE5 ironman VQ8-CXP6D/-CXP6B, mE5 ironman VD8-PoCL,
pixelPlant 100, pixelPlant 200

ConnectorType
Type static write parameter
Default GPIO
Range {GPIO, FrontGPIO}

Library Hardware Platform 1335

VisualApplets User Documentation Release 3

ConnectorType
Via parameter ConnectorType, you define which GPIO socket (GPIO or Front GPIO) you want to
address with the value you enter for parameter Pin_ID.

Availability

This parameter is only available for platforms that have a Front GPIO:

• mE5 marathon VCLx

• mE5 marathon VCL

• mE5 marathon VCX-QP

• mE5 marathon VF2

• LightBridge VCL

29.43.4. Examples of Use

The use of operator GPO is shown in the following examples:

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.2, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable4 IV VD4-CL/PoCL platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.9.2, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable IV VQ4-GE/-GPoE platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.10.2, ' Line Scan Trigger for microEnable 5 marathon/LightBridge VCL with TrgBoxLine
Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.11.2, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.12.2, 'Line Scan Trigger for microEnable 5 marathon VCX QP with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

Library Hardware Platform 1336

VisualApplets User Documentation Release 3

• Section 12.15.13.2, 'Line Scan Trigger for imaFlex CXP-12 Quad with TrgBoxLine Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.14.2, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 with TrgBoxLine Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

Library Hardware Platform 1337

VisualApplets User Documentation Release 3

29.44. Operator LED

Operator Library: Hardware Platform

The LED operator provides an interface for accessing the board LEDs of the frame grabber via the
applet.

Driving a logic HIGH on the input forces the correspondent board LED to light on. Driving a logic LOW
on the input forces the correspondent board LED to light off.

For the exact location of board LEDs on the frame grabber, see the manual of your frame grabber
[https://docs.baslerweb.com/frame-grabbers/index.html].

Available for Hardware Platforms
imaFlex CXP-12 Penta

imaFlex CXP-12 Quad

mE5 marathon VCLx

mE5 marathon VCL

mE5 marathon VCX-QP

mE5 marathon VF2

LightBridge VCL

mE5 ironman VQ8-CXP6D

mE5 ironman VQ8-CXP6B

mE5 ironman VD8-PoCL

On marathon VCX-QP, the numbering of the LEDs is mirrored, see parameter description of
parameter Port below.

29.44.1. I/O Properties

Property Value
Operator Type M
Input Link I, signal input

29.44.2. Supported Link Format

Link Parameter Input Link I
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

https://docs.baslerweb.com/frame-grabbers/index.html
https://docs.baslerweb.com/frame-grabbers/index.html

Library Hardware Platform 1338

VisualApplets User Documentation Release 3

29.44.3. Parameters

Port
Type static write parameter
Default USR1
Range imaFlex CXP-12 Penta, and imaFlex CXP-12 Quad: {USR1, USR2, USR3, USR4,

USR5, USR6}

LightBridge VCL, mE5 marathon VCLx, and mE5 marathon VCL: {USR1, USR2}

mE5 marathon VCX-QP and mE5 marathon VF2: {USR1, USR2, USR3, USR4}

The parameter defines which of the board LEDs will be connected by the operator.

imaFlex CXP-12 Penta and imaFlex CXP-12 Quad:

• USR1 maps the operator to the slot LED USR1.

• USR2 maps the operator to the slot LED USR2.

• USR3 maps the operator to the slot LED USR3.

• USR4 maps the operator to the slot LED USR4.

• USR5 maps the operator to the slot LED USR5.

• USR6 maps the operator to the slot LED USR6.

mE5 marathon VCLx, mE5 marathon VCL, LightBridge VCL:

• USR1 maps the operator to the slot LED USR1.

• USR2 maps the operator to the slot LED USR2.

mE5 marathon VF2:

• USR1 maps the operator to the slot LED USR1.

• USR2 maps the operator to the slot LED USR2.

• USR3 maps the operator to the slot LED USR3.

• USR4 maps the operator to the slot LED USR4.

mE5 marathon VCX-QP:

• USR1 maps the operator to the slot LED 4.

• USR2 maps the operator to the slot LED 3.

• USR3 maps the operator to the slot LED 2.

• USR4 maps the operator to the slot LED 1.

To turn the LED ON, the input I must be driven HIGH. To turn the LED OFF, the input I must be
driven LOW.

Platforms

This parameter is used with the following platforms:

• imaFlex CXP-12 Penta, and imaFlex CXP-12 Quad (value range {USR1, USR2, USR3,
USR4, USR5, USR6})

• mE5 marathon VCLx (value range {USR1, USR2})

Library Hardware Platform 1339

VisualApplets User Documentation Release 3

Port
• mE5 marathon VCL (value range {USR1, USR2})

• mE5 marathon VCX-QP (value range {USR1, USR2, USR3, USR4})

• mE5 marathon VF2 (value range {USR1, USR2, USR3, USR4})

• LightBridge VCL (value range {USR1, USR2})

Pin_ID
Type static write parameter
Default 0
Range [0;3]

The Pin_ID parameter defines which of the 4 board LEDs will be connected by the operator. Range
is [0; 3].

Platforms

This parameter is used with these platforms:

• mE5 ironman VQ8-CXP6D

• mE5 ironman VQ8-CXP6B

• mE5 ironman VD8-PoCL

29.44.4. Examples of Use

The use of operator LED is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Hardware Platform 1340

VisualApplets User Documentation Release 3

29.45. Operator NativeTrgPortIn
Operator Library: Hardware Platform

The operator NativeTrgportIn provides an interface to the microEnable's digital inputs. Accessible by
the operator are the first four input trigger pins.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

29.45.1. I/O Properties

Property Value
Operator Type M
Output Links TrgI1, signal output

TrgI2..TrgI4, signal output

29.45.2. Supported Link Format

Link Parameter Output Link TrgI1 Output Link TrgI2..TrgI4
Bit Width 1 TrgI[1]]
Arithmetic unsigned TrgI[1]
Parallelism 1 TrgI[1]
Kernel Columns 1 TrgI[1]
Kernel Rows 1 TrgI[1]
Img Protocol VALT_SIGNAL TrgI[1]
Color Format VAF_GRAY TrgI[1]
Color Flavor FL_NONE TrgI[1]
Max. Img Width any TrgI[1]
Max. Img Height any TrgI[1]

29.45.3. Parameters

None

Library Hardware Platform 1341

VisualApplets User Documentation Release 3

29.46. Operator NativeTrgPortInExt
Operator Library: Hardware Platform

The operator NativeTrgportInExt provides an interface to the microEnable's digital inputs. Accessible
by the operator are all eight input trigger pins.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

29.46.1. I/O Properties

Property Value
Operator Type M
Output Links TrgI1, signal output

TrgI1..TrgI8, signal output

29.46.2. Supported Link Format

Link Parameter Output Link TrgI1 Output Link TrgI1..TrgI8
Bit Width 1 TrgI[1]]
Arithmetic unsigned TrgI[1]
Parallelism 1 TrgI[1]
Kernel Columns 1 TrgI[1]
Kernel Rows 1 TrgI[1]
Img Protocol VALT_SIGNAL TrgI[1]
Color Format VAF_GRAY TrgI[1]
Color Flavor FL_NONE TrgI[1]
Max. Img Width any TrgI[1]
Max. Img Height any TrgI[1]

29.46.3. Parameters

None

Library Hardware Platform 1342

VisualApplets User Documentation Release 3

29.47. Operator NativeTrgPortOut
Operator Library: Hardware Platform

Provides an interface to the microEnable's digital outputs and CC outputs. The operator can access the
four digital outputs and the four Camera Link trigger outputs CC1 to CC4. The operator requires one
resource of type CameraControl. Set the resource index for the camera in the resource dialog. If the
resource index is set to 0, the digital outputs 0 to 3 and the CC output for the camera on port A are
used. If the index is set to 1, the digital outputs 4 to 7 and the CC output for camera port B are used.
Check Section 3.8, 'Allocation of Device Resources' for more information.

For the mapping of digital outputs and pin connectors check the frame grabber hardware manual.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

29.47.1. I/O Properties

Property Value
Operator Type M
Input Links TrgO1..TrgO4], signal output

CC1..CC4, signal output

29.47.2. Supported Link Format

Link Parameter Input Link TrgO1..TrgO4] Input Link CC1..CC4
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

29.47.3. Parameters

None

Library Hardware Platform 1343

VisualApplets User Documentation Release 3

29.48. Operator RxLink

Operator Library: Hardware Platform

This operator provides a data link between the frame grabber to the pixelPlant boards Px100 and Px200
respectively from the pixelPlant boards to the frame grabbers. TxLink represents the input interface
operator. The link is capable to transport data in any image format. The format of the link has to be
parameterized to exactly meet with the corresponding link which is sending the data.

The parameter Channel_ID specifies the unique ID of the virtual data channel. This is necessary to
address the corresponding sender and establish the channel communication. The channel ID occupies
one device resource of type RxLink. Check Appendix A, 'Device Resources' for a full list of device
resources.

Data transfers are controlled by flow control of VisualApplets and do not need buffering, e.g. a RxLink
input can be directly connected to a DmaFromPc operator without utilizing ImageBuffer operators.
However if an infinite source is used like any of the camera operators, buffering is still required before
TxLink.

The data link is a virtual channel between the px100/200 boards and the mE4VD4-CL board. The
maximal number of virtual RxLink channels must not exceed 61. Also consider to use as less as possible
links to use the bandwidth and FPGA resources effectively. All virtual RxLink data channels are mapped
internally on a single physical link of 1GByte/s bandwidth.

The Channel_IDs can be in any order and can start from any index between 1 and 61. However all
indices must be unique. Note that on the sender side on the TxLinks must have the same IDs as the
RxLinks on the receiver side.

TxLinks and RxLink on the same board do not share the same physical channel and are fully
independent, i.e. RxLink and TxLink operators on the same board can have the same or different
Channel_IDs and are not related to each other in any way.

Optimized Routing of designs with PixelPlant

To optimize the routing results (during build) of designs for mE4 with PixelPlant PX100/
PX200/PX200e, we recommend to use settings for bit width and parallelism that ensure
that the product of bit width and parallelism is a multiple of 64. The optimum routing
results can be expected if the product is exactly 64.

product = n * 64

n = 1 leads to optimal routing results.

Very good routing results can also be expected if the product of bit width and parallelism
is a power of two and less or equal 64, but not 1, 2, or 4. Other configurations may
lead to timing errors.

Available for Hardware Platforms
mmicroEnable IV VD4-CL/-PoCL

pixelPlant 100

pixelPlant 200

29.48.1. I/O Properties

Property Value
Operator Type M
Output Link O, signal input

Library Hardware Platform 1344

VisualApplets User Documentation Release 3

29.48.2. Supported Link Format

Link Parameter Output Link O
Bit Width [1, 64]
Arithmetic {unsigned, signed}
Parallelism any
Kernel Columns any
Kernel Rows any
Img Protocol {VALT_SIGNAL, VALT_LINE1D, VALD_PIXEL0D}
Color Format any
Color Flavor any
Max. Img Width any
Max. Img Height any

29.48.3. Parameters

Channel_ID
Type static parameter
Default 1
Range [1, 61]

This parameter defines the unique channel ID for the data link.

29.48.4. Examples of Use

The use of operator RxLink is shown in the following examples:

• Section 4.6, 'PixelPlant Designs'

Generating PixelPlant design and establishing interconnections.

Library Hardware Platform 1345

VisualApplets User Documentation Release 3

29.49. Operator TrgPortArea
Operator Library: Hardware Platform

This operator generates the trigger (Exsync) for the Camera. It is possible to use an internal signal
generator (GrabberControlled) or to trigger the signal generator from external signals, either by input
signals from the trigger expansion board (TTL Trigger board or OPTO Trigger board), or by software.

The signal generator can produce Exsync signals with a flexible delay, pulse width and polarity.
Additionally a Flash signal, which is available at the trigger expansion board, is generated.

The operator occupies 4 digital outputs and one camera port for the CC signals. Hence, one
VisualApplets resource of type CameraControl is used. If the device resource is set to 0, the digital
outputs 0 to 3 and camera port A is used. However, if the resource index is set to 1, the digital outputs
4 to 7 and camera port B is used. Note that no other operators can use these hardware resources.
Set the resource index in the resource dialog. Check Section 3.8, 'Allocation of Device Resources' for
more information

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.49.1. I/O Properties

Property Value
Operator Type M

29.49.2. Supported Link Format

None

29.49.3. Parameters

TriggerMode
Type dynamic read/write parameter
Default GrabberControlled
Range {GrabberControlled, ExternSw_Trigger}

This parameter selects the operation mode for the internal Exsync signal generator. The source for
the external trigger input can by selected via the parameter ImgTrgInSource.

GrabberControlled: Exsync is generated periodically by the internal signal generator.

ExternSw_Trigger: An external trigger signal is used to start the signal generator once.

ExsyncEnable
Type dynamic read/write parameter
Default ON
Range {OFF, ON}

Enables or disables the Exsync output to the camera.

ExsyncFramesPerSec
Type dynamic/static read/write parameter
Default 8 Hz
Range depends on parameter Accuracy

Library Hardware Platform 1346

VisualApplets User Documentation Release 3

ExsyncFramesPerSec
This parameter specifies the frequency of the Exsync generation.

ExsyncExposure
Type dynamic/static read/write parameter
Default 4000 μs
Range depends on parameter Accuracy

This parameter specifies the pulse width of the Exsync signal, which can be used by many cameras
to specify the exposure time. Therefore, it is possible to adjust the exposure time via software,
even while grabbing. Enter the value in microseconds.

ExsyncDelay
Type dynamic/static read/write parameter
Default 0 μs
Range depends on parameter Accuracy

This parameter specifies the delay of the generated Exsync signal, with respect to an external
trigger input. Therefore, it is possible to synchronize the exposure interval to a flash. Enter the
value in microseconds.

ExsyncPolarity
Type dynamic/static read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter adjusts the polarity of the Exsync signal generator the polarity accepted by the
connected camera. Use LowActive, if the camera opens the shutter on a falling edge, otherwise use
HighActive.

ImgTrgInSource
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source, which is used to trigger the Exsync signal generator.
This is only relevant if the TriggerMode is set to ExternSw_Trigger.

ImgTrgInPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity of the external input trigger signal. When set to LowActive, the
Exsync generator starts on a falling edge of the signal specified by the parameter ImgTrgInSource.
Otherwise, the Exsync generation starts on a rising edge. This is only relevant if the TriggerMode is
set to ExternSw_Trigger.

ImgTrgDownscale
Type dynamic read/write parameter
Default 1
Range {1, 65535}

This value defines a downscaling factor for incoming trigger pulses. Only every Nth trigger puls is
accepted, with number N defined by this parameter. For example, if ImgTrgDownscale is set to 3,
then every 3rd incoming trigger puls will be accepted, i.e. the first two trigger pulses are discarded.

Library Hardware Platform 1347

VisualApplets User Documentation Release 3

FlashEnable
Type dynamic read/write parameter
Default OFF
Range {OFF, ON}

Enables or disables the flash output. The pulse width of the flash signal is equal to the Exsync
period.

FlashPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity for the generated Flash signal.

FlashDelay
Type dynamic/static read/write parameter
Default 0 µs
Range {0, 10230} with stepsize 10 µs

This parameter specifies the delay of the generated Flash signal, with respect to an external trigger
input. Therefore, it is possible to synchronize the flash to the external trigger input. Enter the value
in microseconds.

SoftwareTrgPulse
Type dynamic write parameter
Default 1
Range {1}

Setting this parameter to 1, will generate a software trigger. This is only relevant if the TriggerMode
is set to ExternSw_Trigger and ImgTrgInSource is set to SoftwareTrigger.

SoftwareTrgDeadTime
Type dynamic/static write parameter
Default 10000 μs
Range depends on parameter Accuracy

This parameter specifies the minimal time interval between software trigger pulses. Enter the value
in microseconds.

SoftwareTrgIsBusy
Type dynamic/static read parameter
Default 0
Range {0, 1}

The SoftwareTrgIsBusy parameter enables software readout of the busy state. If busy then this
parameter is set to 1 to reflect an ongoing image capture. If set to 0 then the operator is not busy.

CC1output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC1 line of the CameraLink cable.

CC2output
Type dynamic/static write parameter

Library Hardware Platform 1348

VisualApplets User Documentation Release 3

CC2output
Default Vcc
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC2 line of the CameraLink cable.

CC3output
Type dynamic/static write parameter
Default Vcc
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC3 line of the CameraLink cable.

CC4output
Type dynamic/static write parameter
Default Vcc
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC4 line of the CameraLink cable.

Accuracy
Type dynamic/static write parameter
Default 10 μs
Range [0.05, 500] μs

This parameter specifies the time base for the trigger system. It defines the jitter and the ranges
for delays, periods etc. Enter the value in microseconds.

DebouncingMaxTime
Type static write parameter
Default 65.520 us
Range [0.016, 1000000] us

This parameter specifies the maximum limit of debouncing time. Enter the value in microseconds.

DebouncingTime
Type dynamic write parameter
Default 0.112 us
Range [0.016, 1000000] us

This parameter specifies the debouncing time. The input trigger signals must keep the same value
to be detected as such. Fast signal changes within the debounce time will be filtered out. Enter the
value in microseconds.

29.49.4. Examples of Use

The use of operator TrgPortArea is shown in the following examples:

• Section 12.15.1.2, ' Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Operator
TrgPortArea'

An area scan trigger using the operator TrgPortArea is presented. Please read for information on
this operator Section 29.49, 'TrgPortArea'.

Library Hardware Platform 1349

VisualApplets User Documentation Release 3

29.50. Operator TrgPortLine
Operator Library: Hardware Platform

This operator generates the trigger (Exsync) for the camera. It is also responsible for assembling the
acquired lines to images.

It is possible to use an internal signal generator (GrabberControlled) or to trigger the signal generator
from external signals, either by input signals from the trigger expansion board (TTL Trigger board or
OPTO Trigger board), or by software. The signal generator can produce Exsync signals with a flexible
delay, pulse width and polarity. Additionally, a flash signal which is available at the trigger expansion
board is generated.

The operator occupies 4 digital outputs and one camera port for the CC signals. Hence, one
VisualApplets resource of type CameraControl is used. If the resource index is set to 0, the digital
outputs 0 to 2 and camera port A is used. If the resource index is set to 1, the digital outputs 4 to 6
and camera port B is used. Outputs 3 and 7 are not used by the operator. Note that no other operators
can use these hardware resources. Set the resource index in the resource dialog.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

29.50.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

29.50.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_LINE1D VALT_IMAGE2D
Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height 65536 as I

29.50.3. Parameters

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, 224]

This parameter defines the number of lines omitted at the beginning of a frame.

Library Hardware Platform 1350

VisualApplets User Documentation Release 3

YLength
Type dynamic/static read/write parameter
Default 1024
Range [8, 224]

This parameter defines the number of lines of a frame.

MaxGatedHeight
Type dynamid read/write parameter
Default restricted
Range {restricted, unrestricted}

The parameter MaxGatedHeight allows you to limit the maximum image height when the image
trigger mode (ImgTriggerMode) is set to ExternSw_Gate.

If if the image trigger mode (ImgTriggerMode) is set to ExternSw_Gate, and the parameter
MaxGatedHeight is set to unrestricted, the image height is defined by the time the gate is open,
i.e., by the pulse width of the external image trigger signal or the duration of the software trigger
being value 1. Now, if the gate is open for a long time, the image height gets large. If parameter
MaxGatedHeight is set to restricted, the image height is limited to YLength image lines even if the
gate is still open. The operator will discard any further lines and wait for the next open gate to start
a new frame.

In contrast, if the parameter is set to unrestricted, the image height is only defined by the gate.

Violation of Link Property Possible

Using this parameter in unrestricted mode can cause a violation of the VisualApplets
link protocol. The image height could exceed the maximum allowed image height
defined in the output link of the TrgPortLine operator. Be careful when using the
unrestricted mode. See Section 3.7.2, 'Link Properties' for more information on link
properties.

A successive SplitImage operator can divide large images into chunks (smaller
images).

LineTriggerMode
Type dynamic/static read/write parameter
Default GrabberControlled
Range {GrabberControlled, Extern_Trigger, GrabberControlled_Gated_by_Img,

Extern_Trigger_Gated_by_Img}

This parameter selects the operation mode for the internal Exsync signal generator. The
source for the external trigger input can by selected via the parameters LineTrgInSourceA and
LineTrgInSourceB (see below).

GrabberControlled: Exsync is generated periodically by the internal signal generator

Extern_Trigger: An external trigger signal is used to start the signal generator once

GrabberControlled_Gated_by_Img: Exsync is generated periodically by the internal signal generator
during the acquisition of a frame

Extern_Trigger_Gated_by_Img: An external trigger signal is used to trigger the signal generator
during the acquisition of a frame

ExsyncEnable
Type dynamic read/write parameter
Default OFF

Library Hardware Platform 1351

VisualApplets User Documentation Release 3

ExsyncEnable
Range {OFF, ON}

Enables or disables the Exsync output to the camera.

LineTrgInSourceA
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source which is used to trigger the Exsync signal generator. This
is only relevant if the TriggerMode is set to Extern_Trigger.

LineTrgInSourceB
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source which is used to trigger the Exsync signal generator.
This is only relevant if the TriggerMode is set to Extern_Trigger and EncoderABMode is set to
Signal_AB_Filter.

EncoderABMode
Type dynamic/static read/write parameter
Default Signal_A_Only
Range {Signal_A_Only, Signal_AB_Filter, Signal_ABx2_Filter, Signal_ABx4_Filter}

This parameter specifies whether a single trigger input (A only) is used for the Exsync generation,
or the signals A and B.

Signal A/B support enables to determine the revolving direction of the shaft encoder and to
suppress and compensate backward movements:

Library Hardware Platform 1352

VisualApplets User Documentation Release 3

EncoderABMode

Signal_A_Only: The trigger input selected by LineTrgInSourceA is used for Exsync generation.

Signal_AB_Filter: Exsync is generated for a forward rotation of the shaft encoder in single
resolution, i.e., a trigger pulse for a rising edge of LineTrgInSourceA.

Signal_ABx2_Filter: Exsync is generated for a forward rotation of the shaft encoder in double
resolution, i.e., a trigger pulse for a rising edge of LineTrgInSourceA and a falling edge of
LineTrgInSourceA. Both edges of LineTrgInSourceA are used.

Signal_ABx4_Filter: Exsync is generated for a forward rotation of the shaft encoder in quad
resolution, i.e., a trigger pulse for a rising and a falling edge of LineTrgInSourceA and a rising and a
falling edge of LineTrgInSourceB.

Related Parameters when AB support enabled:

• EncoderABLead (possibility to switch the definition of forward)

You can reset the shaft encoder by setting parameter EncoderABMode to value Signal_A_Only.

EncoderABLead
Type dynamic/static read/write parameter
Default Signal_AB
Range {Signal_AB, Signal_BA}

A foreward movement is defined by a rising edge of signal A before signal B if the parameter is set
to Signal_AB, or vice versa:

Signal_AB: Forward is defined by A before B

Signal_BA: Forward is defined by B before A

LineTrgInPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity of the external input trigger signal LineTrgInSourceA and
LineTrgInSourceB. When set to LowActive, the Exsync generator starts on a falling edge of the
signal specified by the parameter ImgTrgInSource. Otherwise, the Exsync generation starts on a
rising edge. This is only relevant if the TriggerMode is set to Extern_Trigger.

LineTrgDownscaler
Type dynamic/static read/write parameter
Default 1

Library Hardware Platform 1353

VisualApplets User Documentation Release 3

LineTrgDownscaler
Range [1, 256]

This parameter specifies the number of external input trigger signals, which are needed to generate
the Exsync. This is only relevant if the TriggerMode is set to an external trigger mode.

LineTrgPhase
Type dynamic/static read/write parameter
Default 1
Range [1, 256]

This parameter specifies the number of external input trigger signals, which are needed
to generate the first Exsync of a frame. This is only relevant if the TriggerMode is set to
Extern_Trigger_Gated_by_Img.

ExsyncPeriod
Type dynamic/static read/write parameter
Default 100 μs
Range [1.024, 4000] μs

This parameter specifies the period of the Exsync signal. Therefore, it defines the line frequency
when using the grabber controlled mode to trigger the connected camera.

ExsyncExposure
Type dynamic/static read/write parameter
Default 20 μs
Range [1.024, 2000] μs, must not exceed ExsyncPeriod

This parameter specifies the pulse width of the Exsync signal, which can be used by many cameras
to specify the exposure time. Therefore, it is possible to adjust the exposure time via software,
even while grabbing.

Exsync2Delay
Type dynamic/static read/write parameter
Default 0 μs
Range [0, 2000] μs, must not exceed ExsyncPeriod

This parameter specifies the delay of the generated Exsync signal, with respect to an external
trigger input. Therefore, the Exsync2 signal is a delayed clone of the Exsync (polarity, period, etc.
are the same as for Exsync).

ExsyncPolarity
Type dynamic/static read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter adjusts the polarity of the Exsync signal genarator to the polarity accepted by the
connected camera. Use LowActive, if the camera opens the shutter on a falling edge, otherwise use
HighActive.

ImgTriggerMode
Type dynamic/static read/write parameter
Default FreeRun
Range {FreeRun, ExternSw_Trigger, ExternSw_Gate}

This parameter selects the operation mode for the internal Image Gate.

Library Hardware Platform 1354

VisualApplets User Documentation Release 3

ImgTriggerMode
The image trigger input signal may be created by external (peripheral) devices (e.g., shaft
encoder), or by software. The source for the external image trigger input you can select via the
parameter ImgTrgInSource, see below).

The values of parameter ImgTriggerMode induce the following behaviour:

• FreeRun:

• All incoming lines transmitted by the camera are accepted.

• The Image Gate is ignored.

• Parameter YLength defines when the end of frame (EOF) is generated.

• If parameter yOffset is greater than Zero, a number of yOffset lines between two sequential
images is ommitted.

Example: yOffset = 0, YLength = 2:

Example: yOffset = 2, YLength = 2:

• ExternSw_Trigger:

• At the rising edge of an accepted image trigger input signal, a new frame is started and
incoming lines are appended to an image up to YLength.

Library Hardware Platform 1355

VisualApplets User Documentation Release 3

ImgTriggerMode
• Parameter YLength defines when the end of frame (EOF) is generated.

• A new rising edge of the image trigger is only accepted after YLength lines have been appended
and EOF is generated. A new rising edge of the image trigger is ignored if it occurs before
YLength lines have been appended to an image and EOF is generated.

Example: YLength is set to value 2:

• ExternSw_Gate:

• In gated mode, it is important how long the image trigger input signal is active, since it
functions as the Image Gate signal.

• The exact behaviour of this mode can be defined by the parameter MaxGatedHeight. (With
MaxGatedHeight you can define if the maximum image height of the images is restricted or
unrestricted. For details, see description of parameter MaxGatedHeight.)

Behaviour of mode ExternSW_Gate when parameter MaxGatedHeight is set to value
"Unrestricted"

• While the Image Gate signal is active, the incoming lines are appended to an image.

• The Image Gate controls which image lines are valid:

• While the Image Gate signal is active, the incoming lines are accepted. (See figure, e.g.,
lines n+8 and n+9.)

• While the Image Gate signal is not active, the incoming lines are ignored. (See figure, e.g.,
line n+3.)

• Each line which starts while the Image Gate signal is active is valid. (See figure: n+1, n+2,
n+4, n+5, n+6, n+8 and n+9 are valid.)

If the falling edge of the Image Gate occurs before all the data of the last line are acquired,
the line is nevertheless valid and acquired completely. (See figure: n+2 and n+6)

• There are always complete lines being transferred.

• Each line which starts while the Image Gate is down is not valid. (See figure: Line n and n
+7 are not valid, line n+4 is valid.)

Library Hardware Platform 1356

VisualApplets User Documentation Release 3

ImgTriggerMode

• End of line (EoL) and end of frame (EoF) are either generated directly before the start of a
new line, or at the falling edge of the Image Gate.

EoL directly before start of new line: If the falling edge of a line occurs within the open
Image Gate and the Image Gate covers the start of the next line, the EoL is generated
directly before the rising edge of the next line. (See figure: n+1, n+4, n+5 and n+8.)

EoL together with EoF directly before start of new line: If the falling edge of the Image Gate
occurs before the falling edge of a line, EoL and EoF are generated directly before the rising
edge of the next line. (See figure: Image m and image m+1.)

EoL together with EoF at falling edge of Image Gate: If the falling edge of a line occurs
within the open Image Gate and the falling edge of the Image Gate occurs before the rising
edge of the next line, EoL and EoF are generated directly after the falling edge of the Image
Gate. (See figure: Image m+2.)

Behaviour of Mode ExternSW_Gate when parameter MaxGatedHeight is set to value
"Restricted"
If parameter MaxGatedHeight is set to "restricted", the behaviour is the same as described
above for MaxGatedHeight with value "unrestricted", with the following exceptions:

• As long as the image gate is open, the lines are appended up to a maximal image height
ofYLength. All following lines are ommitted until the next rising edge of the Image Gate
signal.

• If a falling edge of the Image Gate signal occurs before YLength lines are appended: The
falling edge of the Image Gate signal defines the height of the image, even if the image has
not the height of YLength. (See parameter MaxGatedHeight for more information about the
image height.)

• The example below (figure) shows the behaviour at MaxGatedHeight = restricted and YLength
= 3.

ImgTrgInSource
Type dynamic/static read/write parameter
Default InSignal0

Library Hardware Platform 1357

VisualApplets User Documentation Release 3

ImgTrgInSource
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source which is used to trigger the image acquisition. This is
only relevant if the ImgTriggerMode is set to ExternSw_Trigger or ExternSw_Gate.

ImgTrgInPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity of the external input trigger signal.

ImgTrgDelay
Type dynamic read/write parameter
Default 0
Range {0, 4095}

The parameter delays the image trigger signal by the given number of image lines.

FlashEnable
Type dynamic read/write parameter
Default OFF
Range {OFF, ON}

Enables or disables the flash output. The pulse width of the flash signal is equal to one line period.

FlashPolarity
Type dynamic/static read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity for the generated Flash signal.

FlashDelay
Type dynamic/static read/write parameter
Default 0
Range {0, 4095}

This parameter specifies the number of lines to delay the generated Flash signal, with respect to an
external trigger input. Therefore, it is possible to synchronize the flash to the external trigger input.

The pulse width of the flash signal is equal to one line period.

SoftwareTrgPulse
Type dynamic/static write parameter
Default
Range {1}

Setting this parameter to 1 will generate a software trigger. This is only relevant if the TriggerMode
is set to an external trigger mode and ImgTrgInSource is set to SoftwareTrigger.

SoftwareTrgInput
Type dynamic/static write parameter
Default

Library Hardware Platform 1358

VisualApplets User Documentation Release 3

SoftwareTrgInput
Range {0, 1}

With this parameter a software gate can be produced for the image trigger mode ExternSw_Gate.

ImgTrgIsBusy
Type dynamic/static read parameter
Default 0
Range {0, 1}

The ImgTrgIsBusy parameter enables software readout of the busy state for the image trigger.
If busy then this parameter is set to 1 to reflect an ongoing image capture. If set to 0 then the
operator is not busy.

CC1output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC1 line of the CameraLink cable.

CC2output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC2 line of the CameraLink cable.

CC3output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC3 line of the CameraLink cable.

CC4output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Hdsync, HdsyncInvert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC4 line of the CameraLink cable.

ImgTrgDebouncingMaxTime
Type static write parameter
Default 65.520 us
Range [0.016, 1000000] us

This parameter specifies the maximal time for ImgTrgDebouncingTime parameter. The smaller the
maximal time the less FPGA resources are required to implement the debouncing timer.

ImgTrgDebouncingTime
Type dynamic/static write parameter
Default 0.112 us
Range [0.016, ImgTrgDebouncingMaxTime] us

This parameter specifies the debouncing time the input image trigger signal must keep the same
value to be detected as such. Fast signal changes within the debounce time will be filtered out.

Library Hardware Platform 1359

VisualApplets User Documentation Release 3

LineTrgDebouncingMaxTime
Type static write parameter
Default 65.520 us
Range [0.016, 1000000] us

This parameter specifies the maximal time for LineTrgDebouncingTime parameter. The smaller the
maximal time the less FPGA resources are required to implement the debouncing timer.

LineTrgDebouncingTime
Type dynamic/static write parameter
Default 0.112 us
Range [0.016, ImgTrgDebouncingMaxTime] us

This parameter specifies the debouncing time the input line trigger signals must keep the same
value to be detected as such. Fast signal changes within the debounce time will be filtered out.

29.50.4. Examples of Use

The use of operator TrgPortLine is shown in the following examples:

• Section 3.8, 'Allocation of Device Resources'

Learn the allocation of the device resources of the operator.

• Section 10.1.2, 'Camera Link Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 10.3.2, 'Camera Link Line Scan Cameras '

Tutorial - Basic Acquisition

• Section 12.8.4.4, 'Filter for Line Scan Cameras'

Examples - Explains how to implement a filter for line scan cameras.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

Library Hardware Platform 1360

VisualApplets User Documentation Release 3

29.51. Operator TriggerIn
Operator Library: Hardware Platform

The operator TriggerIn provides an interface to the microEnable's digital inputs. By using parameter
Pin_ID, the digital input is selected.

For the mapping of digital inputs and pin connectors check the frame grabber hardware manual.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

microEnable IV VQ4-GE/-GPoE

29.51.1. I/O Properties

Property Value
Operator Type M
Output Link O, signal output

29.51.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.51.3. Parameters

Pin_ID
Type static parameter
Default 0
Range [0, 7]

This parameter defines which digital input is used. The same inputs can be used by multiple
operators.

29.51.4. Examples of Use

The use of operator TriggerIn is shown in the following examples:

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

Library Hardware Platform 1361

VisualApplets User Documentation Release 3

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1362

VisualApplets User Documentation Release 3

29.52. Operator TriggerOut
Operator Library: Hardware Platform

The operator TriggerIn provides an interface to the microEnable's digital outputs. By using parameter
Pin_ID, the digital outputs is selected.

Each output can only be used once. Hence, the selected output has to be exclusively used by this
operator and one device resource of type TriggerOut is used. See Appendix A, 'Device Resources' for
a full list of device resources.

For the mapping of digital outputs and pin connectors check the frame grabber hardware manual.

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

microEnable IV VQ4-GE/-GPoE

29.52.1. I/O Properties

Property Value
Operator Type M
Input Link I, signal input

29.52.2. Supported Link Format

Link Parameter Input Link I
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.52.3. Parameters

Pin_ID
Type static parameter
Default 0
Range [0, 7]

This parameter defines which digital output is used.

29.52.4. Examples of Use

The use of operator TriggerOut is shown in the following examples:

Library Hardware Platform 1363

VisualApplets User Documentation Release 3

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Hardware Platform 1364

VisualApplets User Documentation Release 3

29.53. Operator TxLink

Operator Library: Hardware Platform

This operator provides a data link between the frame grabber to the pixelPlant boards Px100 and Px200
respectively from the pixelPlant boards to the frame grabbers. TxLink represents the output interface
operator. The link is capable to transport data in any image format. The format of the link is specified
automatically by the operator connected to the TxLink operator.

The parameter Channel_ID specifies the unique ID of the virtual data channel. This is necessary to
address the corresponding receiver and establish the channel communication. The channel ID occupies
one device resource of type TxLink. Check Appendix A, 'Device Resources' for a full list of device
resources.

Data transfers are controlled by flow control of VisualApplets and do not need buffering, e.g., an RxLink
input can be directly connected to a DmaFromPc operator without utilizing ImageBuffer operators.
However, if an infinite source is used like any of the camera operators, buffering is still required before
TxLink.

The data link is a virtual channel between the px100/200 boards and the mE4VD4-CL board. The
maximal number of virtual TxLink channels must not exceed 61. Also consider to use as less as possible
links to use the bandwidth and FPGA resources effectively. All virtual TxLink data channels are mapped
internally on a single physical link of 1GByte/s bandwidth.

The Channel_IDs can be in any order and can start from any index between 1 and 61. However all
indices must be unique. Note that on the receiver side on the RxLinks must have the same IDs as
the TxLinks on the sender side.

TxLinks and RxLink on the same board do not share the same physical channel and are fully
independent, i.e. RxLink and TxLink operators on the same board can have the same or different
Channel_IDs and are not related to each other in any way.

Optimized Routing of designs with PixelPlant

To optimize the routing results (during build) of designs for mE4 with PixelPlant PX100/
PX200/PX200e, we recommend to use settings for bit width and parallelism that ensure
that the product of bit width and parallelism is a multiple of 64. The optimum routing
results can be expected if the product is exactly 64.

product = n * 64

n = 1 leads to optimal routing results.

Very good routing results can also be expected if the product of bit width and parallelism
is a power of two and less or equal 64, but not 1, 2, or 4. Other configurations may
lead to timing errors.

Available for Hardware Platforms
mmicroEnable IV VD4-CL/-PoCL

pixelPlant 100

pixelPlant 200

29.53.1. I/O Properties

Property Value
Operator Type M
Input Link I, signal input

Library Hardware Platform 1365

VisualApplets User Documentation Release 3

29.53.2. Supported Link Format

Link Parameter Input Link I
Bit Width [1, 64]
Arithmetic {unsigned, signed}
Parallelism any
Kernel Columns any
Kernel Rows any
Img Protocol {VALT_SIGNAL, VALT_LINE1D, VALD_PIXEL0D}
Color Format any
Color Flavor any
Max. Img Width any
Max. Img Height any

29.53.3. Parameters

Channel_ID
Type static parameter
Default 1
Range [1, 61]

This parameter defines the unique channel ID for the data link.

29.53.4. Examples of Use

The use of operator TxLink is shown in the following examples:

• Section 4.6, 'PixelPlant Designs'

Generating PixelPlant design and establishing interconnections.

Library Hardware Platform 1366

VisualApplets User Documentation Release 3

29.54. Operator SignalToEvent
Operator Library: Hardware Platform

The operator generates software events for rising edges at its input links.

All N inputs (up to 16) can generate individual events. The event will not provide any signal link data.
Commonly, this operator is used to monitor the status of GPIOs or to signal special conditions.

For each input link, an event name must be specified. This is done
using parameter EventNameInput[n]. The event name will then be the
complete module name plus the event name e.g.
Device1_Process0_HierarchicalBoxName_SignalToEventModuleName_ValueOfParameterEventNAmeInput[n].
All events can be accessed with the Framegrabber API functions for events. Check the
Framegrabber API Manual [https://docs.baslerweb.com/frame-grabbers/framegrabber-api.html] for
more information.

The operator will automatically allocate N Event and one EventSource device resources. Check
Appendix A, 'Device Resources' for more information.

Available for Hardware Platforms
microEnable IV VD4-CL/-PoCL

microEnable IV VQ4-GE/-GPoE

29.54.1. I/O Properties

Property Value
Operator Type M
Input Link I0..In, signal input

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

29.54.2. Supported Link Format

Link Parameter Input Link I0..In
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

29.54.3. Parameters

EventsWithTimestamp
Type static/dynamic read/write parameter

https://docs.baslerweb.com/frame-grabbers/framegrabber-api.html
https://docs.baslerweb.com/frame-grabbers/framegrabber-api.html

Library Hardware Platform 1367

VisualApplets User Documentation Release 3

EventsWithTimestamp
Default ON
Range {ON, OFF}

Defines if high-precision timestamps are attached to each event. ON = timestamps are generated.
OFF = no timestamps are generated.

EventNameInput[n]
Type static write parameter
Default EventNameInput[n]
Range

Every event input must be assigned a unique identifier name. This event name is used to identify
and use a particular hardware event signal in the Framegrabber SDK.

Library Prototype 1368

VisualApplets User Documentation Release 3

30. Library Prototype

Disclaimer: The Prototype library is absolutely preliminary and subject to extensive changes, even
removal. The functionality of the operators cannot be guaranteed. Therefore, the operators must not
be used for productive designs. It is included for testing purposes only.

The following list summarizes all Operators of Library Prototype

Operator Name Short Description available
since

COUNTER Hardware Multiplier. Version 1.1

CustomSignalOperator Hardware Multiplier. Version 1.1

HWMULT Hardware Multiplier. Version 1.1

PackbitsRLE Simple image compression through run-length
encoding (RLE). Version 1.1

TrgBoxLine
Generates the trigger (Exsync signal) for the
Camera and is also responsible to assemble the
acquired lines to images.

Version 1.2

RGB2XYZ Converts the color space from RGB to XYZ. Version 1.1

XYZ2LAB Converts the color space from XYZ to LAB. Version 1.1

Table 30.1. Operators of Library Prototype

Library Prototype 1369

VisualApplets User Documentation Release 3

30.1. Operator COUNTER
Operator Library: Prototype

Warning

Disclaimer: This module is part of the prototype library. It is absolutely preliminary and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

See the following code to understand how the operator works:

if (Clr == 1) {
 O = 0;
 } else if (Add == 1) {
 O += I;
 }
 return O;

30.1.1. I/O Properties

Property Value
Operator Type O
Input Links I1, data input

Add, conditon for the addition
Clr, conditon to clear

Output Link O, data output

30.1.2. Supported Link Format

Link Parameter Input Link I1 Input Link Add
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D as I
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Clr Output Link O
Bit Width 1 [1, 64]
Arithmetic as I as I
Parallelism as I as I
Kernel Columns 1 any
Kernel Rows 1 any
Img Protocol as I as I
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE

Library Prototype 1370

VisualApplets User Documentation Release 3

Link Parameter Input Link Clr Output Link O
Max. Img Width any any
Max. Img Height any any

30.1.3. Parameters

ClearEol
Type static/dynamic write parameter
Default 0, dynamic
Range [0, 1]

This parameter an additional condition for clearing (setting to zero) the counter. If this parameter is
1, the counter is cleared at each end of line.

ClearEof
Type static/dynamic write parameter
Default 0, dynamic
Range [0, 1]

This parameter an additional condition for clearing (setting to zero) the counter. If this parameter is
1, the counter is cleared at each end of frame.

Library Prototype 1371

VisualApplets User Documentation Release 3

30.2. Operator CustomSignalOperator
Operator Library: Prototype

Warning

Disclaimer: This module is part of the prototype library. It is absolutely preliminary and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

The operator imports a custom netlist in the Electronic Design Interchange Format (EDIF) which
processes on signal data. To configure behaviour of the custom operator a configuration interface with
write and read access is included. For proper work in Visual Applets a latency by the use of Latency
parameter must be specified. The minimal value for latency is 2 because inputs and outputs of the
operator are registered. Each pipeline stage in the custom operator from the input to the output
increases operator latency. Also it is inevitable that the netlist defines the following I/O ports.

I/0 Signal Width Description
ClkI 1 62.5 MHz on mE4 platforms,

125 MHz on mE5 platforms

EnableI, ResetI 1 Used for correct behaviour in
Visual Applets

DataI N Input array of signal data with N
1-bit input links

DataO 1 Output of processed signal data

ConfigAddressI 8 address asserted by parameter
WriteAddress and ReadAddress
to access internal configuration
space

ConfigWriteDataI 32 data for configuration space

ConfigWriteStrobeI 1 asserted for one ClkI cycle after
parameter WriteAddress was
accessed

ConfigReadDataO 32 data from configuration space

ConfigReadStrobeI 1 asserted for one ClkI cycle after
parameter ReadAddress was
accessed

30.2.1. I/O Properties

Property Value
Operator Type O
Input Link I[n], signal data input, N is in range from 1 to 64
Output Link O, signal data output

30.2.2. Supported Link Format

Link Parameter Input Link I[n] Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I

Library Prototype 1372

VisualApplets User Documentation Release 3

Link Parameter Input Link I[n] Output Link O
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

30.2.3. Parameters

EdifFileName
Type static write parameter
Default netlist.edn
Range

This parameter specifies the name of the netlist for this operator. Netlist file needs to be in {Visual
Applets installation dir}/cores/Spartan3 path

Latency
Type static write parameter
Default 2
Range [2, 255]

This parameter specifies the latency of signals from input to ouput. All signals should have exact
this latency. Because inputs and outputs of the operator are registered the default latency is 2.

ConfigWriteData
Type dynamic write parameter
Default 0
Range [0, 2^32-1]

Applies value to ConfigWriteDataI.

ConfigReadData
Type dynamic write parameter
Default 0
Range [0, 2^32-1]

Data at ConfigReadDataO.

ConfigWriteAddress
Type dynamic write parameter
Default 0
Range [0, 2^8-1]

Applies value to ConfigAddressI and asserts ConfigWriteStrobeI for one ClkI cycle.

ConfigReadAddress
Type dynamic write parameter
Default 0
Range [0, 2^8-1]

Applies value to ConfigAddressI and asserts ConfigWriteStrobeI for one ClkI cycle.

Library Prototype 1373

VisualApplets User Documentation Release 3

30.3. Operator HWMULT

Operator Library: Prototype

Warning

Disclaimer: This module is part of the prototype library. It is absolutely preliminary and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

The module HWMULT multiplies the input link I1 by the input link I2 and the result I1*I2 is available
at the output link. It provides identical functionality to the operator Mult. The operator uses dedicated
multiplier elements in the FPGA if thoses resources are available.

30.3.1. I/O Properties

Property Value
Operator Type O
Input Links I1, data input

I2, data input
Output Link O, data output of I1*I2

30.3.2. Supported Link Format

Link Parameter Input Link I1 Input Link I2 Output Link O
Bit Width [1, 16] [1, 16] auto
Arithmetic {unsigned, signed} as I1 as I1
Parallelism any as I1 as I1
Kernel Columns any as I1 as I1
Kernel Rows any as I1 as I1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I1 as I1

Color Format VAF_GRAY as I1 as I1
Color Flavor FL_NONE as I1 as I1
Max. Img Width any as I1 as I1
Max. Img Height any as I1 as I1

30.3.3. Parameters

None

30.3.4. Examples of Use

The use of operator HWMULT is shown in the following examples:

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - From equation to implementation. Explanation on how to implement the overlay blend.

• Section 12.1.7, 'Laser Triangulation'

Library Prototype 1374

VisualApplets User Documentation Release 3

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.5, '1D Shading Correction Using Block RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in block
RAM memory.

• Section 12.14.6, '1D Shading Correction Using Frame Grabber RAM'

Examples - The example shows an 1D shading correction. The correction values are stored in Frame
Grabber RAM.

Library Prototype 1375

VisualApplets User Documentation Release 3

30.4. Operator PackbitsRLE

Operator Library: Prototype

Disclaimer

Library: Prototype

This module is part of the Prototype library. It is in absolutely preliminary state and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

The operator PackbitsRLE performs a run-length encoding compression (RLE) of the image stream at
input link I, using the packbits algorithm. Packbits was first introduced by Apple and is one of the RLE
compression algorithms that can be used for lossless compression of TIFF-files.

The Packbits Algorithm

A raster image file consists of a header (containing information such as image dimension, color depth,
etc.) and data that describe the color of each pixel. The data are written sequentially, i.e., the pixel
color information has to be interpreted as pixel rows from left to right, top to bottom.

In uncompressed mode, color information for n adjacent pixels of the same color is written n times.
This causes redundancy.

Example:

The figure represents a 4-pixel by 4-pixel, black-and-white image. In uncompressed format, the
pixels are represented as follows (B=Black, W=White): BBWWWBBBBBBWWWWW This redundancy is
reduced by the packbits compression.

The packbits data stream consists of packets with a one-byte header followed by data. The header
is a signed byte.

The data describe each pixel with one byte. If the header contains a value n {-127 to -1}, the byte
following the header is repeated -n+1 times in the decompressed output. Thus, redundant information
(identical pixel color) is stored once together with a counter (header). For example, BBBBBB would be
stored as -6B. For the first pixel of another color, a new header is generated.

If the header contains a value n {0 to 127}, n+1 bytes following the header are left uncompressed
(copied literally).

The longest pixel series that can be compressed consists of 128 bytes.

After compression with packbits, the example image above (BBWWWBBBBBBWWWWW) becomes
-2B-3W-6B-5W, i.e. can be represented by 8 symbols (bytes) instead of 16.

Library Prototype 1376

VisualApplets User Documentation Release 3

Effectiveness

Packbits is used for gray scale, palette, and bitonal images. The greater the number of
consecutive pixels of identical color, the more effectively the operator can compress the
data. Best compression results are achieved for bitonal (e.g., black-and-white) images.

The advantage of the (pretty simple) packbits algorithm lies in its speed and its extremely
little need of memory (256 bytes) and processing power.

30.4.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

30.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [4, 12] as I
Arithmetic {unsigned, signed} as I
Parallelism 1 as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol VALT_IMAGE2D as I
Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The output image width must not exceed 2^31 - 1.

30.4.3. Parameters

None

30.4.4. Examples of Use

The use of operator PackbitsRLE is shown in the following examples:

• Section 12.1.9, 'Packbits Run Length Encoder'

Examples - A packbits run length encoding example

Library Prototype 1377

VisualApplets User Documentation Release 3

30.5. Operator TrgBoxLine
Operator Library: Prototype

This operator generates the trigger (Exsync signal) for the Camera. It is also responsible for assembling
the acquired lines to images.

Parameterization of Time Values

This operator is optimized for use with microEnable 5 products (mE5 VD8-PoCL, mE5
VQ8-CXP6B, mE5 VQ8-CXP6D, LightBridge 2 VCL, marathon VCL, marathon VCLx). If
you want to use this operator with microEnable IV frame grabbers, you have to double
all parameter values that are messured in time units (e.g., µs).

In a design, this operator is placed directly after the camera operator, since it communicates with the
camera and triggers the actual image data acquisition. On the other hand, it receives image data from
the camera (on data input link I) and forwards these image data (with lines already assembled to
images) on data output link O to the next operator(s).

You can either use an internally produced signal (mode GrabberControlled), or external signals to
activate the operator's trigger signal generator. The external signals the operator can receive come
either from software (software trigger), or from peripheral devices (via slot bracket trigger port or
trigger expansion board (TTL or OPTO trigger board)). The operator's trigger signal generator can
produce

• Exsync signals

• Exsync signals with a flexible delay, pulse width and polarity

• a Flash signal

The Flash is triggered by an external trigger input (like,e.g., the Image Gate). However, the Flash has
its own delay (in line ticks). The Flash signal lasts for one line tick and might be most useful when
synchonizing additional frame grabbers or LightBridge devices.

The operator offers 8 trigger input and 7 trigger output ports. The input ports you can connect to
the signal sources you want to use (e.g., software trigger, peripheral devices like shaft encoder via
individual trigger board pins, other frame grabber boards via flatband cable, etc.). The output ports
you can connect to the signal receivers that need to be triggered (e.g., Exsync and Exsync2 for the
camera(s) on the (master) frame grabber, Flash for synchronizing further frame grabbers, etc.)

The CC signals can be used for Exsync, Exsync2 and Flash signals (also inverted), or for Vcc/Gnd. If you
don't need to use all CC signals, you can connect the unnecessary CC ports to a trash operator instance.

Library Prototype 1378

VisualApplets User Documentation Release 3

Some of the dynamic parameters of this operator cannot be re-set during image acquisition. As soon as
image acquisition is put to a halt, the parameters are accessible again. In microDisplay, the according
input fields are disabled. When working with the Framegrabber API, you need to know which parameters
are concerned.

The values for the following parameters cannot be re-set during image acquisition:

• ImgTriggerMode

• MaxGatedHeight

• LineTriggerMode

• YOffset

• YLength

Available for Hardware Platforms
microEnable IV VD1-CL/-PoCL

microEnable IV VD4-CL/-PoCL

microEnable IV VQ4-GE/GPoE

microEnable 5 VD8-PoCL

microEnable 5 VQ8-CXP6(B)

microEnable 5 VQ8-CXP6D

LightBridge VCL

30.5.1. I/O Properties

Property Value
Operator Type M
Input Links I, data input

Trigger Input Links (0-7), trigger input
Output Links O, data output

Trigger Output Links (0-6), trigger output

30.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_LINE1D VALT_IMAGE2D
Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height 65536 as I

Link Parameter Input Link Trigger Input
Links (0-7)

Output Link Trigger Output
Links (0-6)

Bit Width [1] [1]

Library Prototype 1379

VisualApplets User Documentation Release 3

Link Parameter Input Link Trigger Input
Links (0-7)

Output Link Trigger Output
Links (0-6)

Arithmetic {unsigned} {unsigned}
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

30.5.3. Parameters

YOffset
Type dynamic/static read/write parameter
Default 0
Range [0, 224]

This parameter defines the number of lines omitted at the beginning of a frame.

YLength
Type dynamic/static read/write parameter
Default 1024
Range [8, 224]

This parameter defines the number of lines of a frame if parameter ImgTriggerMode is set to
ExternSw_Gate and parameter MaxGatedHeight is set to restricted.

MaxGatedHeight
Type dynamid read/write parameter
Default restricted
Range {restricted, unrestricted}

The parameter MaxGatedHeight allows you to limit the maximum image height if parameter
ImgTriggerMode is set to ExternSw_Gate.

If parameter ImgTriggerMode is set to ExternSw_Gate, and parameter MaxGatedHeight is set to
unrestricted, the image height is defined by the time the gate is open, i.e., by the pulse width of
the external image trigger signal or the duration of the software trigger being value 1.

>If the gate is open for a long time, the image height gets large. If parameter MaxGatedHeight is
set to restricted, the image height is limited to YLength image lines (as specified with parameter
YLength) even if the gate is still open. The operator will discard any further lines and wait for the
next open gate to start a new frame.

In contrast, if the parameter is set to unrestricted, the image height is only defined by the gate.

Violation of Link Property Possible

Using this parameter in unrestricted mode can cause a violation of the VisualApplets
link protocol. The image height could exceed the maximum allowed image height
defined in the output link of the operator. Be careful when using the unrestricted
mode. See Section 3.7.2, 'Link Properties' for more information on link properties.

Library Prototype 1380

VisualApplets User Documentation Release 3

MaxGatedHeight
A successive SplitImage operator can divide large images into chunks (smaller
images).

LineTriggerMode
Type dynamic/static read/write parameter
Default GrabberControlled
Range {GrabberControlled, Extern_Trigger, GrabberControlled_Gated_by_Img,

Extern_Trigger_Gated_by_Img}

This parameter selects the operation mode for the internal Exsync signal generator. The
source for the external trigger input can by selected via the parameters LineTrgInSourceA and
LineTrgInSourceB (see below).

GrabberControlled: Exsync is generated periodically by the internal signal generator.

Extern_Trigger: An external trigger signal (software trigger or trigger signal from peripheral device)
is used to start the signal generator once.

GrabberControlled_Gated_by_Img: Exsync is generated periodically by the internal signal generator
during the acquisition of a frame.

Extern_Trigger_Gated_by_Img: An external trigger signal (software trigger or trigger signal from
peripheral device) is used to trigger the signal generator during the acquisition of a frame.

ExsyncEnable
Type dynamic read/write parameter
Default OFF
Range {OFF, ON}

Enables or disables the Exsync output to the camera.

LineTrgInSourceA
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source which is used to trigger the Exsync signal generator. This
is only relevant if the TriggerMode is set to Extern_Trigger.

LineTrgInSourceB
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6,

InSignal7}

This parameter specifies the signal source which is used to trigger the Exsync signal generator.
This is only relevant if the TriggerMode is set to Extern_Trigger and EncoderABMode is set to
Signal_AB_Filter.

EncoderABMode
Type dynamic/static read/write parameter
Default Signal_A_Only
Range {Signal_A_Only, Signal_AB_Filter, Signal_ABx2_Filter, Signal_ABx4_Filter}

This parameter specifies whether a single trigger input (A only) is used for the Exsync generation,
or the signals A and B.

Library Prototype 1381

VisualApplets User Documentation Release 3

EncoderABMode

Signal A/B support enables to determine the revolving direction of the shaft encoder and to
suppress and compensate backward movements:

Signal_A_Only: The trigger input selected by LineTrgInSourceA is used for Exsync generation.

Signal_AB_Filter: Exsync is generated for a forward rotation of the shaft encoder in single
resolution, i.e., a trigger pulse for a rising edge of LineTrgInSourceA.

Signal_ABx2_Filter: Exsync is generated for a forward rotation of the shaft encoder in double
resolution, i.e., a trigger pulse for a rising edge of LineTrgInSourceA and a falling edge of
LineTrgInSourceA. Both edges of LineTrgInSourceA are used.

Signal_ABx4_Filter: Exsync is generated for a forward rotation of the shaft encoder in quad
resolution, i.e., a trigger pulse for a rising and a falling edge of LineTrgInSourceA and a rising and a
falling edge of LineTrgInSourceB.

Related Parameters when AB support enabled:

• EncoderABLead (possibility to switch the definition of forward)

• EncoderCompensation (possibility to set backward movement compensation to on or off)

• EncoderCompensationCount (possibility to define an offset of encoder steps, i.e., to suppress the
trigger signal output of the operator for a defined number of encoder steps)

You can reset the shaft encoder and parameter EncoderCompensationCount by setting parameter
EncoderABMode to value Signal_A_Only.

EncoderABLead
Type dynamic/static read/write parameter
Default Signal_AB
Range {Signal_AB, Signal_BA}

Library Prototype 1382

VisualApplets User Documentation Release 3

EncoderABLead
A foreward movement is defined by a rising edge of signal A before signal B if the parameter is set
to Signal_AB, or vice versa:

Signal_AB: Forward is defined by A before B

Signal_BA: Forward is defined by B before A

EncoderCompensation
Type dynamic/static write parameter
Default ON
Range {ON/OFF}

With parameter EncoderCompensation you can switch the compensation of the shaft encoder
backward movement to ON or OFF.

This parameter is only relevant if parameter EncoderABMode is set to A/B support.

ON

If switched to ON, in case of shaft encoder backward movement the operator counts how many
shaft encoder steps the shaft encoder moves backwards. When the shaft encoder moves forwards
again, this number of shaft encoder steps (now forward direction) is not transmitted as external
trigger signals. Only after the transportation belt is back to the place where the backward
movement started, the shaft encoder steps (forward direction) are transmitted as external trigger
signals again.

Parameter EncoderCompensation = ON:

OFF

If switched to OFF, the operator simply doesn't transmit any trigger signals as long as the
transportation belt moves backwards. As soon as the transport belt starts to move forwards again,
the operator transmits the shaft encoder steps (forward direction) as trigger signals.

Parameter EncoderCompensation = OFF:

Library Prototype 1383

VisualApplets User Documentation Release 3

EncoderCompensation

By setting parameter EncoderCompensation to OFF, you reset parameter
EncoderCompensationCount to value 0.

EncoderCompensationCountBits
Type static write parameter
Default 20 bit
Range {8 bit ... 31 bit}

This parameter allows to define the value range of parameter EncoderCompensationCount.

EncoderCompensationCount
Type dynamic read/write parameter
Default 220 -1
Range {0 ... 2EncoderCompensationCountBits -1} (unit: shaft encoder steps)

This parameter is only relevant if parameter EncoderCompensation is set to ON and parameter
EncoderABMode is set to A/B support.

This parameter allows to define an offset for the forward movement of the transportation belt. This
is especially helpful if the transportation belt stopps and/or moves backwards.

A specific value range for parameter EncoderCompensationCount you can define with parameter
EncoderCompensationCountBits.

You can reset the shaft encoder and parameter EncoderCompensationCount by setting the
parameter EncoderABMode to value Signal_A_Only.

Alternativlely, you can reset parameter EncoderCompensationCount to value 0 by setting parameter
EncoderCompensation to OFF.

Basic Conditions

If parameter EncoderCompensation is set to ON, an internal counter counts the shaft encoder steps
the transportation belt moves backwards, to be able to compensate the exact number of shaft
encoder steps when the transportation belt starts moving forwards again:

Library Prototype 1384

VisualApplets User Documentation Release 3

EncoderCompensationCount

The internal counter counts forwards as long as the transportation belt moves backwards. (In the
figure above, from 0 to 8.)

The internal counter counts backwards while the transportation belt moves forwards. (In the the
figure above, from 8 to 0.)

When the internal counter holds the value 0, the shaft encoder steps are transmitted as trigger
signals.

The value the internal counter holds at a given moment is the value of parameter
EncoderCompensationCount. Only if this value is 0, encoder steps are transmitted as trigger
signals. If the value of parameter EncoderCompensationCount is ≠0, the shaft encoder steps are
not transmitted as trigger signals and the value keeps changing with every encoder step until it
reaches the value 0 again.

Reading the Parameter

Parameter EncoderCompensationCount is a read/write parameter. Therefore, at any given moment,
you can always read out the value the counter holds at a given moment.

Defining an Offset

On the other hand, you can always modify the parameter value since you have write access during
acquisition. If you need to define an offset to the standard encoder compensation, you can use this
parameter to enter the number of steps you need the offset to be.

As soon as you enter a value for EncoderCompensationCount, this value overwrites the value the
parameter holds before.

Let's look at some examples for overwriting the current value of EncoderCompensationCount:

Example 1: The transportation belt is moving forward, the shaft encoder steps are transmitted
as trigger signals, and the value of EncoderCompensationCount is 0. Then, the value 0 of
EncoderCompensationCount is overwritten by value 4. Result: 4 shaft encoder steps are not
transmitted as trigger signals.

Library Prototype 1385

VisualApplets User Documentation Release 3

EncoderCompensationCount

Example 2: The transportation belt is moving backward, the (backward) shaft encoder steps are
supressed, and the value of EncoderCompensationCount is ≠0. Then, during backward movement
of the transportation belt, the value 5 of EncoderCompensationCount is overwritten by value 7.
Result: Offset of 2 shaft encoder steps.

Example 3: The transportation belt is moving forward during compensation, the (forward)
shaft encoder steps are supressed, and the value of EncoderCompensationCount is ≠0.
Then, during compensative forward movement of the transportation belt, the value 4 of
EncoderCompensationCount is overwritten with value 9. Result: Offset of 5 shaft encoder steps.

Library Prototype 1386

VisualApplets User Documentation Release 3

EncoderCompensationCount

Example 4: The transportation belt is moving forward during compensation, the (forward)
shaft encoder steps are supressed, and the value of EncoderCompensationCount is ≠0.
Then, during compensative forward movement of the transportation belt, the value 4 of
EncoderCompensationCount is overwritten with a smaller value, in our case with value 3. Result:
Negative offset of -1 shaft encoder step.

LineTrgInPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity of the external input trigger signal LineTrgInSourceA and
LineTrgInSourceB. When set to LowActive, the Exsync generator starts on a falling edge of the

Library Prototype 1387

VisualApplets User Documentation Release 3

LineTrgInPolarity
signal specified by the parameter ImgTrgInSource. Otherwise, the Exsync generation starts on a
rising edge. This is only relevant if the TriggerMode is set to Extern_Trigger.

LineTrgDownscaler
Type dynamic/static read/write parameter
Default 1
Range [1, 256]

This parameter specifies the number of external input trigger signals, which are needed to generate
the Exsync. This is only relevant if the TriggerMode is set to an external trigger mode.

LineTrgPhase
Type dynamic/static read/write parameter
Default 1
Range [1, 256]

This parameter specifies the number of external input trigger signals, which are needed
to generate the first Exsync of a frame. This is only relevant if the TriggerMode is set to
Extern_Trigger_Gated_by_Img.

ExsyncPeriod
Type dynamic/static read/write parameter
Default 100 μs
Range [1.024, 2097.14]

This parameter specifies the period of the Exsync signal. Therefore, it defines the line frequency
when using the grabber controlled mode to trigger the connected camera.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

ExsyncExposure
Type dynamic/static read/write parameter
Default 20 μs
Range [1.024, 2000] μs, must not exceed ExsyncPeriod

This parameter specifies the pulse width of the Exsync signal, which can be used by many cameras
to specify the exposure time. Therefore, it is possible to adjust the exposure time via software,
even while grabbing.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

Exsync2Delay
Type dynamic/static read/write parameter
Default 0 μs
Range [0, ExsyncPeriod] μs, must not exceed ExsyncPeriod

Library Prototype 1388

VisualApplets User Documentation Release 3

Exsync2Delay
This parameter specifies the delay of the generated Exsync signal, with respect to an external
trigger input. Therefore, the Exsync2 signal is a delayed clone of the Exsync (polarity, period, etc.
are the same as for Exsync).

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

ExsyncPolarity
Type dynamic/static read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter adjusts the polarity of the Exsync signal genarator to the polarity accepted by the
connected camera. Use LowActive, if the camera opens the shutter on a falling edge, otherwise use
HighActive.

ImgTriggerMode
Type dynamic/static read/write parameter
Default FreeRun
Range {FreeRun, ExternSw_Trigger, ExternSw_Gate}

This parameter selects the operation mode for the internal Image Gate.

The image trigger input signal may be created by external (peripheral) devices (e.g., shaft
encoder), or by software. The source for the external image trigger input you can select via the
parameter ImgTrgInSource, see below).

The values of parameter ImgTriggerMode induce the following behaviour:

• FreeRun:

• All incoming lines transmitted by the camera are accepted.

• The Image Gate is ignored.

• Parameter YLength defines when the end of frame (EOF) is generated.

• If parameter yOffset is greater than Zero, a number of yOffset lines between two sequential
images is ommitted.

Example: yOffset = 0, YLength = 2:

Library Prototype 1389

VisualApplets User Documentation Release 3

ImgTriggerMode

Example: yOffset = 2, YLength = 2:

• ExternSw_Trigger:

• At the rising edge of an accepted image trigger input signal, a new frame is started and
incoming lines are appended to an image up to YLength.

• Parameter YLength defines when the end of frame (EOF) is generated.

• A new rising edge of the image trigger is only accepted after YLength lines have been appended
and EOF is generated. A new rising edge of the image trigger is ignored if it occurs before
YLength lines have been appended to an image and EOF is generated.

Example: YLength is set to value 2:

Library Prototype 1390

VisualApplets User Documentation Release 3

ImgTriggerMode

• ExternSw_Gate:

• In gated mode, it is important how long the image trigger input signal is active, since it
functions as the Image Gate signal.

• The exact behaviour of this mode can be defined by the parameter MaxGatedHeight. (With
MaxGatedHeight you can define if the maximum image height of the images is restricted or
unrestricted. For details, see description of parameter MaxGatedHeight.)

Behaviour of mode ExternSW_Gate when parameter MaxGatedHeight is set to value
"Unrestricted"

• While the Image Gate signal is active, the incoming lines are appended to an image.

• The Image Gate controls which image lines are valid:

• While the Image Gate signal is active, the incoming lines are accepted. (See figure, e.g.,
lines n+8 and n+9.)

• While the Image Gate signal is not active, the incoming lines are ignored. (See figure, e.g.,
line n+3.)

• Each line which starts while the Image Gate signal is active is valid. (See figure: n+1, n+2,
n+4, n+5, n+6, n+8 and n+9 are valid.)

If the falling edge of the Image Gate occurs before all the data of the last line are acquired,
the line is nevertheless valid and acquired completely. (See figure: n+2 and n+6)

• There are always complete lines being transferred.

• Each line which starts while the Image Gate is down is not valid. (See figure: Line n and n
+7 are not valid, line n+4 is valid.)

• End of line (EoL) and end of frame (EoF) are either generated directly before the start of a
new line, or at the falling edge of the Image Gate.

Library Prototype 1391

VisualApplets User Documentation Release 3

ImgTriggerMode
EoL directly before start of new line: If the falling edge of a line occurs within the open
Image Gate and the Image Gate covers the start of the next line, the EoL is generated
directly before the rising edge of the next line. (See figure: n+1, n+4, n+5 and n+8.)

EoL together with EoF directly before start of new line: If the falling edge of the Image Gate
occurs before the falling edge of a line, EoL and EoF are generated directly before the rising
edge of the next line. (See figure: Image m and image m+1.)

EoL together with EoF at falling edge of Image Gate: If the falling edge of a line occurs
within the open Image Gate and the falling edge of the Image Gate occurs before the rising
edge of the next line, EoL and EoF are generated directly after the falling edge of the Image
Gate. (See figure: Image m+2.)

Behaviour of Mode ExternSW_Gate when parameter MaxGatedHeight is set to value
"Restricted"
If parameter MaxGatedHeight is set to "restricted", the behaviour is the same as described
above for MaxGatedHeight with value "unrestricted", with the following exceptions:

• As long as the image gate is open, the lines are appended up to a maximal image height
ofYLength. All following lines are ommitted until the next rising edge of the Image Gate
signal.

• If a falling edge of the Image Gate signal occurs before YLength lines are appended: The
falling edge of the Image Gate signal defines the height of the image, even if the image has
not the height of YLength. (See parameter MaxGatedHeight for more information about the
image height.)

• The example below (figure) shows the behaviour at MaxGatedHeight = restricted and YLength
= 3.

ImgTrgInSource
Type dynamic/static read/write parameter
Default InSignal0
Range {InSignal0, InSignal1, InSignal2, InSignal3, InSignal4, InSignal5, InSignal6, InSignal7,

SoftwareTrigger}

This parameter specifies the signal source which is used to trigger the image acquisition. This is
only relevant if the ImgTriggerMode is set to ExternSw_Trigger or ExternSw_Gate.

ImgTrgInPolarity
Type dynamic read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity of the external input trigger signal.

Library Prototype 1392

VisualApplets User Documentation Release 3

ImgTrgDelay
Type dynamic read/write parameter
Default 0
Range {0, 65535}

The parameter delays the image trigger signal by the given number of image lines.

FlashEnable
Type dynamic read/write parameter
Default OFF
Range {OFF, ON}

Enables or disables the flash output. The pulse width of the flash signal is equal to one line period.

FlashPolarity
Type dynamic/static read/write parameter
Default LowActive
Range {LowActive, HighActive}

The parameter defines the polarity for the generated Flash signal.

FlashDelay
Type dynamic/static read/write parameter
Default 0
Range {0, 4095}

This parameter specifies the number of lines to delay the generated Flash signal, with respect to an
external trigger input. Therefore, it is possible to synchronize the flash to the external trigger input.

The pulse width of the flash signal is equal to one line period.

SoftwareTrgPulse
Type dynamic/static write parameter
Default
Range {1}

Setting this parameter to 1 will generate a software trigger. This is only relevant if the TriggerMode
is set to an external trigger mode and ImgTrgInSource is set to SoftwareTrigger.

SoftwareTrgInput
Type dynamic/static write parameter
Default
Range {0, 1}

With this parameter a software gate can be produced for the image trigger mode ExternSw_Gate.

ImgTrgIsBusy
Type dynamic/static read parameter
Default 0
Range {0, 1}

The ImgTrgIsBusy parameter enables software readout of the busy state for the image trigger.
If busy then this parameter is set to 1 to reflect an ongoing image capture. If set to 0 then the
operator is not busy.

CC1output
Type dynamic/static write parameter

Library Prototype 1393

VisualApplets User Documentation Release 3

CC1output
Default Exsync
Range {Exsync, ExsyncInvert, Exsync2, Exsync2Invert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC1 line of the CameraLink cable.

CC2output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Exsync2, Exsync2Invert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC2 line of the CameraLink cable.

CC3output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Exsync2, Exsync2Invert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC3 line of the CameraLink cable.

CC4output
Type dynamic/static write parameter
Default Exsync
Range {Exsync, ExsyncInvert, Exsync2, Exsync2Invert, Flash, FlashInvert, Gnd, Vcc}

This parameter specifies the signal available at the CC4 line of the CameraLink cable.

ImgTrgDebouncingMaxTime
Type static write parameter
Default 65.520 us
Range [0.016, 1000000] us

This parameter specifies the maximal time for ImgTrgDebouncingTime parameter. The smaller the
maximal time the less FPGA resources are required to implement the debouncing timer.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

ImgTrgDebouncingTime
Type dynamic/static write parameter
Default 0.112 us
Range [0.016, ImgTrgDebouncingMaxTime] us

This parameter specifies the debouncing time the input image trigger signal must keep the same
value to be detected as such. Fast signal changes within the debounce time will be filtered out.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

Library Prototype 1394

VisualApplets User Documentation Release 3

LineTrgDebouncingMaxTime
Type static write parameter
Default 65.520 us
Range [0.016, 1000000] us

This parameter specifies the maximal time for LineTrgDebouncingTime parameter. The smaller the
maximal time the less FPGA resources are required to implement the debouncing timer.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

LineTrgDebouncingTime
Type dynamic/static write parameter
Default 0.112 us
Range [0.016, ImgTrgDebouncingMaxTime] us

This parameter specifies the debouncing time the input line trigger signals must keep the same
value to be detected as such. Fast signal changes within the debounce time will be filtered out.

Parameterization of Time Values

Operator TrgBoxLine is optimized for use with microEnable 5 products. If you work
with microEnable IV frame grabbers, you have to double all parameter values that are
messured in time units (e.g., µs).

30.5.4. Examples of Use

The use of operator TrgBoxLine is shown in the following examples:

• Section 12.15.8.2, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable4 IV VD4-CL/PoCL platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.9.2, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Operator TrgBoxLine'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design. For
parameters of "TrgBoxLine" on microEnable IV VQ4-GE/-GPoE platform please read corresponding
operator documentation under Section 30.5, 'TrgBoxLine'.

• Section 12.15.10.2, ' Line Scan Trigger for microEnable 5 marathon/LightBridge VCL with TrgBoxLine
Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.11.2, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.12.2, 'Line Scan Trigger for microEnable 5 marathon VCX QP with TrgBoxLine Operator
Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.13.2, 'Line Scan Trigger for imaFlex CXP-12 Quad with TrgBoxLine Operator Usage'

Library Prototype 1395

VisualApplets User Documentation Release 3

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

• Section 12.15.14.2, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 with TrgBoxLine Operator Usage'

A VisualApplets design example showing the usage of operator TrgBoxLine in a simple design.

Library Prototype 1396

VisualApplets User Documentation Release 3

30.6. Operator RGB2XYZ
Operator Library: Prototype

Warning

Disclaimer: This module is part of the prototype library. It is absolutely preliminary and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

The module RGB2XYZ converts the color space from an anticipated sRGB, white point D65 to CIE XYZ.
The coefficients are parametrizable to allow customized transformations. Since the XYZ values range
[0, 100] the output bit width is 7-bit, however if more bits are selected at the output link the values
are scaled by 2^(n-7) to make a higher precision available.

The transformation matrix is defined by the parameters TransMatrixX1 to TransMatrixZ3. These
parameters are a 3x3 matrix containing double precision coefficients. The following formula represents
the transformation algorithm.

Ã
X
Y
Z

!
=

Ã
TransMatrixX1 TransMatrixX2 TransMatrixX3
TransMatrixY1 TransMatrixY2 TransMatrixY3
TransMatrixZ1 TransMatrixZ2 TransMatrixZ3

!
£

Ã
R
G
B

!

30.6.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data output

30.6.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 24 [21, 63]
Arithmetic unsigned as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_RGB FL_XYZ
Max. Img Width any as I
Max. Img Height any as I

30.6.3. Parameters

TransMatrixX1
Type static read/write parameter
Default 0.4124
Range [0, 1]

Library Prototype 1397

VisualApplets User Documentation Release 3

TransMatrixX1
Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixX2
Type static read/write parameter
Default 0.3576
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixX3
Type static read/write parameter
Default 0.1805
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixY1
Type static read/write parameter
Default 0.2126
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixY2
Type static read/write parameter
Default 0.7152
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixY3
Type static read/write parameter
Default 0.0722
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixZ1
Type static read/write parameter
Default 0.0193
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixZ2
Type static read/write parameter
Default 0.1192
Range [0, 1]

Library Prototype 1398

VisualApplets User Documentation Release 3

TransMatrixZ2
Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

TransMatrixZ3
Type static read/write parameter
Default 0.9505
Range [0, 1]

Defines one coefficient of the transformation matrix RGB to XYZ. The value of this coefficient is a
double value.

Library Prototype 1399

VisualApplets User Documentation Release 3

30.7. Operator XYZ2LAB
Operator Library: Prototype

Warning

Disclaimer: This module is part of the prototype library. It is absolutely preliminary and
subject to extensive changes, even removal. Therefore, this module must not be used
for productive designs. It is included for testing purposes only.

The module RGB2XYZ converts the color space from an anticipated CIE XYZ to L*A*B*. The coefficients
are parametrizable to allow customized transformations.

30.7.1. I/O Properties

Property Value
Operator Type O
Input Link I, image data input
Output Link O, image data output

30.7.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width {24, 30, 36} as I
Arithmetic signed as I
Parallelism any as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I

Color Format VAF_COLOR as I
Color Flavor FL_XYZ FL_LAB
Max. Img Width any as I
Max. Img Height any as I

30.7.3. Parameters

None

Library Signal 1400

VisualApplets User Documentation Release 3

31. Library Signal

The signal library includes operators for signal data processing such as trigger signals.

The following list summarizes all Operators of Library Signal

Operator Name Short Description available
since

DelayToSignal Delays the input signal. Delay is controlled by a
input link. Version 1.2

Downscale Reduces the input frequency by an adjustable
factor. Version 1.2

EventToSignal Generates a signal pulse for each input pixel with
value 1. Version 1.2

FrameEndToSignal Generates a signal pulse when the end of the input
image is detected. Version 1.2

FrameStartToSignal Generates a signal pulse when the start of an input
image is detected. Version 1.2

Generate Generates a periodic signal with controllable period
time. Version 1.2

GetSignalStatus Obtain the current value of a signal link. Version 1.2

Gnd Provides a signal with the constant value 0 (LOW). Version 1.2

LimitSignalWidth Limits the maximum pulse width of the input signal
using a parameterizable maximum. Version 1.2

LineEndToSignal Generates a signal pulse when the end of a input
image line is detected. Version 1.2

LineStartToSignal Generates a signal pulse when the start of an input
image line is detected. Version 1.2

PeriodToSignal Generates a periodic signal. Period time controlled
by input link. Version 1.2

Library Signal 1401

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

PixelToSignal Converts an image data stream into a signal
stream. Version 1.2

Polarity Controls the polarity of the signal (invert). Version 1.2

PulseCounter Counts every occurrence of a one (high) at signal
input link I. Version 1.2

RsFlipFlop Implements a set-reset flip-flop. Version 1.2

RxSignalLink Receives signals from a TxSignalLink operator in
the design. Version 2.0

Select
Selects a signal source from N signal sources
by parameter and forward selected signal to the
output.

Version 1.2

SetSignalStatus Set a signal link status by use of a parameter. Version 1.2

ShaftEncoder Analyzes shaft encoder signal traces and outputs
encoder pulses as well as the direction. Version 1.2

ShaftEncoderCompensateCompensates the rewind of a shaft encoder. Version 1.2

SignalDebounce Suppresses fast changing signals at the input link
with adjustable minimum time. Version 1.2

SignalDelay Delays the input signal. Delay is controlled by a
parameter. Version 1.2

SignalEdge
Generates a pulse of one design clock cycle, if a
rising-, falling- or both- edges are detected at the
input.

Version 1.2

SignalGate Gates the image stream between I and O by use of
a signal input. Version 1.2

SignalToDelay Measures and outputs the delay between two
signals. Version 1.2

SignalToPeriod Measures and outputs the period time of the input
signal. Version 1.2

Library Signal 1402

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

SignalToPixel Converts the input signal stream into a 0D pixel
stream. Version 1.2

SignalToWidth Measures and outputs the pulse width of the input
signal. Version 1.2

SignalWidth Generates an output pulse with controllable with for
rising edges at the input. Version 1.2

SyncSignal Synchronizes a number of input links to a master
signal. Version 1.2

TxSignalLink Sends signals to any RxSignalLink operator in the
design. Version 2.0

Vcc Provides a signal with the constant value 1 (HIGH). Version 1.2

WidthToSignal Defines the width of a pulse. Width is controlled by
a input link. Version 1.2

Table 31.1. Operators of Library Signal

Library Signal 1403

VisualApplets User Documentation Release 3

31.1. Operator DelayToSignal
Operator Library: Signal

The operator delays the input signal and provides it on its output. The delay is controlled by the control
data input link PI.

The rising edge of a pulse at the input starts the delay. The delay time is equal to the last valid value
at input link PI and is measured in ticks being high. The pulse width of the input pulse is kept, i.e.
the rising and falling edges are delayed.

During delaying of a pulse no new pulses at the operator input can be accepted. In this case, every
new input pulse will be ignored. Moreover, a change of the value at PI does not change the current
pulse processing. PI is sampled at the start of the delay.

The operator can be reseted using input link Reset. While the reset input is high, no output pulses are
processed. Any processing is aborted. The operator restarts operation when the reset input is low. The
following waveform illustrates the operator's behavior.

The Tick input defines the time, the operator is processing data. It can be used like a prescaler. In
most cases, the Tick input is not required. Tie it to operator VCC in this case. In the following figure,
the influence of the Tick input is shown.

One special case when using ticks is that input pulses are sampled even if no tick is present. This is
shown for the second input pulse of the waveform. This ensures that no input pulses can get lost.

This operator is excluded from the VisualApplets functional simulation.

Library Signal 1404

VisualApplets User Documentation Release 3

31.1.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal data input

PI, control image data input
Tick, signal data input
Reset, signal data input

Output Link O, signal data output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

• Input link PI is asynchronous to the signal inputs.

31.1.2. Supported Link Format

Link Parameter Input Link I Input Link PI Input Link Tick
Bit Width 1 [1, 64] 1
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_SIGNAL {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.1.3. Parameters

None

Library Signal 1405

VisualApplets User Documentation Release 3

31.1.4. Examples of Use

The use of operator DelayToSignal is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Signal 1406

VisualApplets User Documentation Release 3

31.2. Operator Downscale
Operator Library: Signal

The operator downscales the input signal to the specified frequency, i.e. only every Nth pulse will be
forwarded to the output. Parameter Downscale specifies the downscale factor. Parameter SelectedPulse
defines which pulse of a downscale sequence is used and forwarded to the output. Parameter value
changes are applied only when the operator starts a new sequence. In the following waveform, the
operator behavior is visualized.

The operator can be reseted using input link Reset. While the reset input is high, no pulses are
processed. Any processing is aborted. The operator restarts its operation when the reset input is low.
The following waveform illustrates the operator's behavior.

This operator is excluded from the VisualApplets functional simulation.

31.2.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal data input

Reset, signal data input
Output Link O, signal data output

Library Signal 1407

VisualApplets User Documentation Release 3

31.2.2. Supported Link Format

Link Parameter Input Link I Input Link Reset Output Link O
Bit Width 1 1 as I
Arithmetic unsigned unsigned as I
Parallelism 1 1 as I
Kernel Columns 1 1 as I
Kernel Rows 1 1 as I
Img Protocol VALT_SIGNAL VALT_SIGNAL as I
Color Format VAF_GRAY VAF_GRAY as I
Color Flavor FL_NONE FL_NONE as I
Max. Img Width any any as I
Max. Img Height any any as I

31.2.3. Parameters

MaxScaleBits
Type static parameter
Default 8
Range [1, 32]

Defines the maximum range of parameter Downscale. This parameter is enabled only if Downscale
is set to dynamic.

Downscale
Type dynamic/static read/write parameter
Default 1
Range [1, 2^MaxScaleBits-1] if dynamic, [1, 2^64-1] else

The actual downscale factor is defined with using this parameter. A downscale factor of one will
forward any input pulse do the output.

The value has to be >= parameter SelectedPulse.

SelectedPulse
Type dynamic/static read/write parameter
Default 1
Range [1, 2^MaxScaleBits-1] if dynamic, [1, 2^64-1] else

This parameter selects the pulse of a sequence to be forward to the output.

The value has to be <= parameter Downscale.

31.2.4. Examples of Use

The use of operator Downscale is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Library Signal 1408

VisualApplets User Documentation Release 3

Examples - Demonstration of how to use the operator

Library Signal 1409

VisualApplets User Documentation Release 3

31.3. Operator EventToSignal
Operator Library: Signal

The operator generates a signal pulse for each input pixel with value 1. The operator input is a binary
(1 bit) image stream. If a pixel with value one is present at the input of the operator, the operator will
generate a signal pulse of one clock cycle. Keep in mind that image data streams include gaps between
pixels. During a gap period, the operator does not generate output pulses. If you rather like to convert
the last input binary pixel value into a signal, use operator PixelToSignal instead.

This operator is excluded from the VisualApplets functional simulation.

31.3.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal data output

31.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.3.3. Parameters

None

31.3.4. Examples of Use

The use of operator EventToSignal is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Signal 1410

VisualApplets User Documentation Release 3

Library Signal 1411

VisualApplets User Documentation Release 3

31.4. Operator FrameEndToSignal

Operator Library: Signal

The operator generates a signal pulse when the end of the input image is detected. The operator input
is an image stream. The operator waits for the end of the input image stream. When the frame end
is detected, a signal pulse of one clock cycle is output. Note that the end of a frame might not occur
directly after the last frame pixel. See the following figure for explanation:

Note that empty images can exist in VisualApplets. The operator will generate a signal pulse for empty
frames, too.

This operator is excluded from the VisualApplets functional simulation.

31.4.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal output

31.4.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any 1
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D VALT_SIGNAL
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

31.4.3. Parameters

None

Library Signal 1412

VisualApplets User Documentation Release 3

31.4.4. Examples of Use

The use of operator FrameEndToSignal is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Signal 1413

VisualApplets User Documentation Release 3

31.5. Operator FrameStartToSignal
Operator Library: Signal

The operator generates a signal pulse when the start of an input image is detected. The operator input
is an image stream. The operator waits for the first pixel of the input image. When the first pixel is
detected, a signal pulse of one clock cycle is output. See the following figure for explanation:

Note that empty images can exist in VisualApplets. For empty images, the operator cannot find a first
pixel. In this case, the operator will output a pulse at the end of the frame. If the first line of a frame
does not include any pixels, the operator will output a pulse at the end of the first line.

This operator is excluded from the VisualApplets functional simulation.

31.5.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal output

31.5.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any 1
Kernel Columns any 1
Kernel Rows any 1
Img Protocol VALT_IMAGE2D VALT_SIGNAL
Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

31.5.3. Parameters

None

Library Signal 1414

VisualApplets User Documentation Release 3

31.5.4. Examples of Use

The use of operator FrameStartToSignal is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1415

VisualApplets User Documentation Release 3

31.6. Operator Generate
Operator Library: Signal

The operator generates a periodic signal at its output. Moreover, the pulse generation can be controlled
by input signals. The period time and the number of pulses to be generated can be defined using
parameters.

The period is defined using the parameter Period. The period is dynamic. Its range is defined by the
parameter PeriodBits. In the following figure, the generation of pulses with period lengths eight and
four are shown.

Changes at the Period parameter will only be applied to the operator when the generation of the current
period is completed. This ensures periods in the parametrized lengths only.

The pulse generation can either be at the end of the period or at the start as is controlled using the
parameter PulsePosition. The next figure shows the generation at the start of a sequence.

Library Signal 1416

VisualApplets User Documentation Release 3

By use of the Gate input link, the generation can be controlled. Periods are generated only if input
Gate is active (high). The rising edge at the Gate input starts the period generation. A falling edge
at the Gate input link immediately aborts the generation. Currently processed periods might not be
completed in this case. Moreover, a new rising edge can yield a short period. This is shown in the
following waveform.

The parameter SequenceLength facilitates the generation of sequences. In the previous figures, the
parameter was set to 0 which results in an infinite sequence length. If you set the parameter to values
> 0, the operator will only generate the number of parametrized periods. In the following waveform,
the sequence length is set to 3 with a period set to 4. As can be seen in the waveform, the period
generation is stopped after the third period. A new rising edge at the Gate input will start a new
sequence. Sequences can be aborted if Gate turns to 0.

In many applications, an infinite sequence generation of the operator is required. In this case, set
parameter SequenceLength to 0 and connect operator VCC to the Gate input. The operator will then
start its period generation at process start e.g. acquisition start.

The period time is measured in Ticks being high. Tick is a signal input and can be used like a pre-scaler.
For every high value at the Tick input, the period time is counted. The following waveform shows the

Library Signal 1417

VisualApplets User Documentation Release 3

behavior of the Tick input to the period generation. In most cases, the Tick input is not required. Tie
it to operator VCC in this case.

The Reset input link is used to reset the operator. This is useful if a long period or sequence has to be
cancelled. In the next figure, the use of Reset is illustrated.

Use the Reset input instead of setting Period to 0

If Period is set to 0, a change of the period back to an active state may take very long
(2^PeriodBit-1 clock cycles). It is therefore recommended to use the Reset input in this
cases.

This operator is excluded from the VisualApplets functional simulation.

31.6.1. I/O Properties

Property Value
Operator Type O
Input Links Tick, signal input

Gate, signal input
Reset, signal input

Library Signal 1418

VisualApplets User Documentation Release 3

Property Value
Output Link O, signal input

31.6.2. Supported Link Format

Link Parameter Input Link Tick Input Link Gate
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any as Gate
Max. Img Height any as Gate

31.6.3. Parameters

PeriodBits
Type static parameter
Default 16
Range [1, 64]

Number of bits required to encode the value specified by Period. This parameter is enabled only if
parameter Period is dynamic.

Period
Type static/dynamic read/write parameter
Default 65535
Range [0, 2^PeriodBits-1] if dynamic, [1,2^64-1] if static

Defines the period time of the generated pulses. Do not use the following cases: If period set to 1,
the operator will output a constant one without any gaps. Number of bits required to encode the
value specified by If set to 0, the operator will not output any pulses.

SequenceBits
Type static parameter

Library Signal 1419

VisualApplets User Documentation Release 3

SequenceBits
Default 16
Range [1, 64]

Number of bits required to encode the value specified by Sequence. This parameter is enabled only
if parameter Sequence is dynamic.

Sequence
Type static/dynamic read/write parameter
Default 0
Range [1, 2^SequenceBits-1] if dynamic, [1,2^64-1] if static

Defines the sequence length i.e. the number of pulses generated for each pulse at the Gate input
link.

PulsePosition
Type static parameter
Default AtPeriodEnd
Range {AtPeriodStart, AtPeriodEnd}

The output pulse can either be at the start of each period or at the end of each period.

31.6.4. Examples of Use

The use of operator Generate is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

Library Signal 1420

VisualApplets User Documentation Release 3

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1421

VisualApplets User Documentation Release 3

31.7. Operator GetSignalStatus

Operator Library: Signal

Operator GetSignalStatus allows the monitoring of up to 64 input signal links by a software application.
The current values at the link are stored and can be read using parameter Status from software. The
value is bit-coded. Every bit represents one input link. Bit 0 input link 0, bit 1 input link 1, etc.

Different modes to read the link values are supported. The mode is selected using parameter Mode.

• In Direct mode the signal status is read out directly without and storing of previous values.

In Rise mode, the status parameter is set to high if previously a rising edge has been detected at
the input link.

In Fall mode, the status parameter is set to high if previously a falling edge has been detected
at the input link.

In Edge mode, the status parameter is set to high if previously a rising or a falling edge has been
detected at the input link.

In Pulse mode, the status parameter is set to high if previously a rising AND a falling edge have
been detected at the input link.

Reading the parameter causes a reset of the parameter value to zero.

This operator is excluded from the VisualApplets functional simulation.

31.7.1. I/O Properties

Property Value
Operator Type M
Input Link I0...I64, image data input

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

31.7.2. Supported Link Format

Link Parameter Input Link I0...I64
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

Library Signal 1422

VisualApplets User Documentation Release 3

31.7.3. Parameters

Mode
Type static parameter
Default Direct
Range {Direct, Rise, Fall, Edge, Pulse}

This parameter specifies the monitoring type mode. See explanations above.

Status
Type dynamic read parameter
Default 0
Range [0, 2^NoOfInputLinks]

Shows the current link status for all inputs. The status is reset to 0 while reading. Bit 0 corresponds
to input 0, bit 1 to input 1, etc.

31.7.4. Examples of Use

The use of operator GetSignalStatus is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1423

VisualApplets User Documentation Release 3

31.8. Operator Gnd
Operator Library: Signal

This operator provides a signal with constant value 0 (LOW).

This operator is excluded from the VisualApplets functional simulation.

31.8.1. I/O Properties

Property Value
Operator Type M
Output Link O, signal output

31.8.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

31.8.3. Parameters

None

31.8.4. Examples of Use

The use of operator Gnd is shown in the following examples:

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

Library Signal 1424

VisualApplets User Documentation Release 3

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

Library Signal 1425

VisualApplets User Documentation Release 3

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1426

VisualApplets User Documentation Release 3

31.9. Operator LimitSignalWidth
Operator Library: Signal

The operator limits the pulse width of the input signal. To set the maximum width use parameter
MaxWidth. The pulse width is the time, the pulse is 1 (HIGH). The following waveform shows the
behavior of the operator. The first pulse if limited by the operator to four clock cycles defined by
parameter MaxWidth. The second pulse is shorter than MaxWidth and therefore, no limitation is
required. Parameter changes are applied to the next pulse and will not change the limitation of a
currently processed pulse.

The pulse width is measured in Ticks. Tick is an input link. For every 1 (HIGH) at the Tick input the
operator counts the width. This behavior is shown in the next figure. In most applications, the Tick
input is not required. Tie it to Vcc in these cases.

An additional Reset input enables the reset of the operator. Any current pulse processing is aborted.

This operator is excluded from the VisualApplets functional simulation.

31.9.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal input

Tick, signal input
Reset, signal input

Library Signal 1427

VisualApplets User Documentation Release 3

Property Value
Output Link O, signal output

31.9.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.9.3. Parameters

MaxWidthBits
Type static parameter
Default 16
Range [1, 64]

The maximum possible value of MaxWidth is defined using this parameter. This parameter is
enabled only if MaxWidth is set to dynamic.

MaxWidth
Type static/dynamic read/write parameter
Default 32768
Range [0,2^MaxWidthBits-1] if dynamic, [0, 2^64-1] if static

Defines the maximum signal width.

31.9.4. Examples of Use

The use of operator LimitSignalWidth is shown in the following examples:

Library Signal 1428

VisualApplets User Documentation Release 3

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1429

VisualApplets User Documentation Release 3

31.10. Operator LineEndToSignal
Operator Library: Signal

The operator generates a signal pulse when the end of a input image line is detected. The operator
input is an image stream. The operator waits for the end of lines at the input image stream. When the
line end is detected, a signal pulse of one clock cycle is output. Note that the end of a line might not
occur directly after the last line pixel. See the following figure for explanation:

The end of a frame always occurs at the same time as the end of the last frame line. Note that empty
lines can exist in VisualApplets. The operator will generate a signal pulse for empty lines, too.

This operator is excluded from the VisualApplets functional simulation.

31.10.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal output

31.10.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any 1
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_SIGNAL

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

31.10.3. Parameters

None

Library Signal 1430

VisualApplets User Documentation Release 3

31.10.4. Examples of Use

The use of operator LineEndToSignal is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1431

VisualApplets User Documentation Release 3

31.11. Operator LineStartToSignal

Operator Library: Signal

The operator generates a signal pulse when the start of an input image line is detected. The operator
input is an image stream. The operator waits for the first pixel at each input image line. When the first
pixel is detected, a signal pulse of one clock cycle is output. See the following figure for explanation:

Note that empty line can exist in VisualApplets. For empty lines, the operator cannot find a first pixel.
In this case, the operator will output a pulse at the end of the line.

This operator is excluded from the VisualApplets functional simulation.

31.11.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal output

31.11.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any 1
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_SIGNAL

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

Library Signal 1432

VisualApplets User Documentation Release 3

31.11.3. Parameters

None

31.11.4. Examples of Use

The use of operator LineStartToSignal is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1433

VisualApplets User Documentation Release 3

31.12. Operator PeriodToSignal

Operator Library: Signal

The operator generates a periodic signal at its output. The period time is controlled by the pixel value
at the input link I. Thus the operator converts the input stream values into a signal with the period
provided by the pixel values. The high time of the output pulses is one tick.

During processing of a current signal generation with a specified period, the operator will ignore any
new values at the input. After the processing of a period is finished, the generates a new period with
the length of the last valid input pixel value. The pulse position can either be at the beginning or at the
end of a period and is controlled using parameter PulsePosition. In the following figure, the operator's
behavior is illustrated.

The next figure shows the generation of the pulse at the start of a period.

The period time is measured in Ticks being high. Tick is a signal input and can be used like a prescaler.
For every high value at the Tick input, the period time is counted. The following waveform shows the
behavior of the Tick input to the period generation. In most cases, the Tick input is not required. Tie
it to operator VCC in this case.

Library Signal 1434

VisualApplets User Documentation Release 3

The Reset input link is used to reset the operator. This is useful if a long period or sequence has to be
cancelled. In the next figure, the reset usage is illustrated.

This operator is excluded from the VisualApplets functional simulation.

31.12.1. I/O Properties

Property Value
Operator Type M
Input Links I, pixel data input

Tick, signal input
Reset, signal input

Output Link O, signal input

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

• Input link I is asynchronous to the signal inputs.

31.12.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width [1, 64] 1

Library Signal 1435

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link Tick
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.12.3. Parameters

PulsePosition
Type static parameter
Default AtPeriodEnd
Range {AtPeriodStart, AtPeriodEnd}

The output pulse can either be at the start of each period or at the end of each period.

31.12.4. Examples of Use

The use of operator PeriodToSignal is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Signal 1436

VisualApplets User Documentation Release 3

31.13. Operator PixelToSignal
Operator Library: Signal

The operator converts an image data stream at the input into a signal stream. The input is a binary
(1 bit) image stream. For every pixel with value zero at the input a low signal (zero) will be output.
For every pixel with value one at the input, a high signal (one) will be output. Image data streams
include gaps between pixel. The operator fills these gaps at the output with the last valid input pixel
value. See the following figure for explanations.

This operator is excluded from the VisualApplets functional simulation.

31.13.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Link O, signal data output

31.13.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.13.3. Parameters

None

31.13.4. Examples of Use

The use of operator PixelToSignal is shown in the following examples:

Library Signal 1437

VisualApplets User Documentation Release 3

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Signal 1438

VisualApplets User Documentation Release 3

31.14. Operator Polarity
Operator Library: Signal

The operator Polarity controls the output link polarity. Depending on the parameter setting the output
signal can either be bypassed or inverted. See the following illustration.

This operator is excluded from the VisualApplets functional simulation.

31.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, signal data input
Output Link O, signal data output

31.14.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.14.3. Parameters

Invert
Type dynamic/static read/write parameter
Default NotInvert
Range {NotInvert, Invert}

This parameter specifies the polarity of the output signal. NotInvert = the input is bypassed to the
output. Invert = the output signal is an inverted copy of the input signal.

31.14.4. Examples of Use

The use of operator Polarity is shown in the following examples:

Library Signal 1439

VisualApplets User Documentation Release 3

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1440

VisualApplets User Documentation Release 3

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1441

VisualApplets User Documentation Release 3

31.15. Operator PulseCounter
Operator Library: Signal

This operator is an up/down counter. For every occurrence of a one (high) at the signal input link I,
the operator is incremented or decremented. It is incremented (count up) if input link Dir = 0 and
decremented (count down) if input link Dir = 1. The counter can be reset using input link Reset.

The operator output is a VALT_PIXEL0D pixel stream. At each clock cycle a pixel is output representing
the current counter value. In the following figure, the behavior of the operator is illustrated.

The waveform shows underrun and overrun situations. In these cases, the operator is further decreased
or increased even if the minimum or maximum of the counter has been reached. In this case, the
counter will jump to the maximum or minimum possible value representable at the output.

The additional reset input link allows the reset of the operator. All outputs are set to zero, while reset.

This operator is excluded from the VisualApplets functional simulation.

31.15.1. I/O Properties

Property Value
Operator Type M
Input Links I, signal input

Dir, signal input
Reset, signal input

Output Link O, counter value pixel data output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

31.15.2. Supported Link Format

Link Parameter Input Link I Input Link Dir
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL

Library Signal 1442

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link Dir
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 [1, 64]
Arithmetic unsigned {unsigned, signed}
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_PIXEL0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.15.3. Parameters

None

31.15.4. Examples of Use

The use of operator PulseCounter is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Signal 1443

VisualApplets User Documentation Release 3

31.16. Operator RsFlipFlop
Operator Library: Signal

The operator implements a set-reset flip-flop. If a one (HIGH) is at input link Set, the operator sets
the output value to HIGH and keeps the value until a zero (LOW) is present at input link Reset. When
Reset is set to HIGH, the output value on output link O is set to LOW. Parameter Priority is used to
define if Set or Reset is the master. The value defined with parameter Init is output at startup. See
the following truth table and waveform for explanation.

Set Reset O
0 0 O(t-1)

0 1 0

1 0 1

1 1 1 (Priority = Set)

This operator is excluded from the VisualApplets functional simulation.

31.16.1. I/O Properties

Property Value
Operator Type O
Input Links Set, signal data input

Reset, signal data input
Output Link O, signal data output

31.16.2. Supported Link Format

Link Parameter Input Link Set Input Link Reset Output Link O
Bit Width 1 1 as Set

Library Signal 1444

VisualApplets User Documentation Release 3

Link Parameter Input Link Set Input Link Reset Output Link O
Arithmetic unsigned unsigned as Set
Parallelism 1 1 as Set
Kernel Columns 1 1 as Set
Kernel Rows 1 1 as Set
Img Protocol VALT_SIGNAL VALT_SIGNAL as Set
Color Format VAF_GRAY VAF_GRAY as Set
Color Flavor FL_NONE FL_NONE as Set
Max. Img Width any any as Set
Max. Img Height any any as Set

31.16.3. Parameters

Priority
Type static parameter
Default RESET
Range {RESET, SET}

This parameter specifies behavior of the operator for the case when both Set and Reset are set
to HIGH simultaneously. RESET: the value on the link O will be set to LOW. SET: the value on the
output link O will be set to HIGH.

Init
Type static parameter
Default 0
Range [0, 1]

This parameter specifies the start up value.

31.16.4. Examples of Use

The use of operator RsFlipFlop is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

Library Signal 1445

VisualApplets User Documentation Release 3

31.17. Operator RxSignalLink
Operator Library: Signal

Operator RxSignalLink is used to receive signal data from a TxSignalLink operator in the same design.

Both operators establish a connection without a link. This is useful for inter-process communication,
i.e., for connections between different hierarchical boxes without the need to draw a link and feedbacks.

The parameter Channel_ID defines a channel ID to address the sending TxSignalLink operator. The
parameter value has to match with the ID of one of the TxSignalLink operators in the same design.
Multiple RxSignalLink operators in the design may use the same channel ID.

Each RxSignalLink operator in a design is connected to exactly one TxSignalLink operator via one
channel ID. In the Resource Dialog of VisualApplets, you can see that each TxSignalLink operator uses
one resource SignalChannel exclusively. Resource SignalChannel allows to control the assignment of
individual TxSignalLink operators to one or multiple RxSignalLink operators.

This operator is excluded from the VisualApplets functional simulation.

31.17.1. I/O Properties

Property Value
Operator Type M
Output Link O, signal output

31.17.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY

Library Signal 1446

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

31.17.3. Parameters

Channel_ID
Type static parameter
Default 0
Range [0, 1023]

The channel ID of the signal link. See descriptions above.

31.17.4. Examples of Use

The use of operator RxSignalLink is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1447

VisualApplets User Documentation Release 3

31.18. Operator Select
Operator Library: Signal

The operator Select implements a N-input to 1-output multiplexer controlled by the Select parameter.
N must be smaller or equal to 64.

This operator is excluded from the VisualApplets functional simulation.

31.18.1. I/O Properties

Property Value
Operator Type O
Input Link I[n], signal data input
Output Link O, signal data output

31.18.2. Supported Link Format

Link Parameter Input Link I[n] Output Link O
Bit Width 1 as I0
Arithmetic unsigned as I0
Parallelism 1 as I0
Kernel Columns 1 as I0
Kernel Rows 1 as I0
Img Protocol VALT_SIGNAL as I0
Color Format VAF_GRAY as I0
Color Flavor FL_NONE as I0
Max. Img Width any as I0
Max. Img Height any as I0

31.18.3. Parameters

Select
Type static/dynamic read/write parameter
Default 0
Range [0, N-1]

This parameter is used to select an input.

31.18.4. Examples of Use

The use of operator Select is shown in the following examples:

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection

Library Signal 1448

VisualApplets User Documentation Release 3

to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

Library Signal 1449

VisualApplets User Documentation Release 3

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1450

VisualApplets User Documentation Release 3

31.19. Operator SetSignalStatus

Operator Library: Signal

The operator's signal link output can be set by software using parameter Mode. The state type is
specified by the parameter Mode. Three options are available:

• Low:

The operator output signal link has low value (zero).

• High:

The operator output signal link has high value (one).

• Pulse:

The operator will generate a pulse at its output, i.e. will output a high value for one clock cycle. After
this pulse, the operator will output low value (zero). Setting the parameter to Pulse after it was set
to High will not generate a low value before the pulse. Hence, the parameter should be set to Low
or Pulse before setting it to Pulse.

This operator is excluded from the VisualApplets functional simulation.

31.19.1. I/O Properties

Property Value
Operator Type O
Output Link O, signal data output

31.19.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

31.19.3. Parameters

Mode
Type static/dynamic read/write parameter
Default Low
Range {Low, High, Pulse}

This parameter specifies the output signal value at the output link of the operator. See description
above.

Library Signal 1451

VisualApplets User Documentation Release 3

31.19.4. Examples of Use

The use of operator SetSignalStatus is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

Library Signal 1452

VisualApplets User Documentation Release 3

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1453

VisualApplets User Documentation Release 3

31.20. Operator ShaftEncoder

Operator Library: Signal

The operator analyzes two shaft encoder signal traces. The two traces are fed into the operator. At the
outputs of the operator, a pulse for every encoder line as well as a direction signal are provided. The
phase between the two trace signals are used for detection.

For every detected encoder line, the operator generates a pulse at its output link O. The pulse with
is one design clock cycle. At output link Dir, the detected direction of the encoder is outputs. If Dir =
0 (LOW), a forward direction was detected. If Dir = 1 (HIGH), a reverse direction was detected. The
values at the Dir output are only valid when output O is 1 (HIGH) i.e. a pulse is output.

Parameter LeadingTrace is used to define which one of the two traces is the leading trace, i.e. which
trace is 90° ahead.

Parameter Mode defines the detection mode. The following modes can be used:

• ModeX1:

Single Speed Mode. Only one edge of the leading signal is used for detection. The output is
determined by:

O = LR ^ S _ LF ^ S

Dir = LF ^ S

where LR and LF are the rising and falling edges of the leading trace e.g. A. S is the slave trace e.g. B.

The following figure illustrates the behavior of the ModeX1

• ModeX2:

Double Speed Mode. Both edges of the leading signal are used for detection. The output is determined
by:

O = LR _ LF

Dir = LF ^ S _ LR ^ S

The following figure illustrates the behavior of the ModeX2

Library Signal 1454

VisualApplets User Documentation Release 3

• ModeX4:

Quad Speed Mode. All edges of the leading and the slave signal are used for detection. The output
is determined by:

O = LR _ LF SR _ SF

Dir = LF ^ S _ LR ^ S _ SR ^ L _ SF ^ L

The following figure illustrates the behavior of the ModeX4

An additional reset input can be used to reset the operator to its initial state.

This operator is excluded from the VisualApplets functional simulation.

31.20.1. I/O Properties

Property Value
Operator Type O
Input Links TraceA, signal data input

TraceB, signal data input
Reset, signal data input

Output Links O, signal data output of detected encoder lines
Dir, signal data output of detected direction

31.20.2. Supported Link Format

Link Parameter Input Link TraceA Input Link TraceB Input Link Reset
Bit Width 1 1 1

Library Signal 1455

VisualApplets User Documentation Release 3

Link Parameter Input Link TraceA Input Link TraceB Input Link Reset
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

Link Parameter Output Link O Output Link Dir
Bit Width as TraceA as TraceA
Arithmetic as TraceA as TraceA
Parallelism as TraceA as TraceA
Kernel Columns as TraceA as TraceA
Kernel Rows as TraceA as TraceA
Img Protocol as TraceA as TraceA
Color Format as TraceA as TraceA
Color Flavor as TraceA as TraceA
Max. Img Width as TraceA as TraceA
Max. Img Height as TraceA as TraceA

31.20.3. Parameters

LeadingTrace
Type static/dynamic read/write parameter
Default A
Range {A, B}

This parameter specifies the leading trace. The leading trace is 90° ahead.

Mode
Type static/dynamic read/write parameter
Default Mode1X
Range {Mode1X, Mode2X, Mode4X}

This parameter defines the detection mode of the shaft encoder. See description above.

31.20.4. Examples of Use

The use of operator ShaftEncoder is shown in the following examples:

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

Library Signal 1456

VisualApplets User Documentation Release 3

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1457

VisualApplets User Documentation Release 3

31.21. Operator ShaftEncoderCompensate

Operator Library: Signal

The operator compensates runbacks of a ShaftEncoder.

The operator has an input link I which can be fed with encoder pulses On input link Dir, the current
encoder direction can be defined.

Input pulses with backward direction are suppressed at the output. However, the operator will count
the input pulses with backward direction internally. When the ShaftEncoderCompensate is fed with
forward pulses again, they will be still suppressed until all backward pulses are compensated. In other
words, each backward input pulse increments the internal counter. Each forward input pulse decreases
this counter if it is > 0. A pulse is only output for each forward input pulse if the internal counter is
equal to zero.

The parameter MaxPulseBits specifies the bit width of the internal counter, i.e.
ShaftEncoderCompensate can compensate 2 ^ MaxPulseBits reverse pulses at maximum. If more
than 2 ^ MaxPulseBits backward pulses occur, only 2 ^ MaxPulseBits pulses during runbacks can be
compensated.

The current counter value i.e. the number of pulses to be compensated can be read using parameter
CompensationCounter. It is possible to overwrite the current counter value by writing a new value
to this parameter.

The operator can directly be connected to operator ShaftEncoder.

In the following waveform the functionality of the operator is illustrated.

An additional reset input can be used to reset the counter as shown in the following.

This operator is excluded from the VisualApplets functional simulation.

Library Signal 1458

VisualApplets User Documentation Release 3

31.21.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal data input

Dir, signal data input
Reset, signal data input

Output Link O, signal data output

31.21.2. Supported Link Format

Link Parameter Input Link I Input Link Dir
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.21.3. Parameters

MaxPulseBits
Type static parameter
Default 10
Range [2, 32]

This parameter specifies the bit width of the internal counter.

CompensationCounter
Type dynamic read/write parameter
Default 0
Range [0, 2^MaxPulseBits-1]

Library Signal 1459

VisualApplets User Documentation Release 3

CompensationCounter
This parameter shows the current value of the compensation counter. Reading from the parameter
shows the current value. Writing to the parameter overwrites the counter value.

31.21.4. Examples of Use

The use of operator ShaftEncoderCompensate is shown in the following examples:

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1460

VisualApplets User Documentation Release 3

31.22. Operator SignalDebounce
Operator Library: Signal

The operator suppresses fast signal changes. Parameter Debounce defines a minimum time an input
signal has to be constant before it is forwarded to the output. Inputs which are changing faster are
suppressed. The following figure illustrates the operator's behavior.

The debounce time is measured in Ticks being one (HIGH), i.e. Tick acts like a prescaler input. Is Tick
set constantly to one (HIGH), the debounce operator counts the signal duration at the design clock
frequency. In most applications the Tick input is not required. Tie it to operator Vcc in these cases.
The following waveform shows the operator's behavior when using the Tick input link.

Note that the operator acts like a delay element. Any signal changes that meet the debounce
specification of being unchanged for N Ticks will be forwarded to the operator output after the delay
of N Ticks. However, the pulse form remains unchanged.

An additional reset input allows the reset of the operator.

This operator is excluded from the VisualApplets functional simulation.

31.22.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal data input

Tick, signal data input
Reset, signal data input

Output Link O, signal data output

31.22.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1

Library Signal 1461

VisualApplets User Documentation Release 3

Link Parameter Input Link I Input Link Tick
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.22.3. Parameters

DebounceBits
Type static parameter
Default 16
Range [1, 64]

This parameter specifies the bit maximum range of parameter Debounce. Only of Debounce set to
dynamic, this parameter can be changed.

Debounce
Type dynamic read/write parameter
Default 2
Range [0, 2^DebounceBits-1] if dynamic, [0, 2^64-1] if static

Defines the debounce time.

31.22.4. Examples of Use

The use of operator SignalDebounce is shown in the following examples:

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

Library Signal 1462

VisualApplets User Documentation Release 3

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1463

VisualApplets User Documentation Release 3

31.23. Operator SignalDelay

Operator Library: Signal

The operator delays the input signal and provides it on its output. The delay is controlled by parameter
Delay.

The rising edge of a pulse at the input starts the delay. The current value of parameter Delay defines
the delay. The pulse width of the input pulse is kept i.e. the rising and falling edges are delayed.

The operator can be run in two modes defined using parameter Mode:

• SinglePulse:

The operator can delay a single pulse at once only. During delaying of a pulse no new pulses at the
operator input can be accepted. In this case, every new input pulse will be ignored. Any changes of
the delay parameter are ignored while a pulse is currently processed.

The operator can be reseted using input link Reset. While the reset input is high, no output pulses
are processed. Any processing is aborted. The operator restarts operation when the reset input is
low. The following waveform illustrates the operator's behavior.

• MultiplePulses:

In this mode, the operator can delay multiple input pulses at the same time. The operator is a shift
register of fixed length. The delay cannot be changed in this mode. In the following figure, the mode
is illustrated.

The reset input can result in undefined values if used in combination with the MutliPulses mode.
Therefore, the reset input must be set for the duration defined in the parameter DurationBits if used.
Tie it to GND if not used.

Library Signal 1464

VisualApplets User Documentation Release 3

The intention of the MultiPulses mode is to use it for short delays only. Long delays will require many
resources.

The Tick input defines the time, the operator is processing data. It can be used like a prescaler. In
most cases, the Tick input is not required. In this case, tie it to operator VCC. In the following figure,
the influence of the Tick input is shown.

One special case when using ticks is that input pulses are sampled even if no tick is present. This is
shown for the second input pulse of the waveform. This ensures that no input pulses can get lost.

This operator is excluded from the VisualApplets functional simulation.

31.23.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal data input

Tick, signal data input
Reset, signal data input

Output Link O, signal data output

31.23.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I

Library Signal 1465

VisualApplets User Documentation Release 3

Link Parameter Input Link Reset Output Link O
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.23.3. Parameters

Mode
Type static parameter
Default SinglePulse
Range {SinglePulse, MultiplePulses}

Defines if the operator can delay only a single or multiple pulses at the same time. See description
above.

DelayBits
Type static parameter
Default 16
Range [1, 64]

The maximum possible signal delay is defined using this parameter. This parameter is enabled only
if Mode is set to SinglePulse.

Delay
Type dynamic/static parameter
Default 0
Range [0,2^DelayBits-1] if Mode=SinglePulse, [1, 2^64-1] else

The actual delay is defined using this parameter. The parameter is always static if Mode is set to
MultiplePulses.

31.23.4. Examples of Use

The use of operator SignalDelay is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1466

VisualApplets User Documentation Release 3

31.24. Operator SignalEdge

Operator Library: Signal

The operator SignalEdge generates a pulse of one design clock cycle when it detects a level changing
of the input signal. The parameter Edge specifies the type of the detecting edge. Three settings are
possible:

• Rising:

A pulse for each rising edge at the input is generated.

• Falling:

A pulse for each falling edge at the input is generated.

• Both:

A pulse for both, rising and falling edges at the input is generated.

This operator is excluded from the VisualApplets functional simulation.

31.24.1. I/O Properties

Property Value
Operator Type O
Input Link I, signal data input
Output Link O, signal data output

Library Signal 1467

VisualApplets User Documentation Release 3

31.24.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.24.3. Parameters

Edge
Type static parameter
Default RisingEdge
Range {RisingEdge, FallingEdge, BothEdges}

The parameter defines the type of edge the operator detects.

31.24.4. Examples of Use

The use of operator SignalEdge is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1468

VisualApplets User Documentation Release 3

31.25. Operator SignalGate

Operator Library: Signal

The operator gates the image stream between the input I and the output O. The gate is controlled by
the signal input link Gate. If the gate is closed, the input data is discarded. If the gate is open, pixels
are forwarded to the output. However, the operator ensures that the integrity of lines or frames is not
destroyed i.e. always full lines or frames are transfered and will not be cut. If the operator is used
with the input image protocol VALT_LINE1D, the operator will assemble the lines within one open gate
period into a frame. Thus it combines lines and converts an infinite line stream for example of a line
scan camera into frames. The operator is often used as image trigger for line scan cameras.

In the following figure an example of the operator's behavior is shown. As you can see, lines are fed
into the operator. Each line is terminated with an end of line control signal which is embedded in the
image link stream. The gate is open for a duration of three lines. At the output the first three lines
are present while the fourth and fifth are discarded. Moreover, after the last line before the gate is
closed, an end of frame marker is added to the image data stream. To summarize, in the example, the
operator assembled the first three lines into a frame. Data is discarded during the closed periods.

If the gate opens while a line is currently processed, the line will not be used. Moreover, if the gate
closes while a line is currently processed, the line will be fully transfered to the output. This ensures
the integrity of lines. The following waveform shows these cases.

A shortly closed gate will cause the generation of an end of frame. The next two waveforms show short
periods of open or closed gates.

Library Signal 1469

VisualApplets User Documentation Release 3

Keep in mind, a line will be used if the gate is open at the same time as the first pixel of a
line is present at the input link. An end of frame is generated after a line if the respective
line is not discarded and falling edge of the gate input was present after the first line pixel.

Instead of a VALT_LINE1D line data stream, the operator can be used with a VALT_IMAGE2D image
data stream at input I. In this case, the operator will forward the full input frame if the gate is open
simultaneously to the first pixel of the image as can be seen in the following.

Library Signal 1470

VisualApplets User Documentation Release 3

The reset input can be used to reset the operator i.e. to cut a line, and restart.

Simplified Waveforms

The waveform illustrations are simplified to show the exact operator's behavior. The real
implementation delays the end of line and end of frame output.

Operator Violates Max.Image Height

If the gate is constantly open, the operator will generate an image of a large height.
If this height exceeds the Max. Image Height link property set for the output link, the
VisualApplets rules are violated. You should either cut exceeding images using operator
SplitImage or delete exceeding lines (RemoveLine, SelectROI).

This operator is excluded from the VisualApplets functional simulation.

31.25.1. I/O Properties

Property Value
Operator Type P
Input Links I, image data input

Gate, signal input
Reset, signal input

Output Link O, image data output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

• Input link I is asynchronous to the signal inputs.

31.25.2. Supported Link Format

Link Parameter Input Link I Input Link Gate
Bit Width [1, 64] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any 1
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_SIGNAL

Color Format any VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I

Library Signal 1471

VisualApplets User Documentation Release 3

Link Parameter Input Link Reset Output Link O
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any any if input VALT_IMAGE1D,

else as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

31.25.3. Parameters

None

31.25.4. Examples of Use

The use of operator SignalGate is shown in the following examples:

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1472

VisualApplets User Documentation Release 3

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1473

VisualApplets User Documentation Release 3

31.26. Operator SignalToDelay
Operator Library: Signal

The operators measures the delay between the rising edge of the signal at input link I0 and the rising
edge of the signal at input link I1. The result is output as a pixel value at output link O. Hence, output
O is a VALT_PIXEL0D pixel data stream. The bit width of the output link can be changed and represents
the maximum possible delay. If the actual delay exceeds the output value range, the delay will be
clipped to the maximum possible value. In the following waveform, the behavior of the operator is
illustrated.

The delay is measured in Ticks being high. Tick is a signal input and can be used like a prescaler. For
every high value at the Tick input, the delay time is measured. The following waveform shows the
behavior of the Tick input to the delay measurement. In most cases, the Tick input is not required.
Tie it to operator VCC in this case.

By use of the additional reset input, the current measurement can be cancelled and the operator will
accept a new rising edge at input I0.

This operator is excluded from the VisualApplets functional simulation.

Library Signal 1474

VisualApplets User Documentation Release 3

31.26.1. I/O Properties

Property Value
Operator Type M
Input Links I0, signal input

I1, signal input
Tick, signal input
Reset, signal input

Output Link O, image data output

31.26.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1 Input Link Tick
Bit Width 1 1 1
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 [1, 64]
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_PIXEL0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.26.3. Parameters

None

31.26.4. Examples of Use

The use of operator SignalToDelay is shown in the following examples:

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1475

VisualApplets User Documentation Release 3

31.27. Operator SignalToPeriod

Operator Library: Signal

The operators measures the the period time of the signal at the input. The period time is the time
between two rising edges at the input. The result is output as a pixel value at output link O. Hence,
output O is a VALT_PIXEL0D pixel data stream. The bit width of the output link can be changed and
represents the maximum possible period time. If the actual period time exceeds the output value
range, it will be clipped to the maximum possible value. In the following waveform, the behavior of
the operator is illustrated.

The period time is measured in Ticks being high. Tick is a signal input and can be used like a prescaler.
For every high value at the Tick input, the period time is measured. The following waveform shows the
behavior of the Tick input to the period measurement. In most cases, the Tick input is not required.
Tie it to operator VCC in this case.

By use of the additional reset input, the current measurement can be cancelled.

This operator is excluded from the VisualApplets functional simulation.

31.27.1. I/O Properties

Property Value
Operator Type M
Input Links I, signal input

Tick, signal input
Reset, signal input

Output Link O, image data output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

Library Signal 1476

VisualApplets User Documentation Release 3

31.27.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 [1, 64]
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_PIXEL0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.27.3. Parameters

None

31.27.4. Examples of Use

The use of operator SignalToPeriod is shown in the following examples:

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1477

VisualApplets User Documentation Release 3

31.28. Operator SignalToPixel
Operator Library: Signal

The operator converts up to 64 input signal streams into a VALT_PIXEL0D pixel data stream. The
current signal value of an input is converted into a pixel bit: LOW is converted to value 0 and HIGH is
converted to value 1. If there is more than a single input port then each input maps to a bit position
of the output pixel data. In particular the first input port I000 maps to bit 0 of the output port O and
subsequent input ports map to subsequent bit positions of output port O.

A steady pixel stream is generated, i.e., one pixel is output for every clock cycle. This is because signals
are defined for every clock cycle while pixel data streams may have gaps between the pixels. Since the
signal stream has to be converted into a pixel stream, a pixel has to be output for every clock cycle,
too. This can cause data lost. Pixel processing operators may block their inputs. However, the output
of operator PixelToSignal can't be blocked as pixel always occur. Increase the parallelism or reduce the
number of pixels to avoid data lost.

This operator is excluded from the VisualApplets functional simulation.

31.28.1. I/O Properties

Property Value
Operator Type M
Input Link I000...I063, signal input
Output Link O, image data output

31.28.2. Supported Link Format

Link Parameter Input Link I000...I063 Output Link O
Bit Width 1 [1, 64]
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_PIXEL0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.28.3. Parameters

None

31.28.4. Examples of Use

The use of operator SignalToPixel is shown in the following examples:

Library Signal 1478

VisualApplets User Documentation Release 3

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

Library Signal 1479

VisualApplets User Documentation Release 3

31.29. Operator SignalToWidth
Operator Library: Signal

The operators measures the pulse width of the signal at the input. The pulse width the time between
a rising and falling edge at the input. The result is output as a pixel value at output link O. Hence,
output O is a VALT_PIXEL0D pixel data stream. The bit width of the output link can be changed and
represents the maximum possible pulse width. If the actual pulse width exceeds the output value
range, it will be clipped to the maximum possible value. In the following waveform, the behavior of
the operator is illustrated.

The period time is measured in Ticks being high. Tick is a signal input and can be used like a prescaler.
For every high value at the Tick input, the period time is measured. The following waveform shows the
behavior of the Tick input to the period measurement. In most cases, the Tick input is not required.
Tie it to operator VCC in this case.

An input pulse between two tick pulses will not get lost. The operator remembers the pulse an will
output the result = 1 with the next tick. If more than one pulse is between two ticks, the pulse will be
treated as a single pulse. The input is under-sampled in this case.

By use of the additional reset input, the current measurement can be cancelled.

This operator is excluded from the VisualApplets functional simulation.

31.29.1. I/O Properties

Property Value
Operator Type M
Input Links I, signal input

Tick, signal input
Reset, signal input

Output Link O, image data output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

Library Signal 1480

VisualApplets User Documentation Release 3

31.29.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 [1, 64]
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_PIXEL0D
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

31.29.3. Parameters

None

31.29.4. Examples of Use

The use of operator SignalToWidth is shown in the following examples:

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1481

VisualApplets User Documentation Release 3

31.30. Operator SignalWidth
Operator Library: Signal

The operator generates a pulse with controllable width. The width is defined using parameter Width.

An output pulse is generated for rising edges at the input. If a a pulse is currently generated, no more
rising edges at the input can be accepted. See the following waveform for explanations.

Via the input link Reset the user can reset the operator to its initial state.

The Tick input defines the time, the operator is processing data. It can be used like a prescaler. In
most cases, the Tick input is not required. In this case, tie it to operator VCC. In the following figure,
the influence of the Tick input is shown.

One special case when using ticks is that input pulses are sampled even if no tick is present. This is
shown for the first input pulse of the waveform. This behavior ensures that no input pulses can get lost.

Pulses between two tick pulses are not lost (as long as it is only one pulse, i.e., as long as the pause
between two incoming pulses is longer than a tick period). The operator recognizes the puls and starts
interpretation of the puls as soon as the next tick is HIGH. Those small pulses are adapted to the tick
time base and synchronized to the ticks. All changes at the operator output take place when tick is
HIGH. Only if multiple input pulses come in between two occurences of tick = HIGH, the operator is
unable to recognize them as different pulses as they are below the tick time base.

This operator is excluded from the VisualApplets functional simulation.

31.30.1. I/O Properties

Property Value
Operator Type O

Library Signal 1482

VisualApplets User Documentation Release 3

Property Value
Input Links I, signal input

Tick, signal input
Reset, signal input

Output Link O, signal output

31.30.2. Supported Link Format

Link Parameter Input Link I Input Link Tick
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned asI
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.30.3. Parameters

WidthBits
Type static parameter
Default 16
Range [1; 64]

The maximum possible width is defined using this parameter. Stepsize is 1. This parameter is
enabled only if Width is set to dynamic.

If you reduce the value of paramter WidthBits so that the value of Width is bigger than the new
maximal value, both parameters are displayed in red. The DRC shows an according error message.

Width
Type dynamic/static parameter
Default 32768
Range [0;2^WidthBits-1] if dynamic, [0; 2^64-1] if static

Library Signal 1483

VisualApplets User Documentation Release 3

Width
The actual output pulse width is defined using this parameter.

Stepsize is 1 for dynamic and static.

When width=0 there is no output.

If set to dynamic, parameter WidthBits is activated. If set to static, parameter WidthBits is de-
activated.

If you reduce the value of paramter WidthBits so that the value of Width is bigger than the new
maximal value, both parameters are displayed in red. The DRC shows an according error message.

31.30.4. Examples of Use

The use of operator SignalWidth is shown in the following examples:

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.6, 'Area Scan Trigger for imaFlex CXP-12 Quad'

An area scan trigger for CoaXPress12 is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

Library Signal 1484

VisualApplets User Documentation Release 3

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1485

VisualApplets User Documentation Release 3

31.31. Operator SyncSignal
Operator Library: Signal

The operator synchronizes N input links to the master signal and provides the synchronized version of
the inputs at the outputs. For each rising edge at input link MasterI, the inputs I0..In are sampled. Thus
the operator includes N registers, enabled with the rising edges of MasterI input. See the following
waveform for illustration.

The additional reset input link allows the reset of the operator. All outputs are set to zero, while reset.

This operator is excluded from the VisualApplets functional simulation.

31.31.1. I/O Properties

Property Value
Operator Type O
Input Links MasterI, signal input

I0..In, signal input
Reset, signal input

Output Link O0..On, signal output

31.31.2. Supported Link Format

Link Parameter Input Link MasterI Input Link I0..In
Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Reset Output Link O0..On
Bit Width 1 1
Arithmetic unsigned unsigned

Library Signal 1486

VisualApplets User Documentation Release 3

Link Parameter Input Link Reset Output Link O0..On
Parallelism 1 1
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol VALT_SIGNAL VALT_SIGNAL
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width any as MasterI
Max. Img Height any as MasterI

31.31.3. Parameters

None

31.31.4. Examples of Use

The use of operator SyncSignal is shown in the following examples:

• Section 13.9, 'Functional Example for Specific Operators of Library Signal, Logic, Filter and
Parameters'

Examples - Demonstration of how to use the operator

Library Signal 1487

VisualApplets User Documentation Release 3

31.32. Operator TxSignalLink
Operator Library: Signal

Operator TxSignalLink is used to send data to an RxSignalLink operator any place in the design. Both
operators establish a connection without a link. This is useful for inter-process communication, i.e., for
connections between different hierarchical boxes without the need to draw a link and feedbacks.

The parameter Channel_ID defines a channel ID to address the receiving RxSignalLink operator. The
parameter value has to be unique and must not be used by any other TxSignalLink operator in the
design.

There has to exist at least one RxSignalLink operator in the design which is using the same channel
ID and will receive the signal data.

Each TxSignalLink operator in a design is connected to at least one RxSignalLink operator via one
channel ID. In the Resource Dialog of VisualApplets, you can see that each TxSignalLink operator uses
one resource SignalChannel exclusively. Resource SignalChannel allows to control the assignment of
individual TxSignalLink operators to one or multiple RxSignalLink operators. For the number of available
SignalChannel resources (which also defines the maximum number of allowed TxSignalLink operators
in a design), see Appendix A, 'Device Resources'.

This operator is excluded from the VisualApplets functional simulation.

31.32.1. I/O Properties

Property Value
Operator Type M
Input Link I, signal input

31.32.2. Supported Link Format

Link Parameter Input Link I
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1

Library Signal 1488

VisualApplets User Documentation Release 3

Link Parameter Input Link I
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

31.32.3. Parameters

Channel_ID
Type static parameter
Default 0
Range [0, 1023]

The channel ID of the signal link. See descriptions above.

31.32.4. Examples of Use

The use of operator TxSignalLink is shown in the following examples:

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 13.4, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Signal 1489

VisualApplets User Documentation Release 3

31.33. Operator Vcc
Operator Library: Signal

This operator provides a signal with constant value 1 (HIGH).

This operator is excluded from the VisualApplets functional simulation.

31.33.1. I/O Properties

Property Value
Operator Type M
Output Link O, signal output

31.33.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1
Arithmetic unsigned
Parallelism 1
Kernel Columns 1
Kernel Rows 1
Img Protocol VALT_SIGNAL
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

31.33.3. Parameters

None

31.33.4. Examples of Use

The use of operator Vcc is shown in the following examples:

• Section 12.6.3, 'Image Timing Generator'

Example - While image timing is provided by a generator the designs data flow can be analyzed.

• Section 12.15.1.1, 'Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal
Operators and Operator CameraControl'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.2, 'Area Scan Trigger for microEnable IV VQ4-GE/-GPoE'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation. The camera can be triggered via cable connection
to the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.3, 'Area Scan Trigger for microEnable 5 marathon/LightBridge VCL'

Library Signal 1490

VisualApplets User Documentation Release 3

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.4, 'Area Scan Trigger for microEnable 5 VD8-CL/-PoCL'

An area scan trigger is presented. External sources, an internal frequency generator or software
trigger pulses can be used for trigger generation.

• Section 12.15.5, 'Area Scan Trigger for microEnable 5 marathon VCX QP'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.7, 'Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D'

An area scan trigger for CoaXPress is presented. External sources, an internal frequency generator
or software trigger pulses can be used for trigger generation.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.8.3, 'Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators'

A VisualApplets design example where all functions of operator TrgPortLine are rebuild using other
signal processing operators. Allows custom trigger modules.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

Library Signal 1491

VisualApplets User Documentation Release 3

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Signal 1492

VisualApplets User Documentation Release 3

31.34. Operator WidthToSignal

Operator Library: Signal

The operator generates a pulse for each rising edge at the input I. The pulse width is controlled by
input PI.

A rising edge at the input starts the pulse generation. The pulse width is equal to the last valid value
at input link PI and is measured in ticks being high.

During a pulse generation no new rising edges at the operator input can be accepted. In this case,
every new input rising edge will be ignored. Moreover, a change of the value at PI does not change the
current pulse processing. PI is sampled at the occurrence of a rising edge at the input.

The operator can be reseted using input link Reset. While the reset input is high, no output pulses are
processed. Any processing is aborted. The operator restarts operation when the reset input is low. The
following waveform illustrates the operator's behavior.

The Tick input defines the time, the operator is processing data. It can be used like a prescaler. In
most cases, the Tick input is not required. Tie it to operator VCC in this case. In the following figure,
the influence of the Tick input is shown.

One special case when using ticks is that input pulses are sampled even if no tick is present. This is
shown for the second input pulse of the waveform. This ensures that no input pulses can get lost.

This operator is excluded from the VisualApplets functional simulation.

Library Signal 1493

VisualApplets User Documentation Release 3

31.34.1. I/O Properties

Property Value
Operator Type O
Input Links I, signal input

PI, control image data input
Tick, signal input
Reset, signal input

Output Link O, signal output

Synchronous and Asynchronous Inputs

• All signal inputs may be sourced by the same or different M-type operators through an arbitrary
network of O-type operators. If they are sourced by the same M-type source, they will be
automatically synchronized.

• Input link PI is asynchronous to the signal inputs.

31.34.2. Supported Link Format

Link Parameter Input Link I Input Link PI Input Link Tick
Bit Width 1 [1, 64] 1
Arithmetic unsigned unsigned unsigned
Parallelism 1 1 1
Kernel Columns 1 1 1
Kernel Rows 1 1 1
Img Protocol VALT_SIGNAL {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

VALT_SIGNAL

Color Format VAF_GRAY VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE FL_NONE
Max. Img Width any any any
Max. Img Height any any any

Link Parameter Input Link Reset Output Link O
Bit Width 1 as I
Arithmetic unsigned as I
Parallelism 1 as I
Kernel Columns 1 as I
Kernel Rows 1 as I
Img Protocol VALT_SIGNAL as I
Color Format VAF_GRAY as I
Color Flavor FL_NONE as I
Max. Img Width any as I
Max. Img Height any as I

31.34.3. Parameters

None

Library Signal 1494

VisualApplets User Documentation Release 3

31.34.4. Examples of Use

The use of operator WidthToSignal is shown in the following examples:

• Section 13.5, 'Functional Example for Specific Operators of Library Signal'

Examples - Demonstration of how to use the operator

Library Synchronization 1495

VisualApplets User Documentation Release 3

32. Library Synchronization

The library includes operators for image synchronizations such as removing, appending, splitting,
inserting, ... of images, lines and pixels.

The following list summarizes all Operators of Library Synchronization

Operator Name Short Description available
since

AppendImage Appends images to a single image. Version 1.2

AppendImageDyn

Dynamically appending images controlled
by the input Append (as opposed to the
operator AppendImage, in which the amount of
concatenated images is defined by a parameter).

Version 3.3

AppendLine Appends multiple image lines into a single line. Version 1.2

AppendLineDyn

Dynamically appending several image lines into
a single line controlled by the input Append (as
opposed to the operator AppendLine, in which
the amount of concatenated lines is defined by a
parameter).

Version 3.3

CutImage
Dynamically cuts an image into a smaller one
(truncate mode) or into several separate images
(split mode), which is controlled by the input Cut.

Version 3.3

CutLine
Dynamically cutting lines of an image into smaller
ones (truncate mode) or into several separate lines
(split mode), which is controlled by the input Cut.

Version 3.3

CreateBlankImage The operator generates a binary image of the
specified width and height. Version 1.3

ExpandLine Replaces all lines of the output image by the last
line of the previous input image. Version 1.2

ExpandPixel Copies the last pixel of a line or frame to all pixels
in the next line or frame. Version 1.2

ImageValve This operator is a valve which controls the data flow
of the input link. Version 1.3

InsertImage Multiplexes input images in sequential order. Version 1.2

Library Synchronization 1496

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

InsertLine Multiplexes input lines in sequential order. Version 1.2

InsertPixel Insert pixels into an image. Version 1.2

IsFirstPixel Marks the first pixel value of a line (in mode=line) /
of a frame (in mode=frame). Version 3.0.5

IsLastPixel

Marks the last pixel of a line (in line mode) / of a
frame (in frame mode). Can also be used to mark
empty lines (in line mode) or frames (in frame
mode).

Version 3.0.5

PixelReplicator Replicates the pixels at the input link. Version 3.0.1

PixelToImage Allows to synchronize the 0D pixel stream with an
0D, 1D, or 2D image. Version 1.3

RemoveImage Completely remove images. Version 1.1

RemoveLine Completely removes image lines. Version 1.2

RemovePixel Removes specified pixels from images. Version 1.2

ReSyncToLine Accepts the data at the end of the line and
synchronize it with the current image line. Version 1.2

RxImageLink Receives images from a TxImageLink operator in
the design. Version 3.0

SourceSelector The operator provides a switch between n M-Type
sources. Version 1.3

SplitImage Splits images into new images of specified image
height. Version 1.2

SplitLine Splits an image line into multiple lines of specified
width. Version 1.2

Library Synchronization 1497

VisualApplets User Documentation Release 3

Operator Name Short Description available
since

SYNC Synchronizes image streams. Version 1.1

TxImageLink Sends images to an RxImageLink operator any
place in the design. Version 3.0

Overflow Overflow management for non-stoppable data
stream. Version 3.3

Table 32.1. Operators of Library Synchronization

Library Synchronization 1498

VisualApplets User Documentation Release 3

32.1. Operator AppendImage
Operator Library: Synchronization

The operator AppendImage concatenates input images into a larger output image. The number of
images assembled at the output link O is defined by the parameter AppendNumber. For example, when
AppendNumber is set to 2, the operator will assemble two successive images into a new larger one.

Note that the operator reduces the frame rate on its output by keeping the original bandwidth. The
frame rate is reduced by factor AppendNumber.

The output link image protocol of the operator can also be set to VALT_LINE1D. In this case, the
operator appends all incoming images into one image of unlimited height. This way, the operator can
be used to convert a 2D image stream into a 1D line stream. If the 2D to 1D conversion is used in
the VisualApplets simulation, images are not concatenated. In simulation, for every input image, one
output image is generated.

When changing the AppendNumber value dynamically while acquisition is running, the operator
guarantees image integrity. The operator keeps the old AppendNumber value until the output frame
is finished. After the completion of the current output frame the operator will start using the new
AppendNumber value for further merging.

Exceeded Maximum Image Height

Please note that it is possible to exceed the maximum image height defined in the output
link with this operator. Always ensure that the concatenated input images do not exceed
the parameterized maximum image height of the output link. Further operators might
not work correctly if the image height is exceeded.

For example, 3 input images of height 1024 are concatenated. The output image height
will be 3072. Thus, the maximum image height in the output link must be set to 3072 or
higher to ensure a correct functionality of the VisualApplets operators.

Converting 1D to 2D

If you want to perform a 1D to 2D conversion, you can use operator SplitImage. See
documentation on operator SplitImage.

32.1.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

32.1.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D, VALT_LINE1D
Color Format any as I

Library Synchronization 1499

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The maximum output image height has to be greater or equal than parameter AppendNumber
times the input image height. However, if the output link image protocol is set to VALT_LINE1D,
the parameter AppendNumber is deactivated.

32.1.3. Parameters

AppendNumber
Type dynamic read/write parameter
Default 1
Range [1, Max. Image Height(output link)]

The number of input images which are concatenated into a single output image.

This parameter can only be changed if the output link image protocol is set to VALT_IMAGE2D.

LinesToSimulate
Type static read/write parameter
Default 1
Range [1, 2^32 - 1]

The number of lines in the simulated 1D output stream.

This parameter can only be used during simulation if the output protocol is set to VALT_IMAGE1D.

Background information: In VisualApplets simulation, there are always 2-dimensional images
created. To be able to simulate lines, this parameter has been created (for simulation only). The
parameter allows to specify the number of lines that are to be simulated. During simulation,
these lines are put together to one 2-dimensional "image". This way, the individual lines can be
simulated. All lines that come in after the number specified in LinesToSimulate has been reached
are discarded. Exactly one 2-dimensional output image is generated for simulation.

32.1.4. Examples of Use

The use of operator AppendImage is shown in the following examples:

• Section 11.5, 'Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting '

Examples - Demonstration of how to use the operator

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Synchronization 1500

VisualApplets User Documentation Release 3

• Section 12.10.3, 'Image Composition Using Exposure Fusion'

Examples - ExposureFusion

Library Synchronization 1501

VisualApplets User Documentation Release 3

32.2. Operator AppendImageDyn
Operator Library: Synchronization

The operator AppendImageDyn dynamically concatenates input images into a larger output image.
Whether images are appended is controlled by the input Append, which is synchronous to input I. This
is the difference to the operator AppendImage, in which the amount of concatenated images is defined
by a parameter. Whenever any of the pixels of the input Append has the value 1, the following image
is appended to the current image.

Do Not Exceed the Maximum Image Height

By using this operator, it is possible to exceed the maximum image height as defined
in the output link. Therefore, always ensure that the concatenated input images do not
exceed the parameterized maximum image height of the output link. Operators that
follow in the design might not work correctly if the image height is exceeded.

32.2.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Append, control input
Output Link O, data output

32.2.2. Supported Link Format

Link Parameter Input Link I Input Link Append Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol VALT_IMAGE2D as I VALT_IMAGE2D
Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I as I
Max. Img Height any as I any

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].
The maximum output image height has to be greater or equal than the input image height.

32.2.3. Parameters

None

Library Synchronization 1502

VisualApplets User Documentation Release 3

32.2.4. Examples of Use

The use of operator AppendImageDyn is shown in the following examples:

• Section 13.2, 'Functional Example for Specific Operators of Library Synchronization: Dynamic Append
and Cut'

Examples - Demonstration of how to use the operator

Library Synchronization 1503

VisualApplets User Documentation Release 3

32.3. Operator AppendLine
Operator Library: Synchronization

The operator AppendLine concatenates image lines from the input image at the link I into a larger
line in the output image at the link O. The number of lines merged into a new line is defined by the
parameter AppendNumber. For example, when AppendNumber is set to 2, the operator will concatenate
2 successive lines from the input image into a new larger line in the output image. When the input
image height is not divisible by the AppendNumber parameter value, the last line in the output image
will be shorter and will contain the remaining last lines of the input image concatenated together.

Note that the operator does not change the frame rate nor does it change the bandwidth.

The output link image protocol of the operator can also be set to VALT_PIXEL0D, i.e. the operator
appends all incoming lines into a line of unlimited width. Thus, the operator can be used to convert a
2D image stream or 1D line stream into a 0D pixel stream.

By changing the AppendNumber value dynamically while acquisition is running, the operator
guarantees line integrity. The operator keeps the old AppendNumber value until the output line
is finished. After the completion of the current output line, the operator will start using the new
AppendNumber value for further merging.

Prevent Exceeding the Maximum Image Dimensions

By using this operator, it is possible to exceed the maximum image width and height
defined in the output link. Therefore, always ensure that the concatenated input lines
do not exceed the parameterized maximum image width of the output link. Also make
sure that the parameterized maximum image height of the output link is large enough.
Subsequent operators may not work correctly, if the image width or height exceeds the
limits specified by the link properties.

For example, 3 input lines of width 1024 are concatenated. The output image width will
be 3072. This width has to be specified in the output link to ensure a correct functionality
of the VisualApplets operators.

32.3.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

32.3.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
{VALT_IMAGE2D, VALT_LINE1D,
VALT_PIXEL0D}

Color Format any as I
Color Flavor any as I
Max. Img Width any any

Library Synchronization 1504

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The maximum image width has to be greater than or equal to parameter AppendNumber times
the input image width.

32.3.3. Parameters

AppendNumber
Type dynamic read/write parameter
Default 1
Range Input IMAGE2D: [1, Input Maximum Image Height]; Input LINE1D: [1, Output

Maximum Image Width / Parallelism]

The number of input lines which are concatenated into a single output line.

This parameter can only be changed, if the output link image protocol is not set to VALT_PIXEL0D.

LinesToSimulate
Type static read/write parameter
Default 1
Range [1, 2^32 - 1]

The number of lines in the simulated 1D output stream.

This parameter can only be used during simulation, if the input image protocol is set to
VALT_IMAGE2D and the output protocol is set to VALT_IMAGE1D.

Exactly one output image is generated. Remaining input lines are discarded.

PixelsToSimulate
Type static read/write parameter
Default 1
Range [1, 2^32 - 1]

The number of input pixels in the simulated 0D output stream.

This parameter can only be used during simulation, if the input image protocol is set to
VALT_IMAGE2D or VALT_IMAGE1D and the output protocol is set to VALT_IMAGE0D.

Exactly one output image is generated. Remaining input pixels are discarded.

32.3.4. Examples of Use

The use of operator AppendLine is shown in the following examples:

• Section 9.3.1.4, 'Stitching of Two Cameras'

Tutorial - Use of the operator for stitching the images of two cameras.

• Section 12.9.9, 'Tap Geometry Sorting'

Examples - Scaling A Line Scan Image

Library Synchronization 1505

VisualApplets User Documentation Release 3

32.4. Operator AppendLineDyn
Operator Library: Synchronization

The operator AppendLineDyn dynamically concatenates image lines from the input image at the link I
into a larger line in the output image at the link O. Whether lines shall be appended is controlled by
the input Append, which is synchronous to input I. This is the difference to the operator AppendLine,
in which the amount of concatenated lines is defined by a parameter. Whenever any of the pixels of a
line at the input Append has the value 1, the following line is appended to the current line.

The operator does not change the frame rate nor does it change the bandwidth.

Using this operator may typically result in images with different line widths depending on the pattern
on input Append.

Do Not Exceed the Maximum Image Dimensions

By using this operator, it is possible to exceed the maximum image width and height as
defined in the output link. Therefore, always ensure that the concatenated input lines
do not exceed the parameterized maximum image width of the output link. Also make
sure that the parameterized maximum image height of the output link is large enough.
Operators that follow in the design may not work correctly, if the image width or height
exceeds the limits specified by the link properties.

For example, 3 input lines with the width 1024 are concatenated. The output image width
will be 3072. Thus, the maximum image width in the output link must be set to 3072 or
higher to ensure a correct functionality of the VisualApplets operators.

32.4.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Append, control input
Output Link O, data output

32.4.2. Supported Link Format

Link Parameter Input Link I Input Link Append Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I as I

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I any
Max. Img Height any as I any

The range of the input bit width is:

• For unsigned inputs: [1, 64]

Library Synchronization 1506

VisualApplets User Documentation Release 3

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].
The maximum image width has to be greater or equal than the input image width.

32.4.3. Parameters

None

32.4.4. Examples of Use

The use of operator AppendLineDyn is shown in the following examples:

• Section 13.2, 'Functional Example for Specific Operators of Library Synchronization: Dynamic Append
and Cut'

Examples - Demonstration of how to use the operator

Library Synchronization 1507

VisualApplets User Documentation Release 3

32.5. Operator CutImage
Operator Library: Synchronization

The operator CutImage dynamically cuts the input image into a number of smaller images. Cutting is
controlled by the input Cut, which is synchronous to input I. The operator supports two cutting modes
which are set by the parameter Mode:

• If Mode is set to Split (default), the incoming image is split into several pieces. Whenever any of the
pixels of the current line at input Cut has the value 1, the ongoing output image is terminated at the
end of that line and a new image is started with the beginning of the next incoming line. Any value
of 1 in the last line of an image at input Cut has no effect.

• If Mode is set to Truncate the incoming image is cut to a single image which may have less lines
than the incoming image. Whenever any of the pixels of the current line at input Cut has the value 1,
the ongoing output image is terminated at the end of that line. No further image data is forwarded
to the output O until the end of the current image.

Increased Frame Rate

In mode Split, the operator may increase the frame rate by keeping the original
bandwidth. In mode Truncate, the operator doesn't change the frame rate but may reduce
the mean bandwidth.

You can use the operator CutImage to convert a 1D image into a 2D image. The conversion is
automatically performed, if a link using the image protocol VALT_LINE1D is connected to the operator's
input. In this case the operator is always in Split mode and the parameter Mode is disabled. For
example, the 1D input of a line scan camera can be split into images of varying height depending on
the control input, effectively creating a 2D output stream.

The operator supports images with variable line length.

32.5.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Cut, control input
Output Link O, data output

32.5.2. Supported Link Format

Link Parameter Input Link I Input Link Cut Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I VALT_IMAGE2D

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I as I
Max. Img Height any as I as I

Library Synchronization 1508

VisualApplets User Documentation Release 3

The range of the input bit width is:

• For unsigned inputs: [1, 64]

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].

32.5.3. Parameters

Mode
Type static read/write parameter
Default Split
Range {Split,Truncate}

Operation mode.

• If Mode is set to Split (default), the incoming image is split into several pieces. Whenever any of
the pixels of the current line at input Cut has the value 1, the ongoing output image is terminated
at the end of that line and a new image is started with the beginning of the next incoming line.
Any value of 1 in the last line of an image at input Cut has no effect.

• If Mode is set to Truncate the incoming image is cut to a single image which may have less lines
than the incoming image. Whenever any of the pixels of the current line at input Cut has the
value 1, the ongoing output image is terminated at the end of that line. No further image data is
forwarded to the output O until the end of the current image.

32.5.4. Examples of Use

The use of operator CutImage is shown in the following examples:

• Section 13.2, 'Functional Example for Specific Operators of Library Synchronization: Dynamic Append
and Cut'

Examples - Demonstration of how to use the operator

Library Synchronization 1509

VisualApplets User Documentation Release 3

32.6. Operator CutLine
Operator Library: Synchronization

The operator CutLine dynamically cuts lines of an input image into a number of shorter lines. Cutting
is controlled by the input Cut, which is synchronous to input I. Cutting is done at the granularity given
by parallelism P. Therefore, no dummy pixels are generated. When a pixel value at input Cut is 1, the
corresponding pixel from input I is still contained in the output of the current line. The line is terminated
after the next possible pixel position so the granularity condition is met. The operator supports two
cutting modes which are set by the parameter Mode:

• If Mode is set to Split (default), the incoming lines are split into several pieces. Whenever a pixel of
the current line at input Cut has the value 1, the ongoing output line is terminated at the granularity
given by parallelism P. A new line is then started with the beginning of the next incoming pixels. Any
value of 1 in the last parallelism P pixels of a line has no effect.

• If Mode is set to Truncate, the incoming line is cut to a single line which may be shorter than the
incoming line. Whenever a pixel of the current line at input Cut has the value 1, the ongoing output
line is terminated at the granularity given by parallelism P. No further pixels are forwarded to the
output O until the end of the current line.

The operator might generate output images with different line lengths. Not all VisualApplets operators
can process images using varying line lengths.

You can also use the CutLine operator to convert a 0D image into a 1D image. The conversion is
automatically performed, if a link using the image protocol VALT_PIXEL0D is connected to the operator's
input. In this case the operator is always in Split mode and the parameter Mode is disabled.

32.6.1. I/O Properties

Property Value
Operator Type M
Input Links I, data input

Cut, control input
Output Link O, data output

32.6.2. Supported Link Format

Link Parameter Input Link I Input Link Cut Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I auto

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I any
Max. Img Height any as I any

The range of the input bit width is:

• For unsigned inputs: [1, 64]

Library Synchronization 1510

VisualApplets User Documentation Release 3

• For signed inputs: [2, 64]

• For unsigned color inputs: [3, 63]

• For signed color inputs: [6, 63].
If VALT_IMAGE2D or VALT_LINE1D is used, the output image protocol is the same as the input
image protocol. If VALT_PIXEL0D image protocol is used at the input, the operator converts the
image into the VALT_LINE1D image protocol.
The output maximum image width has to be less than or equal to the input maximum image width.
The output maximum image height has to be greater than or equal to the input image height.

32.6.3. Parameters

Mode
Type static read/write parameter
Default Split
Range {Split,Truncate}

Operation mode.

• If Mode is set to Split (default), the incoming lines are split into several pieces. Whenever a
pixel of the current line at input Cut has the value 1, the ongoing output line is terminated at
the granularity given by parallelism P and a new line is started with the beginning of the next
incoming pixels. Any value of 1 in the last parallelism P pixels of a line has no effect.

• If Mode is set to Truncate, the incoming line is cut to a single line which may be shorter than
the incoming line. Whenever a pixel of the current line at input Cut has the value 1, the ongoing
output line is terminated at the granularity given by parallelism P. No further pixels are forwarded
to the output O until the end of the current line.

32.6.4. Examples of Use

The use of operator CutLine is shown in the following examples:

• Section 13.2, 'Functional Example for Specific Operators of Library Synchronization: Dynamic Append
and Cut'

Examples - Demonstration of how to use the operator

Library Synchronization 1511

VisualApplets User Documentation Release 3

32.7. Operator CreateBlankImage
Operator Library: Synchronization

This operator generates a blank binary image of the specified width and height. The operator does not
require any input links. The output image width and height is specified using parameters ImageWidth
and ImageHeight.

The operator will output the blank images at the maximum possible speed. Thus the output speed
is only limited by the output link parallelism and the following operators. The VisualApplets flow
control will limit the bandwidth if further operators cannot process the data rates produces by
CreateBlankImage.

Often, this operator is used to test the functionality of an implementation without the need to connect
a camera. Using operators such as Coordinate_x, Coordinate_y and ImageNumber, the operator can
be used to generate test patterns. In conjunction with operator ImageValve the frame, line or pixel
rate can be controlled.

The image dimensions of the generated images can only be changed when the acquisition is not running
i.e. stopped.

In case of 1D application the ImageHeight parameter is ignored. In case of 0D application both
ImageWidth and ImageHeight are ignored.

The operator can easily be used with the VisualApplets simulation. The operator generates simulation
images itself. It is working as a simulation source. Therefore, it is not required to add a simulation
source probe to the output link of the operator.

Behavior during simulation

The operator outputs at least one data set per simulation step. Depending on the current
link configuration at the output port this data set is

• a series of pixels in 0D mode. The amount of pixels is controlled via parameter
PixelsToSimulate

• a series of lines in 1D mode. The amount of lines is controlled via parameter
LinesToSimulate

• a series of frames in 2D mode. The amount of frames is controlled via parameter
FramesToSimulate

The default value of those parameters is 1. Depending on the current link configuration at
the output port only the relevant parameter is editable and the others are inactive. I.e.,
for 0D only PixelsToSimulate is editable while for 1D the parameters LinesToSimulate
and ImageWidth are editable.

The operator guarantees image integrity while parameters ImageHeight or ImageWidth are changed
during acquisition. After the completion of the current frame output the operator will start using the
new parameter values.

32.7.1. I/O Properties

Property Value
Operator Type M
Output Link O, data output

32.7.2. Supported Link Format

Link Parameter Output Link O
Bit Width 1

Library Synchronization 1512

VisualApplets User Documentation Release 3

Link Parameter Output Link O
Arithmetic unsigned
Parallelism any
Kernel Columns 1
Kernel Rows 1
Img Protocol {VALT_IMAGE2D, VALT_LINE1D, VALT_PIXEL0D}
Color Format VAF_GRAY
Color Flavor FL_NONE
Max. Img Width any
Max. Img Height any

32.7.3. Parameters

ImageWidth
Type dynamic/static read/write parameter
Default 1024
Range [0, Maximum Output Image Width], step size = output parallelism

Specifies the width of the generated images. This parameter is enabled only if the operator's output
image protocol is set to VALT_IMAGE2D or VALT_LINE1D.

ImageHeight
Type dynamic/static read/write parameter
Default 1024
Range [1, Maximum Output Image Height]

Specifies the height of the generated images. This parameter is enabled only if the operator's
output image protocol is set to VALT_IMAGE2D.

FramesToSimulate
Type static write parameter
Default 1
Range [1, 2^32 - 1]

If the output link image protocol is set to VALT_IMAGE2D, this parameter specifies the number of
frames which are generated for a single simulation step. See Section 3.10, 'Simulation' for more
information on 2D simulations. This parameter can only be changed, if the output image protocol is
set to VALT_IMAGE2D.

LinesToSimulate
Type static write parameter
Default 1
Range [1, 2^32 - 1]

If the output link image protocol is set to VALT_LINE1D, it is required to specify the number of lines
for simulation. This parameter is used to specify the simulation image height. See Section 3.10,
'Simulation' for more information on 1D simulations. This parameter can only be changed if the
output image protocol is set to VALT_LINE1D.

PixelsToSimulate
Type static write parameter
Default 1
Range [1, 2^32 - 1], step size = output parallelism

Library Synchronization 1513

VisualApplets User Documentation Release 3

PixelsToSimulate
If the output link image protocol is set to VALT_PIXEL0D, it is required to specify the size of the
pixel stream for simulation. This parameter is used to specify the simulation pixel stream width.
See Section 3.10, 'Simulation' for more information on 0D simulations. This parameter can only be
changed if the output image protocol is set to VALT_LINE0D.

32.7.4. Examples of Use

The use of operator CreateBlankImage is shown in the following examples:

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.2, 'Image Dimension Test'

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.6.5, 'Image Monitoring'

Example - For debugging purposes image transfer states on links can be investigated.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

Library Synchronization 1514

VisualApplets User Documentation Release 3

32.8. Operator ExpandLine
Operator Library: Synchronization

The operator ExpandLine stores the last image line of each input image. This stored image line will
used to replace all image lines of the next image at the output. In other words, the operator copies
the last image line to all lines of the next image.

Mind, that the behavior of this operator will only affect the following frame and not the current frame.
Therefore, the output data of the first frame after acquisition start has to be be specified using
parameter Init.

If the width of a successive frame is less than the previous frame, the operator will keep the image
dimension and only output the first part of the stored line. If the width of a successive frame is greater
than the previous frame, the operator will fill the missing pixels with random memory content.

Operator Restrictions

• Empty images are not supported.

Images with varying line lengths are not supported.

Input image dimension must be equal to the maximum image dimensions set in the link.

32.8.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

32.8.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol VALT_IMAGE2D as I
Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

32.8.3. Parameters

Init
Type static parameter
Default 0
Range [0, 2^InputBitWidth - 1]

Library Synchronization 1515

VisualApplets User Documentation Release 3

Init
The parameter specifies the initialization value of the pixels of the first output frame. The
parameter will only accept unsigned values. For signed initialization values enter its unsigned
representation.

32.8.4. Examples of Use

The use of operator ExpandLine is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Synchronization 1516

VisualApplets User Documentation Release 3

32.9. Operator ExpandPixel
Operator Library: Synchronization

The operator ExpandPixel copies the last pixel of a line or frame to all pixels in the next line or frame.
The operator is used in two modes:

• Line Sync mode:

In this mode, for each line the last pixel value in a line is stored and kept constant for the next line.

To use this mode, set the parameter AutoSync to EoL.

• Frame Sync mode:

In this mode for each frame the last pixel in the image is stored and kept constant during the next
frame.

To use this mode, set the parameter AutoSync to EoF .

Mind that the behavior of this operator will only affect the following line or frame and not the current line
or frame. For this reason the output for the first line or frame has to be specified via the parameter Init.

When using the Line Sync mode with a 2D protocol, then the last pixel value of the last line of a frame
is used for the output of pixels of the first line of the following frame. So the value of parameter Init
is only used for the very first frame.

Operator Restrictions

• Empty images are not supported.

Images with varying line lengths are not supported.

32.9.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link O, data output

32.9.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Synchronization 1517

VisualApplets User Documentation Release 3

32.9.3. Parameters

Init
Type static parameter
Default 0
Range [0, 2^InputBitWidth - 1]

The parameter specifies the initialization value of of the pixels of the first image lines if AutoSync
is set to EoL or the parameter specifies the pixels of the first output frame if AutoSync is set to Eof.
The parameter will only accept unsigned values. For signed initialization values enter its unsigned
representation.

AutoSync
Type static parameter
Default EoL
Range {EoL, EoF}

Specifies the synchronization mode of the operator. Use mode EoL to copy the last pixel of each line
to all pixels of the following line. Use mode EoF to copy the last pixel of each frame to all pixels of
the following frame. If the image protocol at the output is set to VALT_LINE1D, the parameter can
only be set to EoL.

32.9.4. Examples of Use

The use of operator ExpandPixel is shown in the following examples:

• Section 12.2.2, 'Auto Threshold Mean'

Determines the mean value of an image and used the value as threshold value for the next image
processed.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

Library Synchronization 1518

VisualApplets User Documentation Release 3

32.10. Operator ImageValve
Operator Library: Synchronization

This operator can be used as a valve to control the data flow of the input link. The signal input OpenValve
is used to control the valve. Hence, the operator allows to influence the data flow of pixels, lines
and frames between I and O. Limiting the maximum bandwidth is the main purpose of this operator.
Broadly, this operator is used to block and to control the speed of image processing. For example, this
operator can be used in conjunction with CreateBlankImage to implement an image generator with
controllable output frame rate.

If the valve is closed, the VisualApplets flow control will block all incoming data. The input pipeline will
then be blocked. Ensure that a sufficiently sized buffer is used if operators are used that cannot stop
their processing. An example are free running cameras connected to the frame grabber. If the output
of the operator is blocked by any successive operator, the operator will forward this block to the input.
In this case the opening of the valve has no influence. Do not mix up the valve with a gate. A gate
operator discards the input data while it is closed.

The valve is controlled by the signal input OpenValve and the operator's parameters. If OpenValve is
set to one, the operator allows the pass of SequenceLength pixels, lines or frames depending on the
parameter settings of Mode.

If OpenValve is set to a constant one the operator allows an unblocked pass of the image data from
input link I to output link O, i.e. the valve is open all the time.

If a second pulse is set to OpenValve while the operator's valve is still open and a sequence is
processed, the pulse is ignored. If the sequence length is changed using parameter SequenceLength
while currently a sequence is processed, the operator first finishess the previous sequence and will
use the new value afterwards.

The high level simulation in VisualApplets will pass all input images directly to the output as no timing
is simulated. Any values at input link OpenValve are ignored.

32.10.1. I/O Properties

Property Value
Operator Type M
Input Links I, data input

OpenValve, control signal input
Output Link O, data output

32.10.2. Supported Link Format

Link Parameter Input Link I Input Link OpenValve Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any 1 as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

VALT_SIGNAL as I

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any any as I
Max. Img Height any any as I

Library Synchronization 1519

VisualApplets User Documentation Release 3

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are asynchronous to each other.

32.10.3. Parameters

Mode
Type dynamic/static read/write parameter
Default FRAME
Range {PIXEL, LINE, FRAME}

Set the mode of the operator. Depending on this parameter the valve opens for SequenceLength
pixels, lines or frames.

The availability of modes LINE and FRAME depends on the image protocol of input link I.

SequenceLengthBits
Type static parameter
Default 10
Range [1, 64]

Set the number of bits to represent the sequence length.

This parameter is activated only if parameter SequenceLength is set to dynamic.

SequenceLength
Type dynamic/static read/write parameter
Default 1
Range dynamic: [1, 2^SequenceLengthBits - 1], static: [1, 2^64 - 1]

Set the length of the sequence. The operator will output the given number of pixels, lines or frames
depending on parameter Mode if the operator is in open state.

If Mode is set to PIXEL, the value has to be divisible by the parallelism.

32.10.4. Examples of Use

The use of operator ImageValve is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.7, 'Image Flow Control'

Example - For debugging purposes of the designs internal data flow control in hardware and a possible
compensation.

Library Synchronization 1520

VisualApplets User Documentation Release 3

32.11. Operator InsertImage
Operator Library: Synchronization

The operator InsertImage multiplexes a number of n input links I[0] .. I[n-1] into the output link O.
Thus the operator outputs the input images of all inputs in sequential order at O.

The operator forwards the input images to the output one after the other. First, input link I[0] is
processed, next link I[1]. After link I[n-1] the operator starts with the next image at I[0] again etc.
The operator waits until an image at a currently selected input is present. Therefore it is not possible
to skip inputs. There is no "first come first processed" strategy.

As explained, the operator only forwards a specific input at a certain time. While one input is processed
all other inputs are blocked. If an image is present at a blocked input, ensure that it can be buffered
until it's processed. Moreover, users have to ensure that multiple inputs are not sourced by the same
image source as this will cause a deadlock. Check tutorial Section 9.3.1.3, 'Multiplex the Images of
Two Cameras' for more information on correct inserting.

For every input I[k], the operator provides a controlling input Ins[k]. These inputs are used to control
whether the data of an image has to be used and forwarded to the output or should be discarded. The
Ins[k] inputs accept binary data. If a one is provided for the very first pixel of a respective image, the
image will be forwarded to the output. Whereas if value zero is provided for the very first pixel of a
respective image, the image will be processed but discarded.

The I[k] and Ins[k] pairs are synchronous i.e. they have to be sources by the same M-type source
though an arbitrary network of O-type operators. See Section 3.6.4, 'M-type Operators with Multiple
Inputs' for more information. Therefore, no SYNC operator is required for these pairs (different in VA
versions < VA2).

The output frame rate of the operator is n times higher than the input frame rate. However, the output
parallelism is not increased. Therefore, the output bandwidth is equal to the input bandwidth while
more data might be required to be transferred. It might be necessary to increase the parallelism of
the inputs before the operator is processing the data.

All images at I[k] can be of different height and width. Control inputs Ins[k] are ignored for empty
input images. These images will not be forwarded to the output i.e. will be discarded.

32.11.1. I/O Properties

Property Value
Operator Type M
Input Links I[0], data input

I[k], data input
Ins[k], control input

Output Link O, data output

32.11.2. Supported Link Format

Link Parameter Input Link I[0] Input Link I[k]
Bit Width [1, 64] as I[0]
Arithmetic {unsigned, signed} as I[0]
Parallelism any as I[0]
Kernel Columns any as I[0]
Kernel Rows any as I[0]
Img Protocol VALT_IMAGE2D as I[0]
Color Format any as I[0]
Color Flavor any as I[0]

Library Synchronization 1521

VisualApplets User Documentation Release 3

Link Parameter Input Link I[0] Input Link I[k]
Max. Img Width any any
Max. Img Height any any

Link Parameter Input Link Ins[k] Output Link O
Bit Width 1 as I[0]
Arithmetic unsigned as I[0]
Parallelism as I[0] as I[0]
Kernel Columns 1 as I[0]
Kernel Rows 1 as I[0]
Img Protocol as I[0] as I[0]
Color Format VAF_GRAY as I[0]
Color Flavor FL_NONE as I[0]
Max. Img Width as I[k] auto
Max. Img Height as I[k] auto

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The maximum output image width is the maximum of all I[k] input image widths.
The maximum output image height is the maximum of all I[k] input image heights.

Synchronous and Asynchronous Inputs

• Synchronous Groups: I[k] and Ins[k]

• All groups are asynchronous to each other.

32.11.3. Parameters

None

32.11.4. Examples of Use

The use of operator InsertImage is shown in the following examples:

• Section 9.3.1.3, 'Multiplex the Images of Two Cameras'

Tutorial - Use of the operator for multiplexing the images of two cameras.

• Section 11.5, 'Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting '

Examples - Demonstration of how to use the operator

• Section 12.4.2.2, 'Color Plane Separation Option 2 - Three Buffers, One DMA'

Sequential output of the color planes using three image buffers and one DMA operator.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

Library Synchronization 1522

VisualApplets User Documentation Release 3

Library Synchronization 1523

VisualApplets User Documentation Release 3

32.12. Operator InsertLine
Operator Library: Synchronization

The operator InsertLine multiplexes the lines of N input links I[0] .. I[n-1] into the output link O. Thus
the operator outputs the input image lines of all inputs in sequential order at O.

The operator forwards the input image lines to the output one after the other. With every new frame
the operator starts with input I[0]. First, the first line of input I[0] is processed and forwarded to the
output. Next, the first line of input I[1] is processed. After the first line of I[n-1] has been processed,
the operator continuous with the second line of I[0] etc. The operator waits until the required line at
the currently selected input is present. Therefore it is not possible to skip inputs. There is no "first
come first processed" strategy.

As explained, the operator only forwards a specific input at a certain time. While one input is processed
all other inputs are blocks. If an image line is present at a blocked input, ensure that it can be buffered
until it's processed. Moreover, users have to ensure that multiple inputs are not sourced by the same
image source as this will cause a deadlock. Check tutorial Section 9.3.1.3, 'Multiplex the Images of Two
Cameras' for more information on correct inserting. The example is similar for the InserLine operator.

For every input I[k], the operator provides a controlling input Ins[k]. These inputs are used to control
whether the data of an image line has to be used and forwarded to the output or should be discarded.
The Ins[k] inputs accept binary data. If a one is provided for the very first pixel of a respective image
line, the line will be forwarded to the output. Whereas if value zero is provided for the very first pixel
of a respective image line, the line will be processed but discarded.

The I[k] and Ins[k] pairs are synchronous i.e. they have to be sources by the same M-type source
though an arbitrary network of O-type operators. See Section 3.6.4, 'M-type Operators with Multiple
Inputs' for more information. Therefore, no SYNC operator is required for these pairs (different in VA
versions < VA2).

The output image size of the operator is n times higher than the input image sizes. However, the output
parallelism is not increased. Therefore, the output bandwidth is equal to the input bandwidth while
more data might be required to be transferred. It might be necessary to increase the parallelism of
the inputs before the operator is processing the data.

All images at I[k] can be of different width. However, the height of all images has to be equal. Control
inputs Ins[k] are ignored for empty input lines. These lines will not be forwarded to the output i.e.
will be discarded.

32.12.1. I/O Properties

Property Value
Operator Type M
Input Links I[0], data input

I[k], data input
Ins[k], control input

Output Link O, data output

32.12.2. Supported Link Format

Link Parameter Input Link I[0] Input Link I[k]
Bit Width [1,64] as I[0]
Arithmetic {unsigned, signed} as I[0]
Parallelism any as I[0]
Kernel Columns any as I[0]
Kernel Rows any as I[0]

Library Synchronization 1524

VisualApplets User Documentation Release 3

Link Parameter Input Link I[0] Input Link I[k]
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I[0]

Color Format any as I[0]
Color Flavor any as I[0]
Max. Img Width any any
Max. Img Height any as I[0]

Link Parameter Input Link Ins[k] Output Link O
Bit Width 1 as I[0]
Arithmetic unsigned as I[0]
Parallelism as I[0] as I[0]
Kernel Columns 1 as I[0]
Kernel Rows 1 as I[0]
Img Protocol as I[0] as I[0]
Color Format VAF_GRAY as I[0]
Color Flavor FL_NONE as I[0]
Max. Img Width as I[k] auto
Max. Img Height as I[k] N * I[0]

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The maximum output image width is the maximum of all input image widths.
As of VisualApplets version 3.3.0, and only if in the Simulation Build Setttings the option
Simulate 1D Line By Line is selected: If the Image Protocol is set to VALT_LINE1D, the maximum
output image height is forced to 1.

Synchronous and Asynchronous Inputs

• Synchronous Groups: I[k] and Ins[k]

• All groups are asynchronous to each other.

32.12.3. Parameters

None

32.12.4. Examples of Use

The use of operator InsertLine is shown in the following examples:

• Section 3.6.6, 'Timing Synchronization'

Timing Synchronization - Using M-type Operators with synchronous input groups and avoiding
deadlocks.

• Section 9.3.1.4, 'Stitching of Two Cameras'

Tutorial - Use of the operator for stitching the images of two cameras.

• Section 11.5, 'Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting '

Examples - Demonstration of how to use the operator

• Section 12.4.2.4, 'Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI
and a pre-sort of the Color Planes'

Library Synchronization 1525

VisualApplets User Documentation Release 3

Sequential DMA output of the color planes. The color separations is performed using operator
ImageBufferMultiROI. An additional pre-sorting optimizes the bandwdith and resources.

• Section 12.9.9, 'Tap Geometry Sorting'

Examples - Scaling A Line Scan Image

Library Synchronization 1526

VisualApplets User Documentation Release 3

32.13. Operator InsertPixel
Operator Library: Synchronization

Library: Synchronization

The operator InsertPixel inserts arbitrary pixel from the image on input link I1 into the image on I0
and outputs the combined image at O.

The insertion is controlled using the binary input link Ins. If Ins = 1 for a specific pixel, the value at
I1 is inserted into the image at I0. Thus the output line length is increased by the number of inserted
pixel. For example if Ins == 1 for all pixel, the line length at O be doubled compared to the input line
length. All output pixels at even pixel coordinates are originated from I0 and all odd pixel are from I1.
If Ins == 0 for all pixels, the output image at O is equal to the image at I0.

All input links have to be synchronous i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O type operators.

The operator doubles the parallelism to avoid bandwidth limitations. Please note: It is possible that
the number of inserted pixels is not a multiple of the parallelism. In this case, the operator has to
add dummy pixels at the end of the line. The value of these dummy pixels is undefined. During VA
simulation dummy pixels are set to zero for better visibility.

32.13.1. I/O Properties

Property Value
Operator Type P
Input Links I0, data input

I1, data input
Ins, control input

Output Link O, data output

32.13.2. Supported Link Format

Link Parameter Input Link I0 Input Link I1
Bit Width [1, 64] as I0
Arithmetic {unsigned, signed} as I0
Parallelism any as I0
Kernel Columns any as I0
Kernel Rows any as I0
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
as I0

Color Format any as I0
Color Flavor any as I0
Max. Img Width any as I0
Max. Img Height any as I0

Link Parameter Input Link Ins Output Link O
Bit Width 1 as I0
Arithmetic unsigned as I0
Parallelism as I0 2 * I0
Kernel Columns 1 as I0
Kernel Rows 1 as I0

Library Synchronization 1527

VisualApplets User Documentation Release 3

Link Parameter Input Link Ins Output Link O
Img Protocol as I0 as I0
Color Format VAF_GRAY as I0
Color Flavor FL_NONE as I0
Max. Img Width as I0 2 * I0
Max. Img Height as I0 as I0

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output image width must not exceed 2^31 - 1.

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

32.13.3. Parameters

None

32.13.4. Examples of Use

The use of operator InsertPixel is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Synchronization 1528

VisualApplets User Documentation Release 3

32.14. Operator IsFirstPixel
Operator Library: Synchronization

Operator IsFirstPixel marks the first pixel in a line (in line mode) or in a frame (in frame mode). The
operator outputs a 1 on its output port IsFirstO for each first pixel of a line/frame.

Empty line: If the operator receives an empty line, it also outputs an empty line. IsFirstO is NOT set
to 1 in this case.

Empty frame: If the operator receives an empty frame, it also outputs an empty frame. IsFirstO is
NOT set to 1 in this case.

Operator IsFirstPixel is an O-type operator. The pixel values received on the input port I are not
interpreted.

Example (parameter Mode = Line):

Parallelism > 1

If parallelism > 1, only the first pixel in the parallelism is marked with a 1 on output port
IsFirstO. All other parallelism components are 0.

Example: If Parallelism = 4, IsFirstO is 0x1 at the first pixel, and in all other cases 0.

32.14.1. I/O Properties

Property Value
Operator Type O
Input Link I, data input
Output Link IsFirstO, output of 1 for first pixel in line/frame

and 0 for all other pixels

32.14.2. Supported Link Format

Link Parameter Input Link I Output Link IsFirstO
Bit Width [1, 63] 1
Arithmetic {unsigned, signed} unsigned
Parallelism any as I
Kernel Columns any 1
Kernel Rows any 1
Img Protocol {VALT_PIXEL0D, VALT_LINE1D,

VALT_IMAGE2D}
as I

Library Synchronization 1529

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link IsFirstO
Color Format {VAF_COLOR, VAF_GRAY} VAF_GRAY
Color Flavor any FL_NONE
Max. Img Width any as I
Max. Img Height any as I

The maximum image width must be divisible by the parallelism.

32.14.3. Parameters

Mode
Type static or dynamic write parameter
Default Frame
Range {Line, Frame}

If set to "Line", the operator marks the first pixel in a line. The operator outputs a 1 on its output
port IsFirstO for each first pixel of a line.

If set to "Frame", the operator marks the first pixel in a frame. The operator outputs a 1 on its
output port IsFirstO for each first pixel of a frame.

This parameter you can set to static or dynamic. When you use the parameter as a dynamic
parameter: A shadow register is implemented, and the change is taken over between

• two images (when I is VALT_IMAGE2D),

• two lines (when I is I is VALT_ LINE1D),

• directly (when I is I is VALT_ PIXEL0D),

and always at reset. Until then, the old value is used.

32.14.4. Examples of Use

The use of operator IsFirstPixel is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Synchronization 1530

VisualApplets User Documentation Release 3

32.15. Operator IsLastPixel
Operator Library: Synchronization

Operator IsLastPixel marks the last pixel of a line (in line mode) / of a frame (in frame mode). The
operator can also be used to mark empty lines (in line mode) or empty frames (in frame mode).

The operator has 1 input port and 2 - 3 output ports:

• Input port I,

• Output port O,

• ouput port IsLastO, and

• (optional) output port IsEmptyO.

General Operator Functionality

Operator IsLastPixel always holds the current pixel value. As soon as a new pixel value comes in on
input port I, the previous pixel value is put out on output port O. The pixel values received on input
port I are not interpreted.

The last pixel of a line (in line mode) or of a frame (in frame mode) is marked with 1 on output port
IsLastO:

• Line Mode: For each EndOfLine (EOL) tag that operator IsLastPixel receives, the operator outputs
a 1 on its output port IsLastO.

• Frame Mode: For each EndOfFrame (EOF) tag that operator IsLastPixel receives, the operator
outputs a 1 on its output port IsLastO.

End of Line / End of Frame information is always put out on IsLastO with a delay of one or more clock
cycles (in accordance to the gap between the last incoming pixel and the incoming end-of-line tag; it's
always the number of clock cycles of the gap + 1 additional clock cycle).

No Empty Lines/Frames allowed

As long as you do not use IsEmptyO (see below):

Library Synchronization 1531

VisualApplets User Documentation Release 3

• In frame mode, the last line must not be empty.

• In line mode, empty lines are not allowed at all.

Marking Empty Lines or Frames (Activating IsEmptyO)

In addition, you can get a marker for each empty line / each empty frame. The marker will be output
on the additional output port IsEmptyO.

Output port IsEmptyO is de-activated by default.

To activate output port IsEmptyO:

1. When instantiating the operator, set the value for Output (IsEmptyO) to 1.

When output port IsEmptyO is activated:

• Line Mode: For each empty line that operator IsLastPixel receives, the operator outputs

• parallelism x zeros on its output port O*, and

• a 1 on on its output port IsEmptyO.

• Frame Mode: For each empty frame that operator IsLastPixel receives, the operator outputs

• parallelism x zeros on its output port O, and

• a 1 on on its output port IsEmptyO.

In all other cases, output port IsEmptyO is 0.

*Example: If you work in line mode with a parallelism of 6, on output port O six pixel are inserted
for each empty line.

Pixel Stops only at Start of New Pixel or End-of-Line Tag

Operator IsLastPixel outputs a pixel only an the moment the operator receives the next
pixel or an end-of-line tag (EOL). This is of special importance in cases where the end-
of-line tag is not received directly after the last pixel.

Example (parameter Mode = Line) with activated output port IsEmptyO:

Library Synchronization 1532

VisualApplets User Documentation Release 3

The red pixel on output port O is the dummy pixel with the value 0 that has been inserted for the
empty line.

On output port IsLastO, the empty line gets a 1, that is, the empty line looks the same as the fourth
line of the example which contains one pixel already when incoming on input port I. Thus, when output
port IsEmptyO is activated, the output on port IsLastO can only be interpreted in conjunction with the
output on port IsEmptyO.

In the example above, port IsLastO outputs a 1 for line 4 and for line 8. The 0 for line 4 in IsEmptyO
tells us that the incoming line was NOT empty and therefore contained 1 pixel. The 1 for line 8 in
IsEmptyO tells us that the incoming line WAS empty, i.e., contained 0 pixel.

Parallelism > 1

If parallelism > 1, only the last pixel within the parallelism (highest bit) is marked with
a 1 on output port IsLastO. All other pixels of the parallelism are 0.

Example: When Parallelism=4, at the last parallel word the output port IsLastO is 0x8,
but in all other cases 0:

Library Synchronization 1533

VisualApplets User Documentation Release 3

32.15.1. I/O Properties

Property Value
Operator Type M
Input Link I, image data input
Output Links O, image data output

IsLastO, output of 1 for last pixel in line/frame
and 0 for all other pixels
IsEmptyO (optional), output of 1 for each empty
line/frame and 0 for lines/frames containing
image data

32.15.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1:63] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_LINE1D,

VALT_IMAGE2D}
as I

Color Format {VAF_COLOR, VAF_GRAY} as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link IsLastO Output Link IsEmptyO
(optional)

Bit Width 1 1
Arithmetic unsigned unsigned
Parallelism as I as I
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol as I as I
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width as I as I
Max. Img Height as I as I

The maximum image width must be divisible by the parallelism.

Library Synchronization 1534

VisualApplets User Documentation Release 3

32.15.3. Parameters

Mode
Type static or dynamic write parameter
Default Frame
Range {Line, Frame}

If set to Line, the operator marks the last pixel in a line. The operator outputs a 1 on its output port
IsLastO for each last pixel of a line.

If set to Frame, the operator marks the last pixel in a frame. The operator outputs a 1 on its output
port IsLastO for each last pixel of a frame.

You can set this parameter to static or dynamic. When you use the parameter as a dynamic
parameter: A shadow register is implemented, and the change is taken over:

• between two images (when I is VALT_IMAGE2D), or

• between two lines (when I is VALT_ LINE1D), or

• directly (when I is VALT_ PIXEL0D),

and always at reset. Until then, the old value is used.

32.15.4. Examples of Use

The use of operator IsLastPixel is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Synchronization 1535

VisualApplets User Documentation Release 3

32.16. Operator PixelReplicator

Operator Library: Synchronization

The M-type operator PixelReplicator replicates the pixels at input link I. The pixel value at input Replicate
sets the number of replications for each pixel at input link I. A value of "0" at input link Replicate means
that the pixel at input link I will be deleted. The number of pixels at both input links has to be the
same. Variable line lengths, empty images and asynchronous inputs are allowed. The parallelism at
the input is one. The parallelism at the output can be any.

The following example will explain the functionality of this operator.

Here the parallelism at the output is four, at the input (as always) one. As shown in the figure above
pixel "1" at input link I is duplicated as the input at Replicate is "2". The same happens to pixel "2"
at input link I. Due to a parallelism of four the duplicated pixels "1" and "2" are forwarded at once
to the output link O. Pixel "3" at input link is deleted due to "0" at input Replicate. Pixel"4" shall be
replicated 9-times. Since parallelism is smaller than the replication rate the input pipeline is hold until
all values are replicated. Non used output pixels are not defined at the output link O (marked with
"x" in the figure above).

Warning

The image dimensions at input links I and Replicate have to be the same. Otherwise
the simulation gives an error. If the operator is used at this specification violation during
runtime of the applet in hardware, the operator behavior is undefined. Ensure that both
inputs transport exaclty the same number of pixel. If this is not possible use a SYNC
operator before.

32.16.1. I/O Properties

Property Value
Operator Type M
Input Links I, data which has to be replicated

Replicate, sets the replication rate
Output Link O, data output

Library Synchronization 1536

VisualApplets User Documentation Release 3

32.16.2. Supported Link Format

Link Parameter Input Link I Input Link Replicate Output Link O
Bit Width [1, 64] [1, 31] as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism 1 1 any
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol 2D, 1D, 0D as I as I
Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I I*((2^W)-1)
Max. Img Height any as I as I

with Replicate.BitWidth + log2(I.MaxImageWidth) <= 31.
Bit width at input Replicate
Rounded up to the next multiple of the parallelism.

Synchronous and Asynchronous Inputs

• Both inputs can be asynchronous to each other.

32.16.3. Parameters

None

32.16.4. Examples of Use

The use of operator PixelReplicator is shown in the following examples:

• Section 12.9.3.2.3, 'Geometric Transformation using PixelReplicator'

Examples- Geometric Transformation using PixelReplicator

Library Synchronization 1537

VisualApplets User Documentation Release 3

32.17. Operator PixelToImage

Operator Library: Synchronization

The operator PixelToImage allows to synchronize the 0D pixel stream arriving at input link I with an
0D, 1D or 2D image at input link Sample. You can imagine the output images at link O as a combination
of the input I and Sample. While O follows Sample in timing and frame rate, the data content is copied
from I. The pixel values at the Sample input are not used in the operator only the timing is used.
Input I is fully asynchronous from input Sample. Flow control does not influence I. The input I can
never be blocked.

This operator is useful for adding time stamps and other information into images.

Since input link I is asynchronous, the output link will always forward the last valid data from input
I. When a sample input arrives before a valid input I is present, then the output is set to zero. Check
the following waveform for clearification.

The operator can be used like an O operator:

The operator PixelToImage is a P type operator. According to the rules of links, when several links are
merged after a P type operator, a SYNC operator has to be used.

However, operator PixelToImage is different: Between input "Sample" and output "O" (path sample -
> O), the operator is handled like an O type operator by VisualApplets. This means in effect a pipeline
equalization is carried out. For a merge, no synchronization is required.

Library Synchronization 1538

VisualApplets User Documentation Release 3

Behavior During Design Simulation

During design simulation, the operator PixelToImage discards all data on input "I" since
the exact timing cannot be simulated. Instead, the pixel values of the generated output
data are defined via simulation parameter SimulationPixelValue, while the dimension of
the output data is set according to the data on port "Sample".

32.17.1. I/O Properties

Property Value
Operator Type P
Input Links I, data which has to be sampled

Sample, provides the timing
Output Link O, data output

32.17.2. Supported Link Format

Link Parameter Input Link I Input Link Sample Output Link O
Bit Width [1, 64] [1, 64] as I
Arithmetic {unsigned, signed} {unsigned, signed} as I
Parallelism 1 1 as Sample
Kernel Columns 1 1 as Sample
Kernel Rows 1 1 as Sample
Img Protocol VALT_PIXEL0D {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as Sample

Color Format any any as I
Color Flavor any any as I
Max. Img Width any any as Sample
Max. Img Height any any as Sample

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are asynchronous to each other.

32.17.3. Parameters

None

32.17.4. Examples of Use

The use of operator PixelToImage is shown in the following examples:

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 13.3, 'Functional Example for Specific Operators of Library Memory and Library Signal'

Examples - Demonstration of how to use the operator

Library Synchronization 1539

VisualApplets User Documentation Release 3

Library Synchronization 1540

VisualApplets User Documentation Release 3

32.18. Operator RemoveImage
Operator Library: Synchronization

The operator RemoveImage is used to completely remove images. The control whether an image is
removed is made using the binary input link Rem. If the very first pixel of Rem is value 1, the image
is removed. If the pixel is 0, the image is forwarded to the output.

Both inputs have to be synchronous, i.e. they have to be sourced by the same M-type operator through
an arbitrary network of O-type operators.

Moreover, empty images or images with an empty first line will always be removed!

32.18.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Rem, control input
Output Link O, data output

32.18.2. Supported Link Format

Link Parameter Input Link I Input Link Rem Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D as I
Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any any as I
Max. Img Height any any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

32.18.3. Parameters

None

32.18.4. Examples of Use

The use of operator RemoveImage is shown in the following examples:

• Section 3.6.4, 'M-type Operators with Multiple Inputs'

Synchronization Rules - Using an M-type Operator with Synchronous Inputs

Library Synchronization 1541

VisualApplets User Documentation Release 3

• Section 9.2, ' Multiple DMA Channel Designs '

Remove 9 out of 10 images.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

Library Synchronization 1542

VisualApplets User Documentation Release 3

32.19. Operator RemoveLine
Operator Library: Synchronization

The operator RemoveLine is used to completely remove image lines. The control whether a line is
removed is made using the binary input link Rem. If the very first pixel of each line at input link Rem
is value 1, the line will be removed. If the pixel value is 0, the line is forwarded to the output.

Both inputs have to be synchronous i.e. they have to be sourced by the same M-type operator through
an arbitrary network of O-type operators.

Empty lines cannot transport the information whether they have to be removed or not as they have
no data pixel. In this case, the lines will always be removed. If all lines of an image are removed, the
operator will output an empty image at its output.

32.19.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Rem, control input
Output Link O, data output

32.19.2. Supported Link Format

Link Parameter Input Link I Input Link Rem Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_IMAGE1D}
as I as I

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any any as I
Max. Img Height any any as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

32.19.3. Parameters

None

32.19.4. Examples of Use

The use of operator RemoveLine is shown in the following examples:

Library Synchronization 1543

VisualApplets User Documentation Release 3

• Section 3.6.7, 'Bandwidth Bottlenecks'

Bandwidth Bottlenecks - Reducing the parallelism after the removal of pixels.

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.9.2, 'Downsampling 3x3'

Examples - Downsampling by factor 3x3 without the use of operator SampleDn.

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

Library Synchronization 1544

VisualApplets User Documentation Release 3

32.20. Operator RemovePixel
Operator Library: Synchronization

The operator RemovePixel removes pixels between the input link I and output link O in correspondence
to the control input link Rem. The remove input link Rem is a binary input link which controls the
removal of pixels. If a pixel at Rem is set to one, the pixel at the same position at input link I is
removed. The following pixels are shifted left. Thus, the output lines are reduced in their width by the
number of removed pixels.

Due to the removing of pixels it is possible to construct lines with a line width which is not divisible
by the parallelism of the link.

To generate lines lengths at output link O that are divisible by the parallelism of the link, the operator
inserts dummy pixels. The content of these dummy pixels is undefined (VA-simulation sets these value
to 0).

You have two options for creating lines with a length divisible by the link parallelism:

You can make the operator either

• fill the lines in question with dummy pixels until the line length is divisible by the link parallelism
(see example 1), or

• shift the pixels that don't make up a full block of parallel pixels to the next line (see example 2). In
this case, the operator inserts dummy pixels only in the last line of the frame if necessary.

You control this behaviour of the operator by parameter FlushCondition: If the parameter is set to EoL
(End of Line), the operator will add the dummy pixels to the end of the lines which are not divisible by
the parallelism. The line structure of the image will be preserved, even if all pixels are removed from
the image (the image than consists of only empty lines). If all pixels are removed in the frame, the
frame will consist of empty lines only. The number of lines is not changed.

If parameter FlushCondition is set to EoF (End of Frame): If the last pixels of a line do not complete
a block of parallel pixels, these last pixels are moved to the next output line. Thus, the lines end at
parallelism boundaries and the exceeding pixels are moved to the following line. The operator will
therefore only create dummy pixels at the end of the frame. The line structure may be changed in this
mode and the last line may be longer (by 1 parallelism). Therefore, the MaxWidth is 1 times parallelism
wider than the input link. The EoF mode is often used for image compression applications.

Resource Consumption

The operator's FGPA resource consumption strongly increases with the parallelism. Basler
recommends to use low parallelism at this operator.

The parallelism can be reduced by shifting the parallel pixel into a kernel (i.e. by using
CastKernel) before using the RemovePixel operator.

If you want to remove only the last pixels of a line, you can use the operator CutLine in
the mode truncate instead. This saves resources.

Example 1 (parameter FlushCondition is set to EoL):

In this example, FlushCondition is set to EoL (default). The operator is used with a parallelism of 4
and gets the images as shown in the picture.

In the second line, two pixels are removed. This will cause the following pixels to be shifted. Since
6 (the new line length) is not dividable by 4 (parallelism), 2 dummy pixels are inserted. In the third
line, 4 pixel are removed. Since 4 (the new line length) is dividable by 4, the line simply gets shorter
and no dummy pixels are inserted. The 6th line is removed completely. For the following simulation
it is treated as an empty line.

Library Synchronization 1545

VisualApplets User Documentation Release 3

Example 1: Behavior if FlushCondition is set to EoL and parallelism is set to 4 (Rem is always 0,
except for the pixels set to 1)

Example 2 (parameter FlushCondition is set to EoF):

In this example, FlushCondition is set to EoF. The operator is used with a parallelism of 4 and gets
the images as shown in the picture.

Library Synchronization 1546

VisualApplets User Documentation Release 3

Example 2: Behavior if FlushCondition is set to EoF and parallelism is set to 4 (Rem is always 0,
except for the pixels set to 1)

Changed Maximum Image Width in EoF Mode - Be attentive with Older
Designs!

The maximum image width has been corrected for EoF mode to be 1 parallelism wider
(for Parallelism > 1). Please look at the example to understand the issue. This might
cause DRC errors in older designs.

If you know for sure that this extra width is not needed, you may use SetDimension to
set the dimension back to the maximum input width.

32.20.1. I/O Properties

Property Value
Operator Type P
Input Links I, data input

Rem, control input
Output Link O, data output

Library Synchronization 1547

VisualApplets User Documentation Release 3

32.20.2. Supported Link Format

Link Parameter Input Link I Input Link Rem Output Link O
Bit Width [1, 64] 1 as I
Arithmetic {unsigned, signed} unsigned as I
Parallelism any as I as I
Kernel Columns any 1 as I
Kernel Rows any 1 as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I as I

Color Format any VAF_GRAY as I
Color Flavor any FL_NONE as I
Max. Img Width any as I as I (EoL mode) / as

I + parallelism (EoF
mode)

Max. Img Height any as I as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

32.20.3. Parameters

FlushCondition
Type static parameter
Default EoL
Range {EoL, EoF}

This parameter controls the insertion of dummy pixels. In EoL mode, dummy pixels will be inserted
at the end of a line if the line length is not dividable by parallelism.

In EoF mode, if the last pixels of a line do not complete a block of parallel pixels, these pixels are
moved to the next output line. Thus, the lines end at parallelism boundaries and the exceeding
pixels are moved to the following line. The operator will therefore only create dummy pixels at the
end of the frame if the last line of the frame is not dividable by the parallelism. The MaxWidth of
the frame at the output link O is the frame width at the Input-Link + 1 parallelism.

The parameter is deactivated if image protocol VALT_PIXEL0D is used. For the image protocol
VALT_LINE1D, only EoL can be used.

32.20.4. Examples of Use

The use of operator RemovePixel is shown in the following examples:

• Section 11.2, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Penta Platform'

Examples - Demonstration of how to use the operator

• Section 11.3, 'Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex
CXP-12 Quad Platform'

Library Synchronization 1548

VisualApplets User Documentation Release 3

Examples - Demonstration of how to use the operator

• Section 12.1.8, 'Run Length Encoder'

Examples - A run length encoding example of defined format.

Library Synchronization 1549

VisualApplets User Documentation Release 3

32.21. Operator ReSyncToLine
Operator Library: Synchronization

The operator ReSyncToLine is used to re-synchronize calculation results with the content of the current
line. Thus, calculation results which are available at the end of a line can be applied to the same line.
This allows the implementation of multiple-pass algorithms at the line level.

ReSyncToLine fetches the last pixel of each line on all k input links PI[k]. Also the current line at input
link I is stored. After the last line pixel of the inputs is processed in the operator, the content of the
line is output at the link O. The other output links PO0..PO63 output the fetched values of PI0..PI63.
The PO values are held constant. All PO and O output ports are synchronous.

All input links (I and PI0..PI63) have to be fully synchronous, i.e. they have to be sourced by the same
M-type operator through an arbitrary network of O type operators.

The operator delays the output by one line.

32.21.1. I/O Properties

Property Value
Operator Type M
Input Links I, image input

PI[k], data input
Output Links O, image output

PO[k], data output

32.21.2. Supported Link Format

Link Parameter Input Link I Input Link PI[k]
Bit Width [1, 64] [1, 64]
Arithmetic {unsigned, signed} {unsigned, signed}
Parallelism any as I
Kernel Columns any any
Kernel Rows any any
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as I

Color Format any any
Color Flavor any any
Max. Img Width any as I
Max. Img Height any as I

Link Parameter Output Link O Output Link PO[k]
Bit Width as I as PI[k]
Arithmetic as I as PI[k]
Parallelism as I as I
Kernel Columns as I as PI[k]
Kernel Rows as I as PI[k]
Img Protocol as I as I
Color Format as I as PI[k]
Color Flavor as I as PI[k]
Max. Img Width as I as I

Library Synchronization 1550

VisualApplets User Documentation Release 3

Link Parameter Output Link O Output Link PO[k]
Max. Img Height as I as I

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

32.21.3. Parameters

None

32.21.4. Examples of Use

The use of operator ReSyncToLine is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Synchronization 1551

VisualApplets User Documentation Release 3

32.22. Operator RxImageLink
Operator Library: Synchronization

The RxImageLink operator is used to receive images from a TxImageLink operator in the same design.
Both operators establish a connection without a link. The image format remains the same, i.e., the
format at the ouput of RxImageLink is the same as the format TxImageLink receives at its input.

With the image transfer between the TxImageLink and RxImageLink operators, it is possible to
implement loops in a design.

Loops require data buffering strategy

Operators TxImageLink and RxImageLink do not buffer data. Therefore, when
implementing loops, you need to take special care with regard to data buffering to avoid
deadlocks.

The parameter Channel_ID defines a channel ID to address the sending TxImageLink operator. The
parameter value has to be unique and must not be used by any other RxImageLink operator in the
design.

The parameter value has to match with the Channel_ID of one of the TxImageLink operators in the
same design.

Each TxImageLink operator in a design is connected to exactly one RxImageLink operator via one
channel ID. In the Resource Dialog of VisualApplets, you can see that one ImageChannel resource
is used for each TxImageLink-RxImageLink connection. Resource ImageChannel allows to control the
assignment of individual TxImageLink operators to individual RxImageLink operators. For the number
of available ImageChannel resources (which also defines the maximum number of allowed TxImageLink
and RxImageLink operators in a design), see Appendix A, 'Device Resources'.

Parametrization of Link Format in Loops

As soon as the link properties dialog is opened, the "automatic update" feature will
adapt the link properties (such as bit width, or image dimensions) according to the
operator chain's configuration. The input format of TxImageLink always defines the
output format of RxImageLink (100% automatic consistency). Therefore, when you use
operators TxImageLink and RxImageLink to implement loops, you need to take special
care regarding the parametrization of the link formats.

Example

Library Synchronization 1552

VisualApplets User Documentation Release 3

Wrong Implementation, value of link parameter Bit Width gets higher with every iteration
through the loop:

Right Implementation, Operator CastBitWidth changes the value of link parameter Bit
Width back to the original value with every iteration through the loop:

Synchronizing Channels between different hierarchical design levels

If you use a TxImageLink/RxImageLink pair to set up a data transfer channel between
different hierarchical design levels, this connection is treated as an M operator. Therefore,
you may need to implement additional synchronization elements (that are not required
with a direct connection.)

32.22.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

32.22.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I

Library Synchronization 1553

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

32.22.3. Parameters

Channel_ID
Type static parameter
Default 0
Range [0,1023]

The channel ID of the image link. See descriptions above.

32.22.4. Examples of Use

The use of operator RxImageLink is shown in the following examples:

• Section 11.4, 'Functional Example for Loading Test Images Using ImageInjector '

Examples - Demonstration of how to use the operator

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

Library Synchronization 1554

VisualApplets User Documentation Release 3

32.23. Operator SourceSelector
Operator Library: Synchronization

The operator works as a switch between up to 64 M-Type sources. It can be used to switch between
alternative implementations. You can use it, for example, to switch between different camera ports,
or between different DMA inputs.

The selection is controlled by parameter SelectSource. The switching between two input ports keeps
the granularity of the currently transmitted frame and line, i.e., the current frame being transmitted
will be completely transmitted before switching to a new input port. In other words, the operator will
not switch to another input while a frame is processed.

The operator acts like a Trash operator for all links which are currently not selected.

Note that all input links must be in the same format except the maximal image width and height.

The source type is specified by the parameter InfiniteSource. Setting it to ENABLED allows the operator
to be connected to camera sources. Setting it to DISABLED allows the operator to be used between
normal VA operators subsequent to a buffer.

We recommend not to use the SourceSelector operator for switching between sources which are
sourced by the same M-type source. In such cases, use the IF or the CASE operator instead since these
operators use much less resources than the SourceSelector operator.

Operator Restrictions

• Empty frames are not supported.

• Empty lines are not supported.

32.23.1. I/O Properties

Property Value
Operator Type M
Input Links I[0], data input

I[n-1], data input
Output Link O, data output

32.23.2. Supported Link Format

Link Parameter Input Link I[0] Input Link I[n-1] Output Link O
Bit Width [1, 64] as I[0] as I[0]
Arithmetic {unsigned, signed} as I[0] as I[0]
Parallelism any as I[0] as I[0]
Kernel Columns any as I[0] as I[0]
Kernel Rows any as I[0] as I[0]
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

as I[0] as I[0]

Color Format any as I[0] as I[0]
Color Flavor any as I[0] as I[0]
Max. Img Width any any auto
Max. Img Height any any auto

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

Library Synchronization 1555

VisualApplets User Documentation Release 3

The maximum output image width is the maximum of all input widths.
The maximum output image height is the maximum of all input heights.

32.23.3. Parameters

SelectSource
Type static/dynamic read/write parameter
Default 0
Range [0, n-1]

This parameter selects the port and forwards its image data to the output. The data at all other
ports is discarded.

InfiniteSource
Type static parameter
Default DISABLED
Range {ENABLED, DISABLED}

When set to ENABLE, the operator allows its direct connection to infinite sources like Camera
operators without the need of a buffer.

32.23.4. Examples of Use

The use of operator SourceSelector is shown in the following examples:

• Section 9.3.1, ' Synchronizing Cameras '

Operator used to switch between two cameras.

• Section 12.6.1, 'Hardware Test'

An example for hardware self test of DMA, RAM, GPIOs, Trigger and LEDs.

• Section 12.6.2, 'Image Dimension Test'

Example - The image dimension is measured and can be used to analyze the design flow.

• Section 12.6.4, 'Manual Image Injection'

Example - For debugging purposes images can be inserted manually.

• Section 12.6.5, 'Image Monitoring'

Example - For debugging purposes image transfer states on links can be investigated.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

Library Synchronization 1556

VisualApplets User Documentation Release 3

32.24. Operator SplitImage
Operator Library: Synchronization

This operator splits the input image into a number of smaller images. The image height of the smaller
images is specified by parameter ImageHeight. For example, setting ImageHeight to 512 and using
input images of 1024 lines, the operator will split the input image into two new smaller images with
the image height of 512.

If the height of an input image is not divisible by the ImageHeight parameter value, the input image
will be split into images of the specified height as far as possible. The remaining lines will generate an
output image of smaller height. For example, if an input image of height 1024 is split into chunks of
height 400, the operator will output two images of height 400 and and one image of height 224. If the
input image height is less than parameter ImageHeight, the operator will not split the input image.

Increased Frame Rate

Note that the operator increases the frame rate by keeping the original bandwidth.

SplitImage can be used to perform a 1D to 2D conversion. The conversion is automatically performed
if a link using the image protocol VALT_LINE1D is connected to the operator's input. For example, the
1D input of a line scan camera can be split into images of a specified height, effectively creating a
2D output stream. Example:

When changing the ImageHeight value dynamically while acquisition is running, the operator
guarantees image integrity. The operator keeps the old ImageHeight value until the output frame
is finished. After the completion of the current output frame the operator will start using the new
ImageHeight value for further splitting.

Library Synchronization 1557

VisualApplets User Documentation Release 3

The operator supports variable line length for all ImageHeight values, for example ImageHeight = 2:

The end of each line is marked by a Eol (End of Line) flag, so that there are no undefined data in
the output images.

32.24.1. I/O Properties

Property Value
Operator Type P
Input Link I, data input
Output Link O, data output

32.24.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
VALT_IMAGE2D

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].

32.24.3. Parameters

ImageHeight
Type dynamic read/write parameter
Default 1
Range [1, Maximum Output Image Height]

Maximum number of lines in the output image.

32.24.4. Examples of Use

The use of operator SplitImage is shown in the following examples:

Library Synchronization 1558

VisualApplets User Documentation Release 3

• Section 10.2.2, 'GigE Vision Line Scan Cameras'

Tutorial - Basic Acquisition

• Section 12.3.1, 'Blob 1D'

Examples - Shows the usage of operator Blob_Analysis_1D in line scan applications.

• Section 12.4.2.5, 'Color Plane Separation Option 5 - Sequential Output with Advances Processing'

Example on separation of color planes. The RGB input is split into its component and sequentially
output via one DMA channel. The splitting if performed by collecting same components in parallel
words and reading with FrameBufferRandomRead.

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

• Section 12.9.4, 'ImageSplitAndMerge'

Examples - Shows how to split an merge image streams. Appends a trailer to the image.

• Section 12.15.8.1, 'Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.9.1, 'Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and
Operator ActionCommand'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation. The camera can be triggered via cable connection to
the trigger ports or directly with ActionCommands. See here especially the documentation Section
29.3, 'ActionCommand'. See also the Action Command SDK example under SDK_Examples\gbe
\ActionCommands in your Framegrabber SDK installation folder.

• Section 12.15.10.1, 'Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal
Operators and Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.11.1, 'Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and
Operator CameraControl'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.12.1, 'Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators'

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

• Section 12.15.13.1, 'Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators'

A line scan trigger for CoaXPress12 is presented. The trigger includes an image trigger using a capture
gate as well as a multi functional line trigger. External sources, an internal frequency generator or
software trigger pulses can be used for trigger generation.

• Section 12.15.14.1, 'Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators'

Library Synchronization 1559

VisualApplets User Documentation Release 3

A line scan trigger is presented. The trigger includes an image trigger using a capture gate as well as
a multi functional line trigger. External sources, an internal frequency generator or software trigger
pulses can be used for trigger generation.

Library Synchronization 1560

VisualApplets User Documentation Release 3

32.25. Operator SplitLine

Operator Library: Synchronization

This operator splits the input lines into a number of shorter lines. The output line width is specified
by parameter LineLength. For example, setting LineLength to 512 with an input line length of 1024
pixels, will result in two new shorter lines per 1 input line with the length of 512.

If the length of the input line is not divisible by the LineLength parameter value, the input line will be
split into lines of the specified length as far as possible. The remaining pixel result in a shorter line
width. For example, an input line of 1024 pixels is split into sub lines of length 400, the operator will
output 2 lines of the length 400 and the last 3rd line of the length 224.

Note that the operator might generate output images with multiple line lengths. Not all VisualApplets
operators can process images using varying line lengths.

The SplitLine operator can also be used to perform a 0D to 1D conversion. Connect a link using the
image protocol VALT_PIXEL0D to perform the conversion.

If the value of LineLength is changed dynamically during image acquisition, the operator will keep the
old LineLength value internally until the currently being processed line is provided at the output link
O. After the line is completed, the next split operation will use the new LineLength value.

32.25.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

32.25.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D}
auto

Color Format any as I
Color Flavor any as I
Max. Img Width any any
Max. Img Height any any

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output image protocol is the same as the input image protocol if VALT_IMAGE2D or
VALT_LINE1D is used. If VALT_PIXEL0D image protocol is used at the input, the operator performs
a conversion to the VALT_LINE1D image protocol.
The output maximum image width has to be less or equal than the input maximum image width
and greater or equal than parameter LineLength.
The output maximum image height has to be grater or equal than the input image height.

Library Synchronization 1561

VisualApplets User Documentation Release 3

32.25.3. Parameters

LineLength
Type dynamic read/write parameter
Default 1
Range [Input Parallelism, Maximum Output Image Width], step size = Input Parallelism

Maximum line length of the split output lines.

32.25.4. Examples of Use

The use of operator SplitLine is shown in the following examples:

• Section 3.6.9, 'Infinite Sources / Connecting Cameras'

Infinite Sources - Connecting operators to cameras. (DRC2 Latency Error)

• Section 12.6.6, 'Image Grayscale Scope'

Example - For debugging purposes the Scope operator provides options for analyzing gray-scale
pictures. .

Library Synchronization 1562

VisualApplets User Documentation Release 3

32.26. Operator SYNC
Operator Library: Synchronization

The operator SYNC performs time and image dimension synchronization of all input links. The number
of links which have to be synchronized is specified upon operator instantiation. The output images on
all output links are synchronous, i.e., they are output at the same time and they all have the same
image dimension. Thus, the operator synchronizes asynchronous links so that they are O-synchronous
and can be used in an O-type VisualApplets operator network.

The operator does not support empty lines or empty frames.

In case of mixed domain synchronization like 2D with 1D and 0D streams, the operator converts the
output links to the highest input domain. When using SYNC to synchronize a 2D link with a 1D link,
both output links will be set to the 2D format. An error will be issued if the 1D link doesn't provide
enough lines. When using the operator to synchronize 1D links with 0D links, all output links will be in
the 1D format. In this case, an error will be issued if the 0D link doesn't provide enough pixels.

In case of input images with different image dimensions, the operator synchronizes the images so that
all output images have the same size.

Synchronization Rules

Before using the SYNC operator, ensure that you understand all synchronization rules.
User manual and Tutorial explain the synchronization rules in detail, see:

• Section 3.6, 'Rules of Links' (User Manual)

• Section 9.3, ' Synchronization of Asynchronous Image Pipelines ' (Tutorial)

Both, the timing synchronization and the image dimension synchronization, are explained in the
following.

32.26.1. The Timing Synchronization

During transmission of the pixels, pauses can occur due to the flow control or the link bandwidth
exceeding the bandwidth of the image source. The figure above shows how the time synchronization
is performed for 2 links. Both input links have a different timing. However, the output link data is
synchronized, i.e., the pixels are output at the same time on all links.

The operator acts like a valve for all input links: The input links are closed until a valid pixel is present
on all inputs. The operator will then forward the pixels of all inputs to the output, i.e., open the valve.

32.26.2. The Image Dimension Synchronization

The SYNC operator is capable of synchronizing images using different image protocols VALT_IMAGE2D,
VALT_LINE1D or VALT_PIXEL0D. The following three figures illustrate some images of the different
image protocols.

Library Synchronization 1563

VisualApplets User Documentation Release 3

• 2D

2D images have a finite height H and a finite width W. The first image shown in the figure is a regular
2D image. The 2nd image is an irregular 2D image having different line lengths.

• 1D

1D lines have a finite width W but an infinite height. Images of these types are usually created in
line scan applications. Again, the second image illustrated in the figure has different line lengths.

• 0D

0D streams do not have any width or height. These streams are infinite data streams.

The image dimension synchronization is applied if the images on the input links have different image
dimensions, i.e., a different width (or line length) and a different height. The image dimension
synchronization guarantees that all images at the output are of the same dimension. The SYNC
operator supports 2 synchronization modes: synchronization to the smallest image (SyncToMin) and
synchronization to the largest image (SyncToMax). You select the synchronization mode via parameter
SyncMode. The SyncToMin mode cuts larger images to fit into the smallest one. The SyncToMax mode
expands small images to fit the largest one. The missing pixels are filled with dummy zero pixels
(black pixels). Combining these 2 modes with the 3 different image domains, the following base
synchronization combinations are possible:

Library Synchronization 1564

VisualApplets User Documentation Release 3

32.26.2.1. 2D to 2D SyncToMin

Library Synchronization 1565

VisualApplets User Documentation Release 3

32.26.2.2. 2D to 2D SyncToMax

The padding pixels are zero pixels.

Library Synchronization 1566

VisualApplets User Documentation Release 3

32.26.2.3. 1D to 1D SyncToMin

Library Synchronization 1567

VisualApplets User Documentation Release 3

32.26.2.4. 1D to 1D SyncToMax

The padding pixels are zero pixels.

32.26.2.5. 0D to 0D SyncToMin / SyncToMax

Synchronization between 0D images is a pure time synchronization since 0D images have no image
dimensions.

Library Synchronization 1568

VisualApplets User Documentation Release 3

32.26.2.6. 2D to 1D SyncToMin

SyncToMin synchronization for 2D to 1D images performs an image dimension synchronization of the
width. The output images keep the image height of the input 2D image. The 1D line stream is split
into images which have the same height as the 2D image.

Library Synchronization 1569

VisualApplets User Documentation Release 3

32.26.2.7. 2D to 1D SyncToMax

SyncToMax synchronization for 2D to 1D images performs an image dimension synchronization of the
width. The output images keep the image height of the input 2D image. The 1D line stream is split
into images which have the same height as the 2D image.

Library Synchronization 1570

VisualApplets User Documentation Release 3

32.26.2.8. 2D to 0D SyncToMin / SyncToMax

Since 0D data streams have no shape the 2D to 0D synchronization is a simple bypass of both links.
Of coures, the SYNC operator still performs the timing synchronization There is no difference between
the SyncToMin and SyncToMax operation for this combination.

Library Synchronization 1571

VisualApplets User Documentation Release 3

32.26.2.9. 1D to 0D SyncToMin / SyncToMax

Since 0D data streams have no shape the 1D to 0D synchronization is a simple bypass of both links.
Of coures, the SYNC operator still performs the timing synchronization There is no difference between
the SyncToMin and SyncToMax operation for this combination.

32.26.2.10. 2D to 1D to 0D SyncToMin / SyncToMax

This operation is a combination of 2D to 1D and 2D to 0D and 1D to 0D operations. The 2D image and
the 1D line stream are synchronized in line lengths. The 1D link must provide at least the amount of
lines the 2D image contains. Also the 0D link must provide at least the amount of pixels the result of
2D to 1D synchronization produces. If both of these conditions are fulfilled, the operator will output
the result.

Caution

Warning: Simulation of mixed operaton modes like 2D to 1D or 1D to 0D or any
combination of all 3 requires the following conditions to be met:

1. The links with inifinite height but finite width, i.e. 1D links, must contain at least
the maximal (SyncToMax) / minimal (SyncToMin) amount of lines of all 2D channels
participating in the synchronization.

2. The links with infinite width and height, i.e. 0D links, must provide at least the
maximal (SyncToMax) / minimal (SyncToMin) amount of pixels the result of all 2D to
2D and 2D to 1D operations can produce.

3. Simulation of image sequences for mixed domain synchronization is not possible
unless a special condition is met, because an infinite line cannot have a sequence on
lines, otherwise it would not be infinite anymore. The same applies for the height.
If the height is finite, it is not a 1D link but a 2D link. To simulate a sequence of
images on all links, the amount of pixels on 0D channel must be exactly the same
as the amount of pixels after 2D to 1D synchronization. The amount of lines on 1D
channels must be exactly the same as the result after 2D to 1D synchronization. The
exceeding lines (1D) respectively the exceeding pixels (0D) will not carry over to the
next image sequence.

More information on the different image protocols can be found in Section 3.5.3, 'Image Protocols,
Image Dimensions and Data Structure'.

Library Synchronization 1572

VisualApplets User Documentation Release 3

32.26.3. I/O Properties

Property Value
Operator Type M
Input Links I[0], data input

I[k], data input
Output Link O[k], data output

32.26.4. Supported Link Format

Link Parameter Input Link I[0] Input Link I[k] Output Link O[k]
Bit Width [1, 64] [1, 64] as I[k]
Arithmetic {unsigned, signed} {unsigned, signed} as I[k]
Parallelism any as I[0] as I[0]
Kernel Columns any any as I[k]
Kernel Rows any any as I[k]
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D,
VALT_PIXEL0D}

{VALT_IMAGE2D,
VALT_LINE1D,
VALT_PIXEL0D}

auto

Color Format any any as I[k]
Color Flavor any any as I[k]
Max. Img Width any any auto
Max. Img Height any any auto

The range of the input bit width is [1, 64] for unsigned inputs. For signed inputs, the range is [2,
64]. For unsigned color inputs, the range is [3, 63] and for signed color, the range is [6, 63].
The output image protocol is VALT_IMAGE2D if at least one of the inputs is VALT_IMAGE2D
otherwise VALT_LINE1D if at least one of the input is VALT_LINE1D. VALT_PIXEL0D of all inputs
have image protocol VALT_PIXEL0D.
If parameter SyncMode is SyncToMin the maximum ouput image width is the minimum of the input
maximum image widths. If the parameter is set to SyncToMax the maximum ouput image width
is the maximum of the input maximum image widths.
If parameter SyncMode is SyncToMin the maximum ouput image height is the minimum of the
input maximum image heights. If the parameter is set to SyncToMax the maximum ouput image
height is the maximum of the input maximum image heights.

Synchronous and Asynchronous Inputs

• All inputs are asynchronous to each other i.e. they may be sourced by different M-type operators
through an arbitrary network of O-type operators.

32.26.5. Parameters

SyncMode
Type static parameter
Default SyncToMin
Range {SyncToMin, SyncToMax}

The parameter specifies the mode of operation: In SyncToMin mode the operator will synchronize all
input images to the smalles image, i.e. cutting larger images. In SyncToMax mode the operator will
expand all smaller images to the largest image. See descriptions above.

Library Synchronization 1573

VisualApplets User Documentation Release 3

32.26.6. Examples of Use

The use of operator SYNC is shown in the following examples:

• Section 3.6.4, 'M-type Operators with Multiple Inputs'

Synchronization Rules - Use of the SYNC Operator

• Section 3.6.6, 'Timing Synchronization'

Synchronization - Avoiding deadlocks.

• Section 9.3.1.2, 'Combine Image Data From Two Camera Sources - Building an Overlay Blend'

Tutorial - Synchronizing two cameras.

• Section 10.1.1.4, 'RGB Camera Link Medium Area'

Tutorial - Basic Acquisition

• Section 10.1.1.5, 'Grayscale Camera Link Full Area'

Tutorial - Basic Acquisition

• Section 11.8, 'Example for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform'

Examples - Demonstration of how to use the operator using the example of shading correction

• Section 12.1.7, 'Laser Triangulation'

Examples - A high speed and robust laser line detection algorithm. The algorithm determines center
of gravity coordinates to obtain sub-pixel resolution results.

• Section 12.2.3, 'Histogram Threshold'

Example - Histogram thresholding

• Section 12.4.1.7, 'Bayer Demosaicing Algorithm According to Laroche'

Examples - Laroche Bayer Demosaicing filter

• Section 12.4.1.8, 'Modified Laroche Bayer Demosaicing Algorithm '

Examples - Ressource Optimized Laroche Bayer Demosaicing filter

• Section 12.7.1, 'Motion Detection'

Examples - Calculates the differences between two successive images. The differences are
thresholded and output via DMA channel.

• Section 12.10.1, 'High Dynamic Range and Low Dynamic Range Example Using Camera Response
Function'

Examples - High Dynamic Range According to Debevec

• Section 12.10.2, 'High Dynamic Range and Low Dynamic Range Example with a Weighted Linear
Ansatz'

Examples - High Dynamic Range with Linear Ansatz

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

Library Synchronization 1574

VisualApplets User Documentation Release 3

• Section 12.14.3, '2D Shading Correction / Flat Field Correction'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in frame grabber RAM. The applet performs a high precision offset and gain correction.

• Section 12.14.4, '2D Shading Correction / Flat Field Correction Using Operator RamLUT'

Examples - The example shows the implementation of a 2D shading correction. Correction values
are stored in the operator RamLUT. The applet performs a high precision offset and gain correction.

Library Synchronization 1575

VisualApplets User Documentation Release 3

32.27. Operator TxImageLink

Operator Library: Synchronization

The TxImageLink operator allows to send images to an RxImageLink operator any place in the design.
Both operators establish a connection without a link.

With the image transfer between the TxImageLink and RxImageLink operators, it is possible to
implement loops in a design.

Loops require data buffering strategy

Operators TxImageLink and RxImageLink do not buffer data. Therefore, when
implementing loops, you need to take special care with regard to data buffering to avoid
deadlocks.

All image formats supported by VisualApplets in general are supported. The image format remains the
same, i.e., the format at the ouput of RxImageLink is the same as the format TxImageLink receives
at its input.

The parameter Channel_ID defines a channel ID to address the receiving RxImageLink operator. The
parameter value has to be unique and must not be used by any other TxImageLink operator in the
design.

There has to exist exactly one RxImageLink operator in the design which is using the same channel
ID and receives the image data.

Each TxImageLink operator in a design is connected to exactly one RxImageLink operator via one
channel ID. In the Resource Dialog of VisualApplets, you can see that one ImageChannel resource
is used for each TxImageLink-RxImageLink connection. Resource ImageChannel allows to control the
assignment of individual TxImageLink operators to individual RxImageLink operators. For the number
of available ImageChannel resources (which also defines the maximum number of allowed TxImageLink
and RxImageLink operators in a design), see Appendix A, 'Device Resources'.

Parametrization of Link Format in Loops

As soon as the link properties dialog is opened, the "automatic update" feature will
adapt the link properties (such as bit width, or image dimensions) according to the
operator chain's configuration. The input format of TxImageLink always defines the

Library Synchronization 1576

VisualApplets User Documentation Release 3

output format of RxImageLink (100% automatic consistency). Therefore, when you use
operators TxImageLink and RxImageLink to implement loops, you need to take special
care regarding the parametrization of the link formats.

Example

Wrong Implementation, value of link parameter Bit Width gets higher with every iteration
through the loop:

Right Implementation, Operator CastBitWidth changes the value of link parameter Bit
Width back to the original value with every iteration through the loop:

Synchronizing Channels between different hierarchical design levels

If you use a TxImageLink/RxImageLink pair to set up a data transfer channel between
different hierarchical design levels, this connection is treated as an M operator. Therefore,
you may need to implement additional synchronization elements (that are not required
with a direct connection).

32.27.1. I/O Properties

Property Value
Operator Type M
Input Link I, data input
Output Link O, data output

Library Synchronization 1577

VisualApplets User Documentation Release 3

32.27.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I
Kernel Rows any as I
Img Protocol {VALT_IMAGE2D, VALT_LINE1D,

VALT_PIXEL0D, VALT_SIGNAL}
as I

Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

The range of the input bit width is [1, 64] for unsigned values. For signed inputs, the range is [2,
64]. For unsigned color inputs [3, 63] and for signed color inputs [6, 63].

32.27.3. Parameters

Channel_ID
Type static parameter
Default 0
Range [0, 1023]

The channel ID of the image link. See descriptions above.

32.27.4. Examples of Use

The use of operator TxImageLink is shown in the following examples:

• Section 11.4, 'Functional Example for Loading Test Images Using ImageInjector '

Examples - Demonstration of how to use the operator

• Section 12.12.1, 'A rolling average is applied on a dynamic number of images'

Examples - Rolling Average - Loop

• Section 12.12.2, 'Depth From Focus Using Loops'

Examples - Depth From Focus using Loops

Library Synchronization 1578

VisualApplets User Documentation Release 3

32.28. Operator Overflow
Operator Library: Synchronization

The operator Overflow decouples a non-stoppable ingoing 2D data stream from a subsequent image
processing pipeline which may be blocked sometimes. It identifies an overflow situation when an
internal small buffer runs full as outgoing data is blocked. In case of an overflow, an ongoing frame
is cut by immediately appending an end-of-line and end-of-frame marker. The corresponding frame is
considered as corrupted and an event is generated accordingly. When new frames enter input I while
blocking of the output remains full, frames are skipped. Then an event about a lost frame is generated.

Overflow Causes Non-rectangular Frames

When an ingoing frame is cut because of an overflow situation, the last line of the outgoing
frame is typically shorter than the other lines. Make sure that the subsequent image
processing pipeline can deal with that.

For each corrupted or lost frame an overflow event is generated. The overflow events transport a data
payload consisting of the frame number and the type of overflow. The event payload is provided as
three 16-bit data words. The first two represent a 32-bit value for the frame number where the least
significant bits are stored in the first word. The third 16-bit word provides an overflow mask where
the mask bits are defined as follows:

• [0]: frame corrupted

• [1]: frame lost

• [2]: event loss occurred before

• [3]: frame ok

• [4] .. [15]: reserved

Note that the frame number is reset on acquisition start. Also note that the first frame will have frame
number zero, while a DMA transfer starts with frame number one. The frame number is a 32-bit value.
If it's maximum is reached, it will start from zero again. On a 64-bit target runtime, the DMA transfer
number will be a 64-bit value. If the frame corrupted is set, the frame with the frame number in the
event is corrupted i.e. it will not have it's full length so subsequent processing may produce invalid
results. If the frame lost flag is set, the frame with the frame number in the event was fully discarded
so the subsequent processing pipeline did not receive any data from the frame. The corrupted frame
flag and the frame lost flag will never occur for the same event. The flag event loss occured before is
an additional security mechanism. It means that an event has been lost. This can only happen at very
high event rates and should not happen under normal conditions.

32.28.1. I/O Properties

Property Value
Operator Type M
Input Link I, non-stoppable data input
Output Link O, data output

32.28.2. Supported Link Format

Link Parameter Input Link I Output Link O
Bit Width [1, 64] as I
Arithmetic {unsigned, signed} as I
Parallelism any as I
Kernel Columns any as I

Library Synchronization 1579

VisualApplets User Documentation Release 3

Link Parameter Input Link I Output Link O
Kernel Rows any as I
Img Protocol VALT_IMAGE2D VALT_IMAGE2D
Color Format any as I
Color Flavor any as I
Max. Img Width any as I
Max. Img Height any as I

32.28.3. Parameters

EventsForSuccessfulFrame
Type dynamic read/write parameter
Default OFF
Range [OFF, ON]

Defines whether an event for any passing frame shall be generated.

OverflowOccurred
Type dynamic read parameter
Default 0
Range [0, 1]

Notifies if an overflow event occurred.

This parameter is reset after read access so it shows whether an overflow situation occurred
between the prevous read access and the current read access.

32.28.4. Examples of Use

The use of operator Overflow is shown in the following examples:

• Section 13.6, 'Functional Example for Specific Operators of Library Synchronization, Base and Filter'

Examples - Demonstration of how to use the operator

Library Transformation 1580

VisualApplets User Documentation Release 3

33. Library Transformation

The Transformation library include operators for image transformation like FFT.

The following list summarizes all Operators of Library Transformation

Operator Name Short Description available
since

FFT One dimensional Fast Fourier transform (FFT) Version 2.2.0

Table 33.1. Operators of Library Transformation

Library Transformation 1581

VisualApplets User Documentation Release 3

33.1. Operator FFT
Operator Library: Transformation

Operator FFT performs a forward or reverse one dimensional Fast Fourier transform. The operator
accepts complex values at the input and will output complex values. It uses two ports at the input and
output. One for the real part and another one for the imaginary part.

By using parameters, the operator can be configured to the number of points i.e. line width. The line
width has to match with the number of pixel at the input.

A second parameter defines if the operator performs a forward or reverse transformation.

Limited Configurations Only

The operator currently can only be used on imaFlex CXP-12 Penta, imaFlex CXP-12 Quad,
microEnable 5 ironman and microEnable 5 marathon and LightBridge frame grabbers in
specific configuration.

The operator is limited to imaFlex CXP-12 Penta, imaFlex CXP-12 Quad, mE5 ironman and mE5
matathon/LightBridge. In the following the allowed configurations and characteristics are listed.

imaFlex CXP-12 Penta, and imaFlex CXP-12 Quad:

• Points (image width): {8, 16, 32, 64, 128, 256, 512, 1024, 2048}

• Parallelism: 1

• Input bit width: 32

• Output bit width: 48

mE5 ironman:

• Points (image width): {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}

• Parallelism: 2

• Input bit width: 16

• Output bit width: 32

mE5 marathon / LightBridge:

• Points (image width): {8, 16, 32, 64, 128, 256, 512, 1024, 2048}

• Parallelism: 2

• Input bit width: 32

• Output bit width: 48

The operator uses the XILINX FFT IP core with following parameterization:

• Architecture: Pipelined Streaming IO

• Run Time Configurable Transform Length: yes

• Data Format: Fixed Point

• Twiddle Width (Phase Factor Width): 10

• Scaling Option: Unscaled

• Rounding Mode: truncation

More information about the FFT algorithm can be found at https://www.xilinx.com/products/
intellectual-property/fft.html#overview. imaFlex CXP-12 Penta and imaFlex CXP-12 Quad use Xilinx IP

https://www.xilinx.com/products/intellectual-property/fft.html#overview
https://www.xilinx.com/products/intellectual-property/fft.html#overview
https://docs.xilinx.com/r/en-US/pg109-xfft

Library Transformation 1582

VisualApplets User Documentation Release 3

version 9.1 [https://docs.xilinx.com/r/en-US/pg109-xfft]. marathon and ironman use Xilinx IP version
8.0 [https://docs.xilinx.com/v/u/en-US/pg003_v_enhance].

33.1.1. I/O Properties

Property Value
Operator Type M
Input Links IRe, input real part

IIm, input imaginary part
Output Links ORe, output real part

OIm, output imaginary part

Synchronous and Asynchronous Inputs

• All inputs are synchronous to each other i.e. they have to be sourced by the same M-type operator
through an arbitrary network of O-type operators.

33.1.2. Supported Link Format

Link Parameter Input Link IRe Input Link IIm
Bit Width 16 or 32 as IRe
Arithmetic signed signed
Parallelism depends on platform depends on platform
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol {VALT_IMAGE2D,

VALT_LINE1D}
as IRe

Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width depends on platform as IRe
Max. Img Height any as IRe

Link Parameter Output Link ORe Output Link OIm
Bit Width auto as ORe
Arithmetic signed signed
Parallelism depends on platform depends on platform
Kernel Columns 1 1
Kernel Rows 1 1
Img Protocol as IRe as IRe
Color Format VAF_GRAY VAF_GRAY
Color Flavor FL_NONE FL_NONE
Max. Img Width as IRe as IRe
Max. Img Height as IRe as IRe

The input bit width is 16 bit on mE5 ironman and 32 bit in mE5 marathon/LightBridge.

The output bit width is 32 bit on mE5 ironman and 64 bit in mE5 marathon/LightBridge.

The parallelism is 1 for imaFlex CXP-12 Penta and imaFlex CXP-12 Quad, and 2 for mE5 ironman
as well as mE5 marathon/LightBridge.

https://docs.xilinx.com/r/en-US/pg109-xfft
https://docs.xilinx.com/r/en-US/pg109-xfft
https://docs.xilinx.com/v/u/en-US/pg003_v_enhance
https://docs.xilinx.com/v/u/en-US/pg003_v_enhance
https://docs.xilinx.com/v/u/en-US/pg003_v_enhance

Library Transformation 1583

VisualApplets User Documentation Release 3

[2^3, 2^13] on mE5 ironman, [2^3, 2^11] on mE5 marathon/LightBridge.

33.1.3. Parameters

TransformationMode
Type dynamic write parameter
Default Forward
Range {Forward, Reverse}

Specify a forward or reverse transform.

LineLength
Type dynamic write parameter
Default Points1024
Range {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192} on mE5 ironman, {8, 16, 32,

64, 128, 256, 512, 1024, 2048} on mE5 marathon/LightBridge and imaFlex CXP-12
Penta and imaFlex CXP-12 Quad

Specify the number of transformation points i.e. the line length.

33.1.4. Examples of Use

The use of operator FFT is shown in the following examples:

• Section 12.1.1, 'Fast Fourier transform'

Shows the usage of operator FFT.

Device Resources 1584

VisualApplets User Documentation Release 3

Appendix A. Device Resources
The following lists show important hardware details of all supported hardware platforms of this
VisualApplets version. For a detailed list, please check the data sheet of the individual product.

A.1. Hardware Configuration of Supported Platforms

A.1.1. microEnable IV and PixelPlant

Resource mE4VD1-CL/-
PoCL

mE4VD4-CL/-
PoCL

mE4VQ4-GE/-
GPoE

px100 px200/
px200e

Vision
Processor

Xilinx Spartan
3 XC3S1600e
FPGA

Xilinx Spartan
3 XC3S4000
FPGA

Xilinx Spartan
3 XC3S4000
FPGA

Xilinx Spartan
3 XC3S1600e
FPGA

Xilinx Spartan
3 XC3S4000
FPGA

LUT 29504 55296 55296 29504 55296

Flip-Flop 29504 55296 55296 29504 55296

Block RAM* 36 à 18432Bit 96 à 18432Bit 96 à 18432Bit 36 à 18432Bit 96 à 18432Bit

Embedded
Arithmetic
Logic Unit
(ALU)*

36 96 96 36 96

RAM 2 x 128MiB
DDR

4 x 128MiB
DDR

4 x 128MiB
DDR

2 x 128MiB
DDR

4 x 128MiB
DDR

Data Width per
RAM

64Bit 64Bit 64Bit 64Bit 64Bit

Bandwidth per
RAM

1GB/s 1GB/s 1GB/s 1GB/s 1GB/s

Base Design
Clock

62.5MHz 62.5MHz 62.5MHz 62.5MHz 62.5MHz

Host Interface PCIe x1 PCIe x4 PCIe x4 - -

Host Interface
(PCIe x 4 Gen
2) Bandwidth
(theor.)

250 Mbyte/s
per direction on
PCIe bus

1 Gbyte/s per
direction on
PCIe bus

1 Gbyte/s per
direction on
PCIe bus

- -

Host Interface
(PCIe x 4 Gen
2) Bandwidth
(typ./max.)

200 Mbyte/s 750 Mbyte/s /
900 MByte/s

750 Mbyte/s - -

* microEnable IV and PixelPlant only: Block RAM and hardware multiplier are shared. The given
value is the total value.

Table A.1. Hardware Configuration microEnable IV and PixelPlant

A.1.2. microEnable 5 ironman

Resource mE5VD8-PoCL mE5VQ8-CXP6B/mE5VQ8-
CXP6D

Vision Processor Xilinx Virtex6 XC6VLX240T FPGA Xilinx Virtex6 XC6VLX240T FPGA

LUT 150720 150720

Device Resources 1585

VisualApplets User Documentation Release 3

Resource mE5VD8-PoCL mE5VQ8-CXP6B/mE5VQ8-
CXP6D

Flip-Flop 301440 301440

Block RAM 832 x 18432Bit 832 x 18432Bit

Embedded Arithmetic Logic Unit
(DSP48)

768 768

RAM 4 x 256MiB DDR3 4 x 256MiB DDR3

Data Width per RAM 128Bit 128Bit

Bandwidth per RAM 4GB/s 4GB/s

Base Design Clock 125MHz 125MHz

Host Interface PCIe x8 Gen2 PCIe x8 Gen2

Host Interface (PCIe x 8 Gen 2)
Bandwidth (theor.)

4 Gbyte/s per direction on PCIe
bus

4 Gbyte/s per direction on PCIe
bus

Host Interface (PCIe x 8 Gen 2)
Bandwidth (typ./max.)

up to 3.6 GByte/s on PCIe bus up to 3.6 GByte/s on PCIe bus

Table A.2. Hardware Configuration microEnable 5 ironman

A.1.3. LightBridge and microEnable 5 marathon

Resource mE5
marathon
VCX-QP

mE5
marathon VF2

mE5
marathon VCL

mE5
marathon
VCLx

LightBridge 2
VCL

Vision
Processor

Xilinx Kintex7
XC7K160T
- 2FFG676C
FPGA

Xilinx Kintex7
XC7K160T
- 2FFG676C
FPGA

Xilinx Kintex7
XC7K160T -
1FBG676C
FPGA

Xilinx Kintex7
XC7K410T -
1FBG676C
FPGA

Xilinx Kintex7
XC7K160T -
1FBG676C
FPGA

LUT 101400 101400 101400 254200 101400

Flip-Flop 202800 202800 202800 508400 202800

Block RAM
(18k)

650 650 650 1590 650

Embedded
Arithmetic
Logic Unit
(DSP48)

600 600 600 1540 600

RAM size 4 x 512MiB
DDR3

4 x 512MiB
DDR3

4 x 512MiB
DDR3

4 x 512MiB
DDR3

4 x 512MiB
DDR3

RAM Data
Width

512 Bit 512 Bit 256 Bit 256 Bit 256 Bit

RAM Bandwidth
total (shared)

12.8 GB/s* 12.8 GB/s* 6.4 GB/s* 6.4 GB/s* 6.4 GB/s*

Base Design
Clock (default)

125MHz 125MHz 125MHz 125MHz 125MHz

Base Design
Clock
(maximal)

312.5 MHz** 312.5 MHz** 312.5 MHz** 312.5 MHz** 312.5 MHz**

Host Interface PCIe x 4 Gen 2
(Direct Memory
Access)

PCIe x 4 Gen 2
(Direct Memory
Access)

PCIe x 4 Gen 2
(Direct Memory
Access)

PCIe x 4 Gen 2
(Direct Memory
Access)

PCIe x 4 Gen
2 interface via
Thunderbolt™
2 technology

Host Interface
(PCIe x 4 Gen

1x2000 MB/s 1x2000 MB/s 1x2000 MB/s 1x2000 MB/s 1x2000 MB/s

Device Resources 1586

VisualApplets User Documentation Release 3

Resource mE5
marathon
VCX-QP

mE5
marathon VF2

mE5
marathon VCL

mE5
marathon
VCLx

LightBridge 2
VCL

2) Bandwidth
(theor.)

Host Interface
(PCIe x 4 Gen
2) Bandwidth
(typ./max.)

Up 1800 MB/
s sustainable
data bandwidth

Up to 1800 MB/
s sustainable
data bandwidth

Up to 1800 MB/
s sustainable
data bandwidth

Up to 1800 MB/
s sustainable
data bandwidth

Up to 1400 MB/
s sustainable
data bandwidth

* The platforms own only one single physical RAM bank which is formatted as 4 independent, non-
overlapping memory regions. Though the memory itself is exclusive for each RAM based operator,
the RAM bandwidth is shared. See section Shared Memory Concept.

** These platforms allow to use a user-specified base clock. The minimum clock frequency is 125
MHz. Theoretical maximum is 312.5 MHz. Designs with a clock frequency of 125 MHz are likely to
meet the timing constraints. Designs with a clock frequency above 125 MHz may result in timing
constraints violations.

Table A.3. Hardware Configuration LightBridge and microEnable 5 marathon

A.1.4. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

Resource imaFlex CXP-12 Quad imaFlex CXP-12 Penta
Vision Processor Xilinx UltraScale+ XCKU3P-

FFVD900-1-E
Xilinx UltraScale+ XCKU3P-
FFVB676-1-E

LUT 160679 161049

Flip-Flop 323224 323216

Block RAM (18k) 720 720

Embedded Arithmetic Logic Unit
(DSP48)

1368 1368

RAM size 3 x 512 MiB DDR4 5 x 512 MiB DDR4

RAM Data Width 384 Bit 640 Bit

RAM Bandwidth total (shared) 14.4 GB/s* 24.0 GB/s*

Base Design Clock (default) 312.5 MHz** 312.5 MHz**

Base Design Clock (maximal) 400.0 MHz 400.0 MHz

Host Interface PCIe x 8 Gen 3 (Direct Memory
Access)

PCIe x 8 Gen 3 (Direct Memory
Access)

Host Interface (PCIe x 8 Gen 3)
Bandwidth (theor.)

8000 MB/s 8000 MB/s

Host Interface (PCIe x 8 Gen 3)
Bandwidth (typ./max.)

7200 MB/s sustainable data
bandwidth

7200 MB/s sustainable data
bandwidth

* The platform owns only one single physical RAM bank. Though the memory itself is exclusive for
each RAM based operator, the RAM bandwidth and RAM size is shared. See section Section A.3, '
Shared Memory Concept '.

** This platform allows to use a user-specified base clock. The minimum clock frequency is 312.5
MHz. Theoretical maximum is 400 MHz. Designs with a clock frequency of 312.5 MHz are likely to
meet the timing constraints. Designs with a clock frequency above 312.5 MHz may result in timing
constraints violations, dependent on the applet algorithms implementation.

Table A.4. Hardware Configuration imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

Device Resources 1587

VisualApplets User Documentation Release 3

A.2. Device Resources of Supported Platforms
The device resources are limited for each hardware device. The following lists show the available device
resources of the supported hardware platforms. Operators use device resources. Each resource can
only be used once.

Device resources are allocated either

• automatically,

• using operator parameters, or

• in the Resources dialog.

See Section 3.8, 'Allocation of Device Resources' for more information.

A.2.1. microEnable IV and PixelPlant

Resource mE4VD1-CL/-
PoCL

mE4VD4-CL/-
PoCL

mE4VQ4-GE/-
GPoE

px100 px200/
px200e

CAM 2 2 4

CameraControl 2 2

DMA 8 8 8

Event 64 64

EventSource 14 14

RAM 2 x 128MiB 4 x 128MiB 4 x 128MiB 2 x 128MiB 4 x 128MiB

RxLink 60 60 60 60 60

TriggerOut* 8 8 8 8 8

TxLink 60 60 60 60 60

SignalChannel**4000 4000 4000 4000 4000

ImageChannel***1024 1024 1024 1024 1024

* This resource is not visible in the Resources dialog. It is controlled via operators.

** Resource SignalChannel allows to connect TxSignalLink operators with RxSignalLink operators.
Each operator TxSignalLink needs one resource SignalChannel exclusively. Multiple operators
RxSignalLink can use the same resource SignalChannel, i.e., multiple operators RxSignalLink can
receive the signals transmitted by one operator TxSignalLink. A maximum of 4000 TxSignalLink
operators can be used in a design. The number of RxSignalLink operators is not restricted. Resource
SignalChannel is visible in the Resources dialog.

*** Resource ImageChannel allows to connect TxImageLink operators with RxImageLink operators.
Each operator TxImageLink needs one resource ImageChannel exclusively. Each resource
ImageChannel can be connected to exactly one operator RxImageLink, i.e., a maximum of 1024
TxImageLink and 1024 RxImageLink operators can be used in one design. Resource ImageChannel
is visible in the Resources dialog.

Table A.5. List of Device Resources microEnable IV and PixelPlant

A.2.2. microEnable 5 ironman

Resource mE5VD8-PoCL mE5VQ8-CXP6D/mE5VQ8-
CXP6B

Camera Port 2 4

Device Resources 1588

VisualApplets User Documentation Release 3

Resource mE5VD8-PoCL mE5VQ8-CXP6D/mE5VQ8-
CXP6B

DMARd 4 4

GPO* 8 OUT 8 OUT

RAM 4 x 256MiB 4 x 256MiB

LED Ports* 4 4

GPI** 8 8

SignalChannel*** 4000 4000

EventPort**** 12 14

EventID**** 64 64

ImageChannel***** 1024 1024

* These resources are not visible in the Resources dialog. They are controlled via operators.

** GPI is not visible in the Resources dialog. The same resource can be used multiple times. The
table lists the amount of GPI ports.

*** Resource SignalChannel allows to connect TxSignalLink operators with RxSignalLink operators.
Each operator TxSignalLink needs one resource SignalChannel exclusively. Multiple operators
RxSignalLink can use the same resource SignalChannel, i.e., multiple operators RxSignalLink can
receive the signals transmitted by one operator TxSignalLink. A maximum of 4000 TxSignalLink
operators can be used in a design. The number of RxSignalLink operators is not restricted. Resource
SignalChannel is visible in the Resources dialog.

**** EventID stands for maximal amount of events supported by the software for the particular
platform. EventPort represents the event channel. One event channel can host up to 16 events.

***** Resource ImageChannel allows to connect TxImageLink operators with RxImageLink
operators. Each operator TxImageLink needs one resource ImageChannel exclusively. Each
resource ImageChannel can be connected to exactly one operator RxImageLink, i.e., a maximum
of 1024 TxImageLink and 1024 RxImageLink operators can be used in one design. Resource
ImageChannel is visible in the Resources dialog.

Table A.6. List of Device Resources microEnable 5 ironman

A.2.3. LightBridge and microEnable 5 marathon

Resource mE5
marathon
VCX-QP

mE5
marathon VF2

mE5
marathon VCL

mE5
marathon
VCLx

LightBridge
VCL

Camera Port 4 2 2 2 2

CameraControl - - 2 2 2

DMA 4 4 4 4 4

GPO* 10 OUT 10 OUT 10 OUT 10 OUT 6 OUT

GPI** 12 IN 12 IN 12 IN 12 IN 8 IN

RAM 4 x 512 MiB 4 x 512 MiB 4 x 512 MiB 4 x 512 MiB 4 x 512 MiB

LED Ports* 4 4 2 2 2

SignalChannel***4000 4000 4000 4000 4000

EventPort**** 14 14 10 10 10

EventID**** 64 64 64 64 64

ImageChannel*****1024 1024 1024 1024 1024

* These resources are not visible in the Resources dialog. They are controlled via operators.

Device Resources 1589

VisualApplets User Documentation Release 3

Resource mE5
marathon
VCX-QP

mE5
marathon VF2

mE5
marathon VCL

mE5
marathon
VCLx

LightBridge
VCL

** GPI is not visible in the Resources dialog. The same resource can be used multiple times. The
table lists the amount of GPI ports.

*** Resource SignalChannel allows to connect TxSignalLink operators with RxSignalLink operators.
Each operator TxSignalLink needs one resource SignalChannel exclusively. Multiple operators
RxSignalLink can use the same resource SignalChannel, i.e., multiple operators RxSignalLink can
receive the signals transmitted by one operator TxSignalLink. A maximum of 4000 TxSignalLink
operators can be used in a design. The number of RxSignalLink operators is not restricted. Resource
SignalChannel is visible in the Resources dialog.

**** "EventID" stands for maximal amount of events supported by the software for the particular
platform. "EventPort" represents the event channel. One event channel can host up to 16 events.

***** Resource ImageChannel allows to connect TxImageLink operators with RxImageLink
operators. Each operator TxImageLink needs one resource ImageChannel exclusively. Each
resource ImageChannel can be connected to exactly one operator RxImageLink, i.e., a maximum
of 1024 TxImageLink and 1024 RxImageLink operators can be used in one design. Resource
ImageChannel is visible in the Resources dialog.

Table A.7. List of Device Resources LightBridge and microEnable 5 marathon

A.2.4. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

Resource imaFlex CXP-12 Quad imaFlex CXP-12 Penta
Camera Port 4 5

CxpStatusPort 4 5

CxpRxTriggerPort 4 5

CxpTxTriggerPort 4 5

DMA 4 5

DmaFromHostPort 1 1

GPO* 10 OUT 12 OUT

GPI** 12 IN 12 IN

LED Ports* 6 6

SignalChannel*** 4000 4000

EventPort**** 32 32

EventID**** 64 64

ImageChannel***** 1024 1024

RAM****** from 1 x 1.5 GiB to 8 x 192 MiB from 1 x 2.5 GiB to 8 x 320 MiB

* These resources are not visible in the Resources dialog. They are controlled via operators.

** GPI is not visible in the Resources dialog. The same resource can be used multiple times. The
table lists the amount of GPI ports.

*** Resource SignalChannel allows to connect TxSignalLink operators with RxSignalLink operators.
Each operator TxSignalLink needs one resource SignalChannel exclusively. Multiple operators
RxSignalLink can use the same resource SignalChannel, i.e., multiple operators RxSignalLink can
receive the signals transmitted by one operator TxSignalLink. A maximum of 4000 TxSignalLink
operators can be used in a design. The number of RxSignalLink operators is not restricted. Resource
SignalChannel is visible in the Resources dialog.

Device Resources 1590

VisualApplets User Documentation Release 3

Resource imaFlex CXP-12 Quad imaFlex CXP-12 Penta
**** "EventID" stands for maximal amount of events supported by the software for the particular
platform. "EventPort" represents the event channel. One event channel can host up to 16 events.

***** Resource ImageChannel allows to connect TxImageLink operators with RxImageLink
operators. Each operator TxImageLink needs one resource ImageChannel exclusively. Each
resource ImageChannel can be connected to exactly one operator RxImageLink, i.e., a maximum
of 1024 TxImageLink and 1024 RxImageLink operators can be used in one design. Resource
ImageChannel is visible in the Resources dialog.

****** RAM interface is shared across all RAM based operators in bandwidth and size. See section
Shared Memory Concept for more details.

Table A.8. List of Device Resources imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

A.3. Shared Memory Concept

A.3.1. microEnable 5 marathon and LightBridge

The platforms microEnable 5 marathon and LightBridge are assembled with only one physical RAM bank
(the size of which is platform-specific). This single physical bank is formatted into 4 non-overlapping
memory regions. These 4 regions are represented inside VisualApplets as 4 virtual RAM banks. When
an operator reserves a RAM resource, it is using a virtual RAM bank which maps to an exclusive non-
overlapping memory region inside the physical RAM.

The RAM bandwidth, however, is shared between all RAM based operators in a design. When a design
utilizes all 4 RAM resources, each of the 4 RAM based operators can have up to 1.6 GB/s exclusive
bandwidth, minus the efficiency factor of that particular operator. When only one RAM based operator
is used in the design, this operator gets the total bandwidth of 6.4 GB/s. When 2 operators are used,
each of the two operators gets half the total bandwidth, etc.

Bandwidth per Operator

The on-board RAM provides 6.4GB/s total bandwidth. The bandwidth available for an
individual RAM based operator is the total bandwidth divided by the number of all
instantiated RAM based operators in the design.

Device Resources 1591

VisualApplets User Documentation Release 3

Figure A.1. RAM architecture

This RAM architecture needs to be considered when designing with RAM based operators.

Due to the shared bandwidth architecture, the applet developer should utilize all 256 bits of the
operator’s memory interface (RAM Data Width) to achieve maximal throughput through the memory
interface when using multiple RAM based operators even though the single RAM operator needs less
bandwidth on its input.

A.3.2. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

The platforms imaFlex CXP-12 Quad and imaFlex CXP-12 Penta are assembled with only one physical
RAM bank (the size of which is platform-specific). This single physical bank is dynamically formatted
into non-overlapping regions depending on the amount of used RAM-based VisualApplets operators
inside the applet. Those regions are represented inside VisualApplets as virtual RAM banks. When an
operator reserves a RAM resource, it is using a virtual RAM bank which maps to an exclusive non-
overlapping memory region inside the physical RAM. Up to 8 non-overlapping regions can be defined
on the imaFlex platforms. When only 1 RAM operator is used, the operator gets the complete RAM size
of the platform. The allocated size for each operator is reduced for each operator used in the design.
If 8 operators are used, each operator will allocated 1/8 of the platform memory size.

The RAM bandwidth, however, is shared between all RAM-based operators in a design. When a design
utilizes all 8 RAM resources, each of the 8 RAM-based operators can have up to 1/8 GB/s exclusive
bandwidth, minus the efficiency factor of that particular operator. When only one RAM-based operator
is used in the design, this operator gets the total bandwidth of the platform. When 2 operators are
used, each of the two operators gets half the total bandwidth, etc.

A.3.2.1. RAM Size Distribution Across RAM Ports

Not allocated and thus not used RAM ports get always 0% of the memory size.

• 1 port is utilized: the utilized port gets 100%.

• 2 ports are utilized: both utilized ports get 50%.

• 3 ports are utilized: the port with the lowest resource ID number will get 50%, the other 2 utilized
ports get 25%.

• 4 ports are utilized: all 4 ports get 25%.

Device Resources 1592

VisualApplets User Documentation Release 3

• 5 ports are utilized: 3 ports with the lowest resource ID number will get 25%. The last 2 ports will
get 12.5%.

• 6 ports are utilized: 2 ports with the lowest resource ID number will get 25%. The other 4 ports
will get 12.5%.

• 7 ports are utilized: the port with the lowest resource ID number will get 25%. The other 6 ports
will get 12.5%.

• 8 ports are utilized: all ports get 12.5%.

Ports with the lower RAM index will get larger allocation in case of asymmetric size
partitioning. For example 3 RAM ports are used: 0, 1, 2. The port 0 gets 50% RAM size
allocation. The ports 1 and 2 get both 25% each.

The RAM indexes do not need to be contiguous, their absolute order decides the
allocation. The RAM index is a virtual number and has no impact on FPGA resource usage,
when having gaps in ordering. For example 3 RAM ports are used: 1, 5, 7. The ports 1
gets 50% RAM size allocation. The ports 5 and 7 get both 25% each.

There is no advantage or disadvantage when allocating RAM indexes of the operators.
Use either the automatic VisualApplets allocation or tune it manually, when a special
design operator needs more RAM size than the other operators.

A.3.2.2. RAM Bandwidth Distribution Across RAM Ports

The shared memory controller applies the Round & Robin algorithm and distributes the bandwidth
evenly across all allocated ports. The algorithm is using the credits arbitration scheme: When a port
gets active, it can stay active for the credit's clock cycles as long as the port provides new RAM jobs.
Once a port is activated but has no more jobs, the port gets deactivated and the activation token jumps
to the next port in line, which has request jobs pending. This way, the bandwidth is never wasted
on idling. The credits are programmed by the firmware exclusively during synthesis of the applet
depending on the amount of used RAM operators and can't be changed in the Framegrabber SDK/
during runtime. The user has no access to the credit's programming. While an active port is owning
the RAM interface, it will have access to 100% bandwidth of the memory controller. When all 8 ports
are used and are active evenly, the resulting bandwidth over time is 1/8 for each port. In all other
cases, the load on the ports defines the actual average bandwidth for each port.

Glossary 1593

VisualApplets User Documentation Release 3

Glossary
Area of Interest (AOI)

See Region of Interest.

Block RAM

See FPGA Internal Block RAM.

Board

A Basler hardware. Usually, a board is represented by a frame grabber. Boards might comprise
multiple devices.

Board ID Number

An identification number of a board in a PC system. The number is not fixed to a specific hardware
but has to be unique in a PC system.

Camera Index

The index of a camera connected to a frame grabber. The first camera will have index zero. Mind
the difference between the camera index and the frame grabber camera port.
See also Camera Port.

Camera Port

The frame grabber connectors for cameras are called camera ports. They are numbered {0, 1,
2, ...} or enumerated {A, B, C, ... }. Depending on the interface one camera could be connected
to multiple camera ports. Also, multiple cameras could be connected to one camera port.

Camera Tap

See Tap.

Device

A board can consist of multiple devices. Devices are numbered. The first device usually has number
one.

Direct Memory Access (DMA)

A DMA transfer allows hardware subsystems within the computer to access the system memory
independently of the central processing unit (CPU).

DMA is used for data transfer such as image data between a board e.g. a frame grabber and a
memory of the host system. Data transfers can be established in multiple directions i.e. from a
frame grabber to the PC (download) and from the PC to a frame grabber (upload). Multiple DMA
channels may exist for one board. Control and configuration data usually do not use DMA channels.

Distributed RAM

See FPGA Distributed RAM.

DMA Channel

See DMA Index.

DMA Index

The index of a DMA transfer channel.
See also Direct Memory Access.

FPGA Distributed RAM

Logic cells of the FPGA which are used as memory. Also called LUT RAM

FPGA Internal Block RAM

Memory blocks in the FPGA. Each FPGA includes a limited number of Block RAMs.

Glossary 1594

VisualApplets User Documentation Release 3

Frame Grabber RAM
A memory on the frame grabber but not in the FPGA. Usually DRAM.

Framegrabber SDK
See Runtime.
Basler provides a runtime environment for frame grabbers, which is called Framegrabber SDK.
For further information, see the documentation of the Framegrabber SDK in the Basler Product
Documentation (BPD): https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk.html

Hardware Applet (HAP)
A hardware applet file is a build VisualApplets project. It can be loaded to licensed hardware devices
e.g. frame grabbers. A HAP includes the FPGA bitstream as well as the software interface to access
data and parameter. A HAP can only be used on one target runtime defined before the build was
executed.

Host PC
The computer the frame grabber or device is attached to.

Least Significant Bit (LSB)
The bit position in a binary value having the lowest value i.e. the right-most bit.

Library
See Operator Library.

LUT RAM
See FPGA Distributed RAM.

Mebibyte (MiB)
One Mebibyte (MiB) are 1.048.576 Byte.

Megabyte (MB)
One Megabyte (MByte or MB) are 1,000,000 Byte.

Module
An instantiated operator in a VisualApplets diagram. See Operator.

Most Significant Bit (MSB)
The bit position in a binary value having the greatest value i.e. the left-most bit.

Operator
Represents an image-, data-, or signal-processing functionality. Is organized in operator libraries.

Operator Library
Operator Libraries include operators. Operators from an operator library can be used in a
VisualApplets diagram.

PC RAM
Memory on the PC. Usually system memory or main memory on the mainboard. Accessed from
the frame grabber via Direct Memory Access .

Port
See Camera Port.

Process
An image or signal data processing block. A process can include one or more cameras, one or
more DMA channels and modules.

Random Access Memory (RAM)
A memory which can be directly accessed for reading and writing in any random order.

https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk.html

Glossary 1595

VisualApplets User Documentation Release 3

Region of Interest (ROI)
A part a frame. Mostly rectengular and within the original image boundaries. Defined by
coordinates. The frame grabber cuts the region of interest from the camera image. A region of
interest might reduce or increase the required bandwidth.

Runtime
In the context of VisualApplets, runtime is the environment in which the built hardware applet is
used in an application.

Basler provides a runtime environment for frame grabbers, which is called Framegrabber SDK.
For further information, see the documentation of the Framegrabber SDK in the Basler Product
Documentation (BPD): https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk.html

Sensor Tap
See Tap.

Tap
Some cameras have multiple taps. This means, they can acquire or transfer more than one pixel
at a time which increses the camera's acquisition speed. The camera sensor tap readout order
varies. Some cameras read the pixels interlaced using multiple taps, while some cameras read
the pixel simulatiously from different locations on the sensor. The reconstruction of the frame is
called sensor readout correction.

The Camera Link interface is also using multiple taps for image tranfer to increase the bandwidth.
These taps are independent from the sensor taps.

Target Runtime
Defines the target operating system environment on which the Framegrabber SDK is installed, and
thus on which the built hardware applet is executed. Example: Windows 64-bit.

Trigger
In machine vision and image processing, a trigger is an event which causes an action. This can be
for example the initiation of a new line or frame acquisition, the control of external hardware such
as flash lights or actions by a software applications. Trigger events can be initiated by external
sources, an internal frequency generator (timer) or software applications.

Trigger Input
A logic input of a trigger IO. The first input has index 0. Check mapping of input pins to logic inputs
in the hardware documentation.

Trigger Output
A logic output of a triger IO. The first output has index 1. Check mapping of output pins to logic
outputs in the harware documentation.

UltaRAM (URAM)
A type of dedicated memory blocks. UltraRam elements provide large FPGA memory capacity,
additional to the BRAM resources. Using UltraRam may help when running out of BRAM resources.

https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk.html

Bibliography 1596

VisualApplets User Documentation Release 3

Bibliography
[Ada95] James E. Adams, Jr.: Interactions Between Colorplane Interpolation and Other Image

Processing Functions in Electronic Photography. Proc. SPIE 2416,144 1995.

[Bas13] Jörg Kunze: White Paper DeBayering with the sprint`s Raw Enhanced Mode. https://
www.baslerweb.com/en/downloads/document-downloads/debayering-sprint, April 4th 2017
June, 2013.

[Bay76] B. E. Bayer, Eastman Kodak Company: Color imaging array. United States Patent, Patent
Number: 3,971,065 July 20, 1976.

[Bur06] Wilhelm Burger, Mark James Burge: Digitale Bildverarbeitung. Springer-Verlag Berlin
Heidelberg , 2. Edition 2006.

[Dal05] N. Dalal B. Triggs: Histogram of Oriented Gradients for Human Detection . CVPR '05
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05) - Volume 1 - Volume 01 Pages 886-893 , 2005.

[Deb97] P. E. Debevec, J. Malik: Recovering High Dynamic Range Radiance Maps from Photographs.
Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, pp.
369-378 , August 1997.

[Eit07] M. Eitz : High dynamic range imaging and tonemapping. http://cybertron.cg.tu-berlin.de/
eitz/hdr, 26th April 2016 , January 2007.

[Fat02] R. Fattal et al.: Gradient Domain High Dynamic Range Compression. ACM Transactions on
Graphics 21, 3, pp. 249–256 , (July 2002.

[Lar94] C.A. Laroche et al., Eastman Kodak Company: Apparatus and method for adaptively
interpolating a full color image utilizing chrominance gradients. Proceedings of Pacific Graphics
2007, S. 382–390. IEEE December 1994.

[Mer07] Tom Mertens et al.: Exposure Fusion. United States Patent, Patent Number: 5,373,322
December 2007 .

[Par09] J. Park. et al. : Lens Distortion Correction Using ideal Images Coordinates. IEEE Transactions
on Consumer Electronics (Volume:55 , Issue: 3) August 2009.

[Ope16a] OpenCV : Camera Calibration With OpenCV. http://docs.opencv.org/2.4/doc/tutorials/
calib3d/camera_calibration/camera_calibration.html 27th April 2016.

[Ope16b] OpenCV : Geometric Image Transformations. http://docs.opencv.org/2.4/modules/
imgproc/doc/geometric_transformations.html, 27th April 2016 27th April 2016.

[Rei02] E. Reinhard. et al.: Photographic Tone reproduction for digital Images. ACM Transactions on
Graphics 21, 3, pp. 267–276 July 2002.

https://www.baslerweb.com/en/downloads/document-downloads/debayering-sprint
https://www.baslerweb.com/en/downloads/document-downloads/debayering-sprint
http://cybertron.cg.tu-berlin.de/eitz/hdr
http://cybertron.cg.tu-berlin.de/eitz/hdr
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html

Index 1597

VisualApplets User Documentation Release 3

Index
Symbols
0D Protocol, 37
1D Protocol, 37
2D Protocol, 37

A
ABS, 626
Accumulator, 593
ActionCommand, 1184
Adaptive Threshold, 429
ADD, 628
AND, 913
AppendImage, 1498
AppendImageDyn, 1501
AppendLine, 1503
AppendLineDyn, 1505
AppletProperties, 1160
ARCCOS, 630
ARCCOT, 633
ARCSIN, 636
ARCTAN, 639
Area Scan, 37
Arithmetics, 624
Averaging 3x3, 481

B
Bandwidth, 35, 47
Base, 675
BaseGrayCamera, 1190
BaseRgbCamera, 1193
Basic Acquisition, 385
Basic Principles, 14
Bayer Demosaicing, 431

BiColor, 455, 455, 455
Bilinear_RG_GB, 445, 449
High Quality Linear 5x5, 436
Laplace, 437
Laroche, 440
Laroche Modified, 444
Linear 3x3, 436
Linear 3x3 with White Balance, 437
Linear 5x5 with White Balance, 437
Nearest Neighbor, 434

BAYER3x3Linear, 802
BAYER5x5Linear, 805
Binarization, 430
Binarization, Threshold, 365
Blob, 771
Blob1D, 430
Blob2D, 430
Blob2D ROI Select, 431
Blob_Analysis_1D, 778
Blob_Analysis_2D, 793
BoardStatus, 1168
Bottleneck, 47
BRANCH, 678
Build, 112
Build Configuration, 113

Build Settings, 113, 227

C
CAM, 70
Camera Connection, 48
CameraControl, 70, 1187
CameraGrayArea, 1216
CameraGrayAreaBase, 1218
CameraGrayAreaFull, 1220
CameraGrayAreaMedium, 1222
CameraGrayLine, 1224
CameraGrayLineBase, 1226
CameraGrayLineFull, 1228
CameraGrayLineMedium, 1230
CameraRgbArea, 1232
CameraRgbAreaBase, 1234
CameraRgbAreaMedium, 1236
CameraRgbLine, 1238
CameraRgbLineBase, 1240
CameraRgbLineMedium, 1242
Cameras, Multiple, 211
CASE, 916
CastBitWidth, 679
CastColorSpace, 682
CastKernel, 683
CastParallel, 687
CastType, 689
CLHSDualCamera, 1244
CLHSPulseIn, 1248
CLHSPulseOut, 1252
CLHSSingleCamera, 1256
Clipboard, 32
ClipHigh, 642
ClipLow, 644
Close (Morphology), 481
CMP_AgeB, 918
CMP_AgtB, 920
CMP_AleB, 922
CMP_AltB, 924
CMP_Equal, 926
CMP_NotEqual, 928
Co-Processor, 463, 463
CoefficientBuffer, 957
ColMax, 595
ColMin, 597
Color, 801
Color Plane Separation, 456
ColorTransform, 809
ColSum, 599
Compression, 822
CONST, 691
ConvertPixelFormat, 693
Coordinate_X, 697
Coordinate_Y, 699
COS, 646
COT, 649
Count, 601
COUNTER, 1369
CreateBlankImage, 1511
CustomSignalOperator, 1371
CutImage, 1507
CutLine, 1509

Index 1598

VisualApplets User Documentation Release 3

CxpAcquisitionStatus, 1281
CxpCamera, 1261
CxpCameraMultiTap, 1269
CXPDualCamera, 1297
CxpPortStatus, 1282
CXPQuadCamera, 1305
CxpRxTrigger, 1292
CXPSingleCamera, 1313
CxpTxTrigger, 1294

D
Data Flow, 35
Data Structure, 37
Dead Pixel Replacement, 557
Deadlock, 383
Deadlocks, 45
Debugging, 838
DelayToSignal, 1403
Depth From Focus

Loop, 539
Design Rules Check, 74
Device Resources, 70
DigIOPort, 1321
DILATE, 886
Distortion Correction, 485, 496, 500
DIV, 652
DMA, 70
DMA Channels, Multiple, 365
DmaFromPC, 1322
DmaToPC, 1325
Downsampling, 484, 485
Downscale, 1406
DRC, 74
Dummy, 701
DynamicROI, 702

E
Eccentricity, 502
Editing a Design, 28
EnumParamReference, 1067
EnumParamTranslator, 1072
EnumVariable, 1079
Equation to Implementation, 377
ERODE, 888
Event, 70
EventDataToHost, 711
EventSource, 70
EventToHost, 705
EventToSignal, 1409
Example-Image Statistics, 474
Example-Trigger Statistics, 474
Examples, 412, 416, 578, 584, 587

Adaptive Threshold, 429
Auto Threshold Mean, 429, 429
Averaging 3x3, 481
Bayer Demosaicing, 431
Blob1D, 430
Blob2D, 430
Blob2D ROI Select, 431
Close (Morphology), 481
Co-Processor, 463, 463
Color Plane Separation, 456

Dead Pixel Replacement, 557
Downsampling, 484, 485
FFT, 416
Filter Basics, 482
Filter for Line Scan, 483
Filter Sub Kernels, 483
Flat Field Correction, 558, 558
Gaussian Filter 5x5, 482
Hardware Test, 464
High Boost Sharpening Filter, 484
Hir or Miss, 481
HSL Color Classification, 462
Image Dimension Test, 472
Image Flow Control, 474
Image Grayscale Scope, 473
Image Injector, 473
Image Monitoring, 473
Image Timing Generator, 472
JPEG, 418, 422, 425
Kirsch Filter, 480
Laplace Filter, 484
Laser Pointer Detection, 428
Laser Triangulation, 428
Lookup Table, 536, 536, 537, 537
Median Filter, 482
Mirroring (Line), 505
Morphological Edge, 479
Motion Detection, 479
Noise Reduction, 479
Open (Morphology), 481
Packbits Run Length Encoder, 428
Parallel Filter, 483
Roberts Cross Gradient, 480
Run Length Encoder, 428
Shading Correction (1D), 558, 559
Shading Correction (2D), 558, 558
Sobel Multi Gradient, 480
Sobel X, 480
Threshold, 430
Trigger, 559, 560, 560, 560, 561, 561, 562,
562, 569, 571, 572, 574, 575, 576
White Balancing, 463

ExpandLine, 1514
ExpandPixel, 1516
ExpandToKernel, 714
ExpandToParallel, 715
Exposure Fusion, 531

F
Fast Fourier transform example, 416
FFT, 1581
FFT Example, 416
Filter, 884
Filter Basics, 482
FIRkernelNxM, 890
FIRoperatorNxM, 896
Flat Field Correction, 558, 558
FloatFieldParamReference, 1082
FloatParamReference, 1088
FloatParamSelector, 1152
FloatParamTranslator, 1093
FloatVariable, 1101

Index 1599

VisualApplets User Documentation Release 3

Flow Control, 38
FrameBufferMultiRoiDyn, 964
FrameBufferRandomRead, 487, 551, 971
FrameBufferRandomRead (imaFlex), 975
FrameEndToSignal, 1411
Framegrabber SDK, 120
FrameMax, 604
FrameMemory, 981
FrameMemoryRandomRd, 984
FrameMin, 606
FrameStartToSignal, 1413
FrameSum, 608
FullGrayCamera, 1207
FullRgbCamera, 1211

G
Gaussian Filter 5x5, 482
Generate, 1415
Geometric Transformation, 487, 491, 494, 543
GetSignalStatus, 1421
GetStatus, 717
Getting Started, 5
Gnd, 1423
GPI, 1329
GPO, 1333

H
HAP, 112, 225
HAP Merger, 214
Hardware, 213
Hardware Applet, 112
Hardware Platform, 1156
Hardware Test, 464
HDR

Debevec, 521, 527
Help

Context Sensitive, 24
Operator Reference Access, 24

Hierarchical Box, 122
HierarchicalBox, 718
Histogram, 610
HitOrMiss, 899
HSI2RGB, 812
HSL Color Classification, 462
HWMULT, 1373

I
IF, 930
Image Dimension Test, 472
Image Dimensions, 37
Image Flow Control, 474
Image Grayscale Scope, 473
Image Injector, 473
Image Moments, 491, 502
Image Monitoring, 473
Image Protocols, 37
Image Select, 365
Image Timing Generator, 472
ImageAnalyzer, 840
ImageBuffer, 987
ImageBufferMultiRoI, 992
ImageBufferMultiRoIDyn, 997

ImageBufferSC, 1002
ImageBufferSpatial, 1006
ImageBuffer_JPEG_Gray, 823
ImageFifo, 1010
ImageFlowControl, 874
ImageInjector, 864
ImageMonitor, 881
ImageNumber, 720
ImageSequence, 1014
ImageStatistics, 846
ImageTimingGenerator, 868
ImageValve, 1518
Infinite Source, 48
InsertImage, 1520
InsertLine, 1523
InsertPixel, 1526
IntFieldParamReference, 1104
IntFieldVariable, 1125
IntParamReference, 1109
IntParamSelector, 1148
IntParamTranslator, 1114
IntVariable, 1122
IsFirstPixel, 1528
IsLastPixel, 1530
IS_Equal, 933
IS_GreaterEqual, 935
IS_GreaterThan, 937
IS_InRange, 939
IS_LessEqual, 941
IS_LessThan, 943
IS_NotEqual, 945

J
JPEG, 417, 422, 425

multiple JPEG, 418
JPEG_Encoder, 832
JPEG_Encoder_Gray, 826

K
KernelRemap, 722
Keystone Correction, 485, 496
Kirsch Filter, 480
KneeLUT, 1017

L
Laplace Filter, 484
Laser Pointer Detection, 428
Laser Triangulation, 428
Latency Error, 49
LED, 1337
Library

Accumulator, 593
Arithmetics, 624
Base, 675
Blob, 771
Color, 801
Compression, 822
Debugging, 838
Filter, 884
Hardware Platform, 1156
Logic, 911
Memory, 953

Index 1600

VisualApplets User Documentation Release 3

Parameters, 1053
Prototype, 1368
Signal, 1400
Synchronization, 1495
Transformation, 1580

LimitSignalWidth, 1426
Line Scan, 37
Line Shear, 506
LineBuffer (imaFlex), 1024
LineEndToSignal, 1429
LineMemory, 1029
LineMemoryRandomRd, 1033
LineNeighboursNx1, 901
LineStartToSignal, 1431
Link Properties, 64
LinkParamTranslator, 1132
LinkProperties, 1129
Logic, 911
Lookup Table, 536, 536, 537, 537
LUT, 1036

M
M-type, 40
MAX, 903
MEDIAN, 904
Median Filter, 482
MediumGrayCamera, 1197
MediumRgbCamera, 1201
Memory, 953
MergeComponents, 724
MergeKernel, 727
MergeParallel, 729
MergePixel, 732
Metadata, 64
microDisplay, 116
MIN, 905
Mirroring (Line), 505
Module Properties, 53
ModuloCount, 612
Motion Detection, 478
MULT, 654
Multiple DMA Channels, 365
Multiplexing, 381

N
NativeTrgPortIn, 1340
NativeTrgPortInExt, 1341
NativeTrgPortOut, 1342
New Project, 28
NOP, 734
Normalized Cross Correlation, 552
NOT, 947
NumberOfHits, 906

O
O-type, 40
Open (Morphology), 481
Open Project, 29
Operator, 40, 412, 415

ABS, 626
Accumulator, 578
ActionCommand, 1184

ADD, 628
AND, 913
AppendImage, 1498
AppendImageDyn, 1501
AppendLine, 1503
AppendLineDyn, 1505
AppletProperties, 1160
ARCCOS, 630
ARCCOT, 633
ARCSIN, 636
ARCTAN, 639
BaseGrayCamera, 1190
BaseRgbCamera, 1193
BAYER3x3Linear, 802
BAYER5x5Linear, 805
Blob_Analysis_1D, 778
Blob_Analysis_2D, 793
BoardStatus, 1168
BRANCH, 678
CameraControl, 1187
CameraGrayArea, 1216
CameraGrayAreaBase, 1218
CameraGrayAreaFull, 1220
CameraGrayAreaMedium, 1222
CameraGrayLine, 1224
CameraGrayLineBase, 1226
CameraGrayLineFull, 1228
CameraGrayLineMedium, 1230
CameraRgbArea, 1232
CameraRgbAreaBase, 1234
CameraRgbAreaMedium, 1236
CameraRgbLine, 1238
CameraRgbLineBase, 1240
CameraRgbLineMedium, 1242
CASE, 916
CastBitWidth, 679
CastColorSpace, 682
CastKernel, 683
CastParallel, 687
CastType, 689
CLHSDualCamera, 1244
CLHSPulseIn, 1248
CLHSPulseOut, 1252
CLHSSingleCamera, 1256
ClipHigh, 642
ClipLow, 644
CMP_AgeB, 918
CMP_AgtB, 920
CMP_AleB, 922
CMP_AltB, 924
CMP_Equal, 926
CMP_NotEqual, 928
CoefficientBuffer, 957
ColMax, 595
ColMin, 597
ColorTransform, 809
ColSum, 599
CONST, 691
ConvertPixelFormat, 693
Coordinate_X, 697
Coordinate_Y, 699
COS, 646

Index 1601

VisualApplets User Documentation Release 3

COT, 649
Count, 601
COUNTER, 1369
CreateBlankImage, 1511
CustomSignalOperator, 1371
CutImage, 1507
CutLine, 1509
CxpAcquisitionStatus, 1281
CxpCamera, 1261
CxpCameraMultiTap, 1269
CXPDualCamera, 1297
CxpPortStatus, 1282
CXPQuadCamera, 1305
CxpRxTrigger, 1292
CXPSingleCamera, 1313
CxpTxTrigger, 1294
DelayToSignal, 1403
DigIOPort, 1321
DILATE, 886
DIV, 652
DmaFromPC, 1322
DmaToPC, 1325
Downscale, 1406
Dummy, 701
dynamic append and cut, 578
DynamicROI, 702
EnumParamReference, 1067
EnumParamTranslator, 1072
EnumVariable, 1079
ERODE, 888
EventDataToHost, 711
EventToHost, 705
EventToSignal, 1409
ExpandLine, 1514
ExpandPixel, 1516
ExpandToKernel, 714
ExpandToParallel, 715
FFT, 1581
FIRkernelNxM, 890
FIRoperatorNxM, 896
FloatFieldParamReference, 1082
FloatParamReference, 1088
FloatParamSelector, 1152
FloatParamTranslator, 1093
FloatVariable, 1101
FrameBufferMultiRoiDyn, 964
FrameBufferRandomRead, 971
FrameBufferRandomRead (imaFlex), 975
FrameEndToSignal, 1411
FrameMax, 604
FrameMemory, 981
FrameMemoryRandomRd, 984
FrameMin, 606
FrameStartToSignal, 1413
FrameSum, 608
FullGrayCamera, 1207
FullRgbCamera, 1211
Generate, 1415
GetSignalStatus, 1421
GetStatus, 717
Gnd, 1423
GPI, 1329

GPO, 1333
HierarchicalBox, 718
Histogram, 610
HitOrMiss, 899
HSI2RGB, 812
HWMULT, 1373
IF, 930
ImageAnalyzer, 840
ImageBuffer, 987
ImageBufferMultiRoI, 992
ImageBufferMultiRoIDyn, 997
ImageBufferSC, 1002
ImageBufferSpatial, 1006
ImageBuffer_JPEG_Gray, 823
ImageFifo, 1010
ImageFlowControl, 874
ImageInjector, 864
ImageMonitor, 881
ImageNumber, 720
ImageSequence, 1014
ImageStatistics, 846
ImageTimingGenerator, 868
ImageValve, 1518
InsertImage, 1520
InsertLine, 1523
InsertPixel, 1526
IntFieldParamReference, 1104
IntFieldVariable, 1125
IntParamReference, 1109
IntParamSelector, 1148
IntParamTranslator, 1114
IntVariable, 1122
IsFirstPixel, 1528
IsLastPixel, 1530
IS_Equal, 933
IS_GreaterEqual, 935
IS_GreaterThan, 937
IS_InRange, 939
IS_LessEqual, 941
IS_LessThan, 943
IS_NotEqual, 945
JPEG_Encoder, 832
JPEG_Encoder_Gray, 826
KernelRemap, 722
KneeLUT, 1017
LED, 1337
LimitSignalWidth, 1426
LineBuffer (imaFlex), 1024
LineEndToSignal, 1429
LineMemory, 1029
LineMemoryRandomRd, 1033
LineNeighboursNx1, 901
LineStartToSignal, 1431
LinkParamTranslator, 1132
LinkProperties, 1129
LUT, 1036
MAX, 903
MEDIAN, 904
MediumGrayCamera, 1197
MediumRgbCamera, 1201
Memory, 579, 579
MergeComponents, 724

Index 1602

VisualApplets User Documentation Release 3

MergeKernel, 727
MergeParallel, 729
MergePixel, 732
MIN, 905
ModuloCount, 612
MULT, 654
NativeTrgPortIn, 1340
NativeTrgPortInExt, 1341
NativeTrgPortOut, 1342
NOP, 734
NOT, 947
NumberOfHits, 906
OR, 949
Overflow, 1578
PackbitsRLE, 1375
PARALLELdn, 736
PARALLELup, 739
PeriodToSignal, 1433
PixelNeighbours1xM, 908
PixelReplicator, 1535
PixelToImage, 1537
PixelToSignal, 1436
Polarity, 1438
PseudoRandomNumberGen, 742
PulseCounter, 1441
RamLUT, 1039
RamLUT (imaFlex), 1046
Register, 616
RemoveImage, 1540
RemoveLine, 1542
RemovePixel, 1544
ResourceReference, 1144
ReSyncToLine, 1549
RGB2HSI, 814
RGB2XYZ, 1396
RGB2YUV, 816
RND, 656
ROM, 1051
RowMax, 618
RowMin, 620
RowSum, 622
RS485, 1296
RsFlipFlop, 1443
RxImageLink, 1551
RxLink, 1343
RxSignalLink, 1445
SampleDn, 747
SampleUp, 750
SCALE, 658
Scope, 860
Select, 1447
SelectBitField, 752
SelectComponent, 754
SelectFromParallel, 756
SelectROI, 758
SelectSubKernel, 760
SetDimension, 762
SetSignalStatus, 1450
ShaftEncoder, 1453
ShaftEncoderCompensate, 1457
ShiftLeft, 661
ShiftRight, 663

signal, 412, 413, 413, 414, 414, 414, 580, 582,
582
SignalDebounce, 1460
SignalDelay, 1463
SignalEdge, 1466
SignalGate, 1468
SignalToDelay, 1473
SignalToEvent, 1366
SignalToPeriod, 1475
SignalToPixel, 1477
SignalToWidth, 1479
SignalWidth, 1481
SIN, 666
SORT, 910
SourceSelector, 1554
SplitComponents, 764
SplitImage, 1556
SplitKernel, 767
SplitLine, 1560
SplitParallel, 768
SQRT, 669
StreamAnalyzer, 854
StreamControl, 878
StringParamReference, 1139
SUB, 670
SYNC, 1562
synchronization, 581
SyncSignal, 1485
TAN, 672
Trash, 770
TrgBoxLine, 1377
TrgPortArea, 1345
TrgPortLine, 1349
TriggerIn, 1360
TriggerOut, 1362
trigonometric functions, 581
TxImageLink, 1575
TxLink, 1364
TxSignalLink, 1487
Vcc, 1489
WhiteBalance, 818
WhiteBalanceBayer, 820
WidthToSignal, 1492
XNOR, 951
XOR, 952
XYZ2LAB, 1399

OR, 949
Orientation, 502
Overflow, 1578
Overlay Blend, 377

P
P-type, 40
PackbitsRLE, 1375
PARALLELdn, 736
Parallelism, 35
PARALLELup, 739
parameter

redirection, 584, 584, 585
selection, 585
translation, 586

Parameters, 1053

Index 1603

VisualApplets User Documentation Release 3

Parametrization, 53
PeriodToSignal, 1433
Pixel Order, 36
Pixel Plant, 214
PixelNeighbours1xM, 908
PixelReplicator, 494, 543, 1535
PixelToImage, 1537
PixelToSignal, 1436
Platform, 213
Polarity, 1438
Position Correction and Defect Detection Using
Blob, 548
Print, 244
Print Inspection, 548, 551
Process, 211
Process Intercommunication, 212
Project Description, 225
Prototype, 1368
PseudoRandomNumberGen, 742
PulseCounter, 1441

R
RAM, 70
RamLUT, 1039
RamLUT (imaFlex), 1046
Register, 616
RemoveImage, 1540
RemoveLine, 1542
RemovePixel, 1544
ResourceReference, 1144
ReSyncToLine, 1549
Revision Control, 236, 238
RGB2HSI, 814
RGB2XYZ, 1396
RGB2YUV, 816
RND, 656
Rolling Average

Loop Handling, 537
ROM, 1051
RowMax, 618
RowMin, 620
RowSum, 622
RS485, 1296
RsFlipFlop, 1443
Runtime, 113, 225
RxImageLink, 1551
RxLink, 70, 1343
RxSignalLink, 1445

S
SampleDn, 747
SampleUp, 750
SCALE, 658
Scaling, 509
Scope, 860
Screenshot, 244
Script Collection (Tcl), 237
Search Module, 20
Select, 1447
SelectBitField, 752
SelectComponent, 754
SelectFromParallel, 756

SelectROI, 758
SelectSubKernel, 760
SetDimension, 762
SetSignalStatus, 1450
Shading Correction (1D), 558, 559
Shading Correction (2D), 558, 558
ShaftEncoder, 1453
ShaftEncoderCompensate, 1457
Shear, 506
ShiftLeft, 661
ShiftRight, 663
Signal, 1400
Signal Links, 51
Signal Protocol, 37
SignalDebounce, 1460
SignalDelay, 1463
SignalEdge, 1466
SignalGate, 1468
SignalToDelay, 1473
SignalToEvent, 1366
SignalToPeriod, 1475
SignalToPixel, 1477
SignalToWidth, 1479
SignalWidth, 1481
Simulation, 76
SIN, 666
Sobel Multi Gradient, 480
Sobel X, 480
SORT, 910
SourceSelector, 1554
SplitComponents, 764
SplitImage, 1556
SplitKernel, 767
SplitLine, 1560
SplitParallel, 768
SQRT, 669
Stitching, 383
StreamAnalyzer, 854
StreamControl, 878
StringParamReference, 1139
SUB, 670
Switch Cameras, 377
SYNC, 1562
Synchronization, 42, 1495
Synchronization (Tutorial), 377
SyncSignal, 1485
Synthesis, 112
Synthesis Settings, 227

T
TAN, 672
Tap Geometry Sorting, 516
Target Hardware, 213
Target Runtime, 113, 225
Tcl, 236, 237, 238
Tcl Scripting, 236, 238
Template Matching, 552
Threshold, 365
Threshold Binarization, 430
Time-Out, 45
Transformation, 485, 496, 509, 1580
Trash, 770

Index 1604

VisualApplets User Documentation Release 3

TrgBoxLine, 1377
TrgPortArea, 1345
TrgPortLine, 1349
Trigger, 559, 560, 560, 560, 561, 561, 562, 562,
569, 571, 572, 574, 575, 576

Process without DMA, 212
TriggerIn, 1360
TriggerOut, 70, 1362
TxImageLink, 1575
TxLink, 70, 1364
TxSignalLink, 70, 1487

V
Vcc, 1489
Versioning, 64, 225

W
White Balancing, 437, 463
WhiteBalance, 818
WhiteBalanceBayer, 820
WidthToSignal, 1492
Workflow, 15

X
XILINX Installation Detected, 20
XNOR, 951
XOR, 952
XYZ2LAB, 1399

	VisualApplets
	Table of Contents
	Part I. User Manual
	1. Introduction
	1.1. VisualApplets
	1.2. How to Use This Documentation
	1.3. System Requirements

	2. Getting Started
	2.1. Writing Your First Applet
	2.1.1. Designing the Applet
	2.1.2. Parametrizing
	2.1.3. Design Rules Check (DRC)
	2.1.4. Editing the Build Settings
	2.1.5. Building the Final Hardware Applet

	2.2. Running Your Applet on Hardware
	2.2.1. Flashing
	2.2.2. Testing your Applet in microDisplay
	2.2.3. Starting the Applet in your own Software

	2.3. Further Reading

	3. Basic Functionality
	3.1. Basic Principles
	3.2. Workflow
	3.3. Main Program Window
	3.3.1. The Windows of the Information Panel
	3.3.1.1. Project Info
	3.3.1.2. Module Info
	3.3.1.3. Parameter Info
	3.3.1.4. DRC Log
	3.3.1.5. Build Log
	3.3.1.6. Help

	3.3.2. The Windows of the Library Panel
	3.3.2.1. Library
	3.3.2.2. User Library
	3.3.2.3. Custom Library

	3.3.3. Adapting the Main Program Window
	3.3.3.1. Adapting Toolbars
	3.3.3.2. Restoring the Default Setting of the Main Program Window
	3.3.3.3. Number of Files under File -> Recent Designs

	3.4. Entering a Design
	3.4.1. Creating a New Project
	3.4.2. Opening an Existing Project
	3.4.3. Defining the FPGA Clock (mE5 marathon only)
	3.4.4. Inserting Operators
	3.4.5. Deleting Modules
	3.4.6. Adding Links
	3.4.7. Clipboard
	3.4.8. Undo / Redo
	3.4.9. Saving a Project
	3.4.10. Navigating Your Design

	3.5. Data Flow
	3.5.1. Bandwidth of an Applet
	3.5.2. Pixel Order
	3.5.3. Image Protocols, Image Dimensions and Data Structure
	3.5.4. Flow Control

	3.6. Rules of Links
	3.6.1. Types
	3.6.2. O-Type Networks
	3.6.3. M-Type Networks
	3.6.4. M-type Operators with Multiple Inputs
	3.6.5. Synchronization of Different Image Dimensions
	3.6.6. Timing Synchronization
	3.6.7. Bandwidth Bottlenecks
	3.6.8. P-Type Operators
	3.6.9. Infinite Sources / Connecting Cameras
	3.6.10. Differing Rules for Signal Links
	3.6.11. Summary

	3.7. Diagram Parametrization
	3.7.1. Module Properties
	3.7.1.1. The Parameter Info View
	3.7.1.2. The Module Properties Dialog
	3.7.1.3. Parameter Editing
	3.7.1.4. Autocompletion and Syntax Highlighting for Translator and Reference Operators
	3.7.1.5. Illegal Parameter Value States
	3.7.1.6. Metadata

	3.7.2. Link Properties
	3.7.2.1. Properties Ranges and Disabled Properties
	3.7.2.2. Parameter Editing

	3.7.3. Propagation and Dependencies of Operator Parameters and Link Properties

	3.8. Allocation of Device Resources
	3.9. Design Rules Check
	3.9.1. DRC Level 1
	3.9.2. DRC Level 2

	3.10. Simulation
	3.10.1. Limitations
	3.10.2. Supported Image Formats
	3.10.3. Simulation Workflow
	3.10.4. Inserting Sources and Probes into your Design
	3.10.5. Loading the Image File(s) to your Simulation Source(s)
	3.10.5.1. The Simulation Source Viewer
	3.10.5.2. Loading Images into the Source
	3.10.5.3. Loading an Image Sequence into your Simulation Source

	3.10.6. Optimizing your Image Input via Parameters
	3.10.6.1. Pixel Values
	3.10.6.2. Image Dimension
	3.10.6.3. Image File Mapping
	3.10.6.4. Display Alignment
	3.10.6.5. Pixel Spitting and Merging

	3.10.7. Setting the Number of Processing Cycles and Starting the Simulation
	3.10.8. Evaluating the Simulation Results
	3.10.8.1. Pixel Values
	3.10.8.2. Image Sequence
	3.10.8.3. Varying Row Length
	3.10.8.4. Display Alignment

	3.10.9. Line Profile
	3.10.10. Line Histogram
	3.10.10.1. Displaying Statistical Data

	3.10.11. Image Histogram
	3.10.11.1. Displaying Statistical Data

	3.10.12. Saving Simulation Results
	3.10.12.1. Pixel Alignment
	3.10.12.2. Pixel Splitting
	3.10.12.3. Saving

	3.10.13. Frequently Asked Questions

	3.11. FPGA Resource Estimation
	3.11.1. Resource Usage Estimation on Design Level
	3.11.2. Resource Usage Estimation on Module Level

	3.12. Build
	3.12.1. Selecting the Build Configuration
	3.12.2. Target Runtime Selection
	3.12.3. Build Settings for imaFlex CXP-12 Quad and imaFlex CXP-12 Penta
	3.12.4. Errors during Build
	3.12.5. Applet Run
	3.12.6. microDisplay
	3.12.7. Repacking the *.hap File for Other Operating Systems at a Later Stage

	3.13. Framegrabber SDK
	3.13.1. Generating an SDK Example
	3.13.2. Using the Generated SDK Example

	4. Extended Functionality
	4.1. Hierarchical Boxes
	4.1.1. Creating a Hierarchical Box
	4.1.2. Navigating between Design Windows
	4.1.3. Editing Module Properties
	4.1.4. Re-use of Hierarchical Boxes
	4.1.5. Inserting Additional Ports to Hierarchical Boxes
	4.1.6. Deleting a Port of a Hierarchical Box
	4.1.7. Re-naming the Ports of Hierarchical Boxes
	4.1.8. Re-ordering the Ports of Hierarchical Boxes

	4.2. User Libraries
	4.2.1. Creating a New User Library
	4.2.2. Creating a User Library Element
	4.2.2.1. Saving a Hierarchical Box as a User Library Element
	4.2.2.2. Creating a New User Library Element from Scratch

	4.2.3. Using the User Library
	4.2.3.1. Inserting User Library Elements into Your Design
	4.2.3.2. Adapting Element Instances to Your Design

	4.2.4. Protecting User Library Elements
	4.2.5. Editing User Library Elements
	4.2.5.1. Editing User Library Elements in the User Library Editor
	4.2.5.2. Editing a User Library Element via Overwriting

	4.2.6. Updating Instantiated User Library Elements
	4.2.6.1. Updating Manually
	4.2.6.2. Replacing Modules via Quick Update
	4.2.6.3. Replacing an instance via Update from User Library

	4.2.7. Transforming a User Library Module into a Hierarchical Box
	4.2.8. Delivered User Libraries
	4.2.8.1. JPEG_Color User Library
	4.2.8.2. imaFlex_CXP12_Tools User Library
	4.2.8.3. imaFlex_CXP12_Tools_Advanced User Library

	4.3. Custom Operator Libraries
	4.3.1. Workflow
	4.3.2. VisualApplets Custom Operator Functionality
	4.3.3. Types
	4.3.4. Synchronous and Asynchronous Operator Ports
	4.3.5. Interface Architecture
	4.3.5.1. Clock Interface
	4.3.5.2. Reset and Enable
	4.3.5.3. Register Interface
	4.3.5.4. Interfaces for Image Data
	4.3.5.4.1. Image Protocols
	4.3.5.4.2. Image Input Ports
	4.3.5.4.3. Image Output Ports

	4.3.5.5. General purpose I/O
	4.3.5.6. Memory Interface

	4.3.6. Defining an Individual Custom Operator via GUI
	4.3.6.1. Creating a New Custom Library
	4.3.6.2. Creating a New Custom Operator
	4.3.6.3. Defining Basic Information about Custom Operator
	4.3.6.4. Defining the Image Input Ports
	4.3.6.5. Defining the Image Output Ports
	4.3.6.6. Defining the GPIO Ports
	4.3.6.7. Defining the Memory Ports
	4.3.6.8. Defining the Registers of the Custom Operator

	4.3.7. Generation of VHDL Black Box and Test Bench
	4.3.8. Interface Ports
	4.3.8.1. Clock System, Reset and Enable
	4.3.8.2. Parameter Interface
	4.3.8.3. Image Communication Interfaces
	4.3.8.3.1. Interfaces of Type ImgIn
	4.3.8.3.2. Interfaces of Type ImgOut

	4.3.8.4. Memory Interfaces
	4.3.8.5. General Purpose I/O pins

	4.3.9. VHDL Simulation and Verification
	4.3.9.1. Simulation Framework
	4.3.9.2. Emulation of Register Interface
	4.3.9.3. Emulation of ImgIn Interface
	4.3.9.4. Emulation of ImgOut Interface
	4.3.9.5. Emulation of Memory Communication
	4.3.9.6. GPIO Emulation

	4.3.10. Defining the Custom Operator’s Software Interface
	4.3.11. Communicating Data
	4.3.12. Detailed Description of Interface Functions
	4.3.13. Creating Custom Operator Documentation
	4.3.14. Completing the Custom Operator
	4.3.15. Using New Custom Operators
	4.3.15.1. Distributing the Custom Library or the Individual Custom Operator
	4.3.15.2. Update from Custom Library
	4.3.15.3. Importing and Exporting Individual Custom Operators

	4.3.16. Template and Examples
	4.3.16.1. Examples
	4.3.16.2. Custom Operator Template

	4.3.17. XML Format for Custom Operator Specification

	4.4. Multiple Processes
	4.4.1. Managing Processes
	4.4.2. Processes without DMAs / Trigger Processes
	4.4.3. Process Intercommunication

	4.5. Target Hardware Porting
	4.6. PixelPlant Designs
	4.6.1. PixelPlant Projects
	4.6.2. HAP Merger

	4.7. System Settings
	4.7.1. Path Settings
	4.7.2. Simulation Settings
	4.7.3. Settings for New Designs
	4.7.4. Diagram Settings
	4.7.5. Global Build Settings
	4.7.6. Common Settings

	4.8. Design Settings
	4.8.1. Target Runtime
	4.8.2. Project Properties
	4.8.3. Diagram Layout Settings

	4.9. Build Settings
	4.9.1. Defining Build Settings
	4.9.1.1. Using one Parameter Set as Active Configuration
	4.9.1.2. Defining New Parameter Sets
	4.9.1.3. Re-Using Parameter Sets
	4.9.1.4. Experienced users only: Creating *.hap Files for Different Operating Systems Using the Same Build (mE 5 ironman, mE5 marathon and LightBridge)

	4.10. Tcl Scripting
	4.11. Script Collection (Tcl)
	4.12. Tcl Export
	4.12.1. Exporting to Tcl
	4.12.2. Importing from Tcl
	4.12.3. Tcl Import/Export Command Reference

	4.13. Print / Screenshot
	4.14. Migration from Older Versions

	5. Embedded VisualApplets (eVA)
	5.1. Introduction
	5.1.1. Integration Workflow
	5.1.2. Have a Glance at VisualApplets
	5.1.3. Concept of IP Core Interfaces
	5.1.4. Performance Classes
	5.1.5. Requirements

	5.2. Common Interfaces for all Platforms
	5.2.1. Clock Interface
	5.2.2. Register Slave Interface
	5.2.3. Reset and Enable

	5.3. Defining the IP Core Properties
	5.3.1. Graphical User Interface of eVA Designer
	5.3.1.1. Graphical Representation
	5.3.1.2. Output field

	5.3.2. Opening eVA Designer and Hardware Description File
	5.3.3. Entering Platform Details
	5.3.4. Entering FPGA Details
	5.3.5. Entering Descriptions of Required ImgIn Interfaces
	5.3.5.1. The ImgIn Interface of the eVA IP Core
	5.3.5.2. Supported ImageIn Formats
	5.3.5.3. Defining ImgIn Interface Classes
	5.3.5.3.1. Setting up ImgIn Ports
	5.3.5.3.2. Defining Image Protocols for an ImgIn Interface Class
	5.3.5.3.3. Defining Additional Parameters for an ImgIn Interface Class

	5.3.6. Entering Descriptions of Required ImgOut Interfaces
	5.3.6.1. The ImgOut Interface of the VA IP Core
	5.3.6.2. Supported ImageOut Formats
	5.3.6.3. Defining ImgOut Interface Classes
	5.3.6.3.1. Setting up ImgOut Ports
	5.3.6.3.2. Defining Image Protocols for an ImgOut Interface Class
	5.3.6.3.3. Defining Additional Parameters for an ImgOut Interface Class

	5.3.7. Entering GPIO Definitions
	5.3.8. Defining Required Memory Interfaces
	5.3.8.1. The Memory Interface of the eVA IP Core
	5.3.8.2. Defining Memory Interfaces

	5.3.9. Defining Hardware-Specific Operators
	5.3.9.1. Defining ImgIn Operators
	5.3.9.2. Defining ImgOut Operators
	5.3.9.3. Defining GPIO Operators

	5.3.10. Generating VHDL Code for the IP Core

	5.4. Embedding and Simulating the IP core
	5.4.1. Simulation Framework
	5.4.1.1. Emulation of Slave Interface
	5.4.1.2. Emulation of ImgOut Interface
	5.4.1.3. Emulation of ImgIn Interface
	5.4.1.4. Emulation of Memory Communication
	5.4.1.5. GPIO Emulation

	5.4.2. Embedding the IP Core
	5.4.3. Entering Build Flow Details
	5.4.4. Creating the eVA Plugin
	5.4.4.1. Direct Installation of Plugin
	5.4.4.2. Building the eVA Plugin Installer
	5.4.4.3. Executing the eVA Plugin Installer

	5.4.5. Using the Installed eVA Plugin

	5.5. Runtime Software Interface
	5.5.1. HAP-Based eVA Runtime Interface
	5.5.1.1. Communicating Data
	5.5.1.2. Detailed Description of Interface Functions

	5.5.2. Runtime Interface Based on GenICam API Version 2.0
	5.5.3. Runtime Interface Based on Generated API Code

	5.6. Licensing Model
	5.6.1. Economy
	5.6.2. eXtended
	5.6.3. Superior

	5.7. Application Notes
	5.7.1. Designing for Non-Stoppable Image Sources
	5.7.2. GenICam API
	5.7.2.1. Operators Requiring Startup Initialization
	5.7.2.2. Parameters which may not be Changed During Running

	5.7.3. Deviating Parameter Interface During Runtime

	6. Miscellaneous
	6.1. Command Line Options
	6.2. Keyboard Shortcuts
	6.2.1. Main Program Window
	6.2.2. Simulation Viewer

	6.3. Error Reporting

	Part II. Tutorial and Examples
	7. Introduction
	8. Hardware Applet: From Idea to Application
	8.1. Workflow Description
	8.2. Designing an Applet in VisualApplets
	8.2.1. Starting a New Project
	8.2.2. Operators and Links
	8.2.3. Implementation of the Design
	8.2.4. Design Components
	8.2.5. Parameter Settings
	8.2.5.1. Link Parameters
	8.2.5.2. Properties
	8.2.5.3. Preparation for Parameter Access during Runtime

	8.2.6. Finalizing the Design
	8.2.6.1. Simulation Sources and Probes
	8.2.6.2. Design Rule Check (DRC)

	8.3. Building the Applet in VisualApplets
	8.3.1. Precondition
	8.3.2. Editing the Build Settings

	8.4. Running the Applet on Hardware
	8.4.1. Precondition
	8.4.2. Flashing
	8.4.3. Testing and Loading the Applet in microDisplay
	8.4.4. Parameter Settings and Acquisition
	8.4.5. Starting the Applet in Your Own SDK

	9. Basic Design Theory
	9.1. Applet Parameterization
	9.2. Multiple DMA Channel Designs
	9.2.1. VisualApplets Implementation of Binarization with Monitoring
	9.2.2. Verification of the Binarization Design using Simulation
	9.2.3. Verification of the Binarization Design in Hardware

	9.3. Synchronization of Asynchronous Image Pipelines
	9.3.1. Synchronizing Cameras
	9.3.1.1. Switch Between two Cameras
	9.3.1.2. Combine Image Data From Two Camera Sources - Building an Overlay Blend
	9.3.1.3. Multiplex the Images of Two Cameras
	9.3.1.4. Stitching of Two Cameras

	10. Basic Acquisition Designs for Varying Camera Types and Hardware Platforms
	10.1. Basic Acquisition Examples for Camera Link Cameras for microEnable IV VD4-CL/-PoCL Frame Grabber
	10.1.1. Camera Link Area Scan Cameras
	10.1.1.1. Grayscale Camera Link Base Area
	10.1.1.2. RGB Camera Link Base Area
	10.1.1.3. Grayscale Camera Link Medium Area
	10.1.1.4. RGB Camera Link Medium Area
	10.1.1.5. Grayscale Camera Link Full Area

	10.1.2. Camera Link Line Scan Cameras
	10.1.2.1. Grayscale Camera Link Base Line
	10.1.2.2. RGB Camera Link Base Line
	10.1.2.3. Grayscale Camera Link Medium Line
	10.1.2.4. Grayscale Camera Link Full Line

	10.2. Basic Acquisition Examples for GigE Vision Cameras for microEnable IV Frame Grabber
	10.2.1. GigE Vision Area Scan Cameras
	10.2.1.1. GigE Vision Grayscale Area Scan Cameras
	10.2.1.2. GigE Vision RGB Area Scan Cameras

	10.2.2. GigE Vision Line Scan Cameras
	10.2.2.1. GigE Vision Grayscale Line Scan Cameras
	10.2.2.2. GigE Vision RGB Line Scan Cameras

	10.3. Basic Acquisition Examples for Camera Link Cameras for marathon, LightBridge and ironman Frame Grabbers
	10.3.1. Camera Link Area Scan Cameras
	10.3.1.1. Grayscale Camera Link Base Area
	10.3.1.2. RGB Camera Link Base Area
	10.3.1.3. Grayscale Camera Link Medium Area
	10.3.1.4. RGB Camera Link Medium Area
	10.3.1.5. Camera Link Full Area

	10.3.2. Camera Link Line Scan Cameras
	10.3.2.1. Grayscale Camera Link Base Line Scan Cameras
	10.3.2.2. RGB Camera Link Base Line Scan Cameras
	10.3.2.3. Grayscale Camera Link Medium Line Scan Cameras
	10.3.2.4. RGB Camera Link Medium Line Scan Cameras
	10.3.2.5. Grayscale Camera Link Full Line Scan Cameras

	10.4. Basic Acquisition Examples for CoaXPress Cameras for marathon and ironman Frame Grabbers
	10.4.1. CoaXPress Area Scan Cameras
	10.4.1.1. Basic Acquisition Example for Single Line CoaXPress Area Scan Cameras
	10.4.1.2. Basic Acquisition Examples for two Dual Line CoaXPress Area Scan Cameras
	10.4.1.3. Basic Acquisition Examples for One Quad Line CoaXPress Area Scan Camera

	10.4.2. CoaXPress Line Scan Cameras
	10.4.2.1. Basic Acquisition Example for Single Line CoaXPress Line Scan Cameras
	10.4.2.2. Basic Acquisition Examples for two Dual Line CoaXPress Line Scan Cameras
	10.4.2.3. Basic Acquisition Examples for One Quad Line CoaXPress Line Scan Camera

	10.5. Basic Acquisition Examples for Cameras for CoaXPress 12 imaFlex Frame Grabber
	10.5.1. CoaXPress Area Scan Cameras
	10.5.1.1. Basic Acquisition Example for One CoaXPress12 Quad Link Area Scan Camera
	10.5.1.2. Basic Acquisition Examples for Four CoaXPress-12 Single Link Area Scan Cameras
	10.5.1.3. Basic Acquisition Example for Multiple Bit Widths on imaFlex Platform
	10.5.1.4. Basic Acquisition Example for Color Format Support on imaFlex Platform

	10.5.2. CoaXPress Line Scan Cameras
	10.5.2.1. Basic Acquisition Example for Single Line CoaXPress Line Scan Cameras

	11. imaFlex CXP-12 Quad and Penta Implementation Examples
	11.1. Functional Example for the FrameBufferMultRoiDyn Operator on the imaFlex CXP-12 Penta Platform
	11.2. Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex CXP-12 Penta Platform
	11.3. Functional Example for the FrameBufferMultRoi User Library Element on the imaFlex CXP-12 Quad Platform
	11.4. Functional Example for Loading Test Images Using ImageInjector
	11.5. Functional Example for Multi Tap Camera Interface with Tap Geometry Sorting
	11.6. Functional Example for the JPEG_Encoder_Color_iF User Library Element on the imaFlex CXP-12 Quad Platform
	11.7. Functional Example for the JPEG_Encoder_Color_iF_Penta User Library Element on the imaFlex CXP-12 Penta Platform
	11.8. Example for the DMAFromPC Operator on the imaFlex CXP-12 Quad Platform

	12. Processing Examples
	12.1. Advanced
	12.1.1. Fast Fourier transform
	12.1.2. JPEG Encoder Gray
	12.1.3. Using more than one JPEG encoder to enhance the bandwidth of JPEG compression.
	12.1.3.1. JPEG_Gray - VisualApplets Design
	12.1.3.2. JPEG_Gray - VisualApplets Design

	12.1.4. JPEG Compression Using Operator JPEG_Encoder
	12.1.4.1. Grayscale JPEG Encoding
	12.1.4.2. Design Versions

	12.1.5. JPEG Color Compression Using User Library Elements
	12.1.5.1. Color JPEG Encoding
	12.1.5.2. Design Versions

	12.1.6. Laser Pointer Detection
	12.1.7. Laser Triangulation
	12.1.8. Run Length Encoder
	12.1.9. Packbits Run Length Encoder

	12.2. Binarization
	12.2.1. Adaptive Threshold
	12.2.2. Auto Threshold Mean
	12.2.3. Histogram Threshold
	12.2.4. Simple Threshold Binarization

	12.3. Blob Analysis
	12.3.1. Blob 1D
	12.3.2. Blob 2D
	12.3.3. Blob2D ROI Selection

	12.4. Color
	12.4.1. Bayer Demosaicing
	12.4.1.1. Nearest Neighbor Demosaicing
	12.4.1.1.1. Theory
	12.4.1.1.2. VisualApplets Design

	12.4.1.2. Bayer 3x3 Demosaicing
	12.4.1.3. Bayer 5x5 Demosaicing
	12.4.1.4. Bayer 3x3 Demosacing with White Balancing
	12.4.1.5. Bayer 5x5 Demosacing with White Balancing
	12.4.1.6. Edge Sensitive Bayer Demosaicing Algorithm
	12.4.1.6.1. Interpolation Algorithm
	12.4.1.6.2. Implementation in VisualApplets

	12.4.1.7. Bayer Demosaicing Algorithm According to Laroche
	12.4.1.7.1. Interpolation Step 1
	12.4.1.7.2. Interpolation Step 2
	12.4.1.7.3. VisualApplets-Design
	12.4.1.7.4. Result of the Bayer-Demosaicing Process

	12.4.1.8. Modified Laroche Bayer Demosaicing Algorithm
	12.4.1.9. Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern Red/BlueFollowedByGreen GreenFollowedByBlue/Red
	12.4.1.10. Bayer Demosaicing For Bilinear Line Scan Cameras with Color Pattern RedFollowedByBlue GreenFollowedByGreen
	12.4.1.11. Bayer Demosaicing a Line Scan Camera with 8 Bit BiColor Bayer Pattern
	12.4.1.12. Bayer Demosaicing a Line Scan Camera with 10 Bit BiColor Bayer Pattern
	12.4.1.13. Bayer Demosaicing a Line Scan Camera with 12 Bit BiColor Bayer Pattern

	12.4.2. Color Plane Separation
	12.4.2.1. Color Plane Separation Option 1 - Three DMAs
	12.4.2.2. Color Plane Separation Option 2 - Three Buffers, One DMA
	12.4.2.3. Color Plane Separation Option 3 - Sequential with Operator ImageBufferMultiRoI
	12.4.2.4. Color Plane Separation Option 4 - Sequential with Operator ImageBufferMultiRoI and a pre-sort of the Color Planes
	12.4.2.5. Color Plane Separation Option 5 - Sequential Output with Advances Processing

	12.4.3. HSL Color Classification
	12.4.4. RGB White Balancing

	12.5. Co-Processor
	12.5.1. Co-Processor Median Filter
	12.5.2. Co-Processor Large Filter Calculation

	12.6. Debugging and Test
	12.6.1. Hardware Test
	12.6.1.1. Implementation of Main Image Processing Part
	12.6.1.2. Implementation of DMA Performance Pattern Generator
	12.6.1.3. Setting the Width and Height in the Example HardwareTest using operator IntParamTranslator

	12.6.2. Image Dimension Test
	12.6.3. Image Timing Generator
	12.6.4. Manual Image Injection
	12.6.5. Image Monitoring
	12.6.6. Image Grayscale Scope
	12.6.7. Image Flow Control
	12.6.8. Trigger And Image Statistics

	12.7. Difference Images
	12.7.1. Motion Detection
	12.7.2. Noise Reduction

	12.8. Filter
	12.8.1. Edge Detection
	12.8.1.1. Morphological Edge
	12.8.1.2. Kirsch Filter
	12.8.1.3. Roberts Cross Gradient
	12.8.1.4. Sobel Gradient X
	12.8.1.5. Sobel Multi Gradient

	12.8.2. Morphology
	12.8.2.1. Close
	12.8.2.2. Hit or Miss
	12.8.2.3. Open

	12.8.3. Noise Reduction
	12.8.3.1. Averaging 3x3
	12.8.3.2. Gaussian Filter 5x5
	12.8.3.3. Median Filter 5x5

	12.8.4. Principles
	12.8.4.1. Filter Basics
	12.8.4.2. Parallel Filters
	12.8.4.3. Filter Sub Kernels
	12.8.4.4. Filter for Line Scan Cameras

	12.8.5. Sharpening
	12.8.5.1. High Boost Sharpening Filter
	12.8.5.2. Laplace Filter 3x3

	12.9. Geometry
	12.9.1. Downsampling
	12.9.2. Downsampling 3x3
	12.9.3. Geometric Transformation and Distortion Correction
	12.9.3.1. Theoretical Background
	12.9.3.1.1. Geometric Transformation
	12.9.3.1.2. Distortion Correction
	12.9.3.1.3. Keystone Correction
	12.9.3.1.4. Image Moments

	12.9.3.2. Implementation in VisualApplets
	12.9.3.2.1. Geometric Transformation Using FrameBufferRandomRead
	12.9.3.2.2. Geometric Transformation Using Image Moments
	12.9.3.2.3. Geometric Transformation using PixelReplicator
	12.9.3.2.4. Geometric Transformation and Distortion Correction
	12.9.3.2.5. Distortion Correction

	12.9.4. ImageSplitAndMerge
	12.9.5. Moments in Image Processing
	12.9.5.1. Orientation \Theta
	12.9.5.2. Eccentricity
	12.9.5.3. Design in VisualApplets

	12.9.6. Line Mirror
	12.9.7. Shear of an Image
	12.9.8. Scaling a Line Scan Image
	12.9.8.1. Basic Idea for Scaling/Transformation in a Line
	12.9.8.2. Implementation in VisualApplets
	12.9.8.2.1. Transformation
	12.9.8.2.1.1. WordToRead
	12.9.8.2.1.2. PixelPicker
	12.9.8.2.1.3. Interpolation

	12.9.8.3. Lookup Tables for The VisualApplets Design
	12.9.8.3.1. ScalingLUTs.cpp
	12.9.8.3.2. ScalingTableLine.m and LUTS_Scaling.m

	12.9.9. Tap Geometry Sorting
	12.9.9.1. Small Theory on Camera Link Tap Geometry
	12.9.9.2. Implementation in VisualApplets

	12.10. High Dynamic Range and Image Composition
	12.10.1. High Dynamic Range and Low Dynamic Range Example Using Camera Response Function
	12.10.1.1. High Dynamic Range Imaging
	12.10.1.2. Low Dynamic Range Imaging
	12.10.1.2.1. Bayer and Color Images
	12.10.1.2.2. Grayscale Images

	12.10.1.3. VisualApplets Design

	12.10.2. High Dynamic Range and Low Dynamic Range Example with a Weighted Linear Ansatz
	12.10.2.1. High Dynamic Range Imaging With Weighted Linear Ansatz
	12.10.2.2. VisualApplets Design

	12.10.3. Image Composition Using Exposure Fusion
	12.10.3.1. Theory of Exposure Fusion
	12.10.3.2. Implementation in VisualApplets

	12.11. Lookup Tables
	12.11.1. Lookup Table 8 Bit
	12.11.2. Lookup Table 10 to 16 Bit
	12.11.3. Knee-Lookup Table 16 Bit
	12.11.4. Knee-Lookup Table 24 Bit Color

	12.12. Loop
	12.12.1. A rolling average is applied on a dynamic number of images
	12.12.1.1. Algorithm
	12.12.1.2. Used Loop
	12.12.1.3. Visualization
	12.12.1.4. VisualApplets Design
	12.12.1.5. Simulation Data

	12.12.2. Depth From Focus Using Loops
	12.12.2.1. Theoretical Background
	12.12.2.2. Implementation in Visual Applets

	12.13. Object Features
	12.13.1. Histogram of Oriented Gradients (HOG)
	12.13.1.1. Theory
	12.13.1.2. Implementation in VisualApplets

	12.13.2. Print Inspection Example- Position Correction and Defect Detection Using Blob Based Template Matching
	12.13.3. Print Inspection Example- Position Correction and Defect Detection Using Image Moments and Blob Based Template Matching
	12.13.4. Normalized Cross Correlation
	12.13.4.1. Theory
	12.13.4.2. Implementation in VisualApplets

	12.14. Shading Correction
	12.14.1. Dead Pixel Replacement
	12.14.2. Grid Overlay Fading
	12.14.3. 2D Shading Correction / Flat Field Correction
	12.14.4. 2D Shading Correction / Flat Field Correction Using Operator RamLUT
	12.14.5. 1D Shading Correction Using Block RAM
	12.14.6. 1D Shading Correction Using Frame Grabber RAM

	12.15. Trigger
	12.15.1. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform
	12.15.1.1. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Signal Operators and Operator CameraControl
	12.15.1.2. Area Scan Trigger for microEnable IV VD4-CL/-PoCL Platform Using Operator TrgPortArea

	12.15.2. Area Scan Trigger for microEnable IV VQ4-GE/-GPoE
	12.15.3. Area Scan Trigger for microEnable 5 marathon/LightBridge VCL
	12.15.4. Area Scan Trigger for microEnable 5 VD8-CL/-PoCL
	12.15.5. Area Scan Trigger for microEnable 5 marathon VCX QP
	12.15.6. Area Scan Trigger for imaFlex CXP-12 Quad
	12.15.7. Area Scan Trigger for microEnable 5 VQ8-CXP6B and VQ8-CXP6D
	12.15.8. Line Scan Trigger for microEnable IV VD4-CL/-PoCL
	12.15.8.1. Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Signal Operators and Operator CameraControl
	12.15.8.2. Line Scan Trigger for microEnable IV VD4-CL/-PoCL Using Operator TrgBoxLine
	12.15.8.3. Rebuild of Operator TrgPortLine with VisualApplets Signal Processing Operators
	12.15.8.3.1. Implementation
	12.15.8.3.2. Image Trigger Implementation
	12.15.8.3.3. Line Trigger Implementation

	12.15.9. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE
	12.15.9.1. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Signal Operators and Operator ActionCommand
	12.15.9.2. Line Scan Trigger for microEnable IV VQ4-GE/-GPoE Using Operator TrgBoxLine

	12.15.10. Line Scan Trigger for microEnable 5 marathon/LightBridge VCL
	12.15.10.1. Line Scan Trigger for microEnable 5 marathon/LightBridge VCL Using Signal Operators and Operator CameraControl
	12.15.10.2. Line Scan Trigger for microEnable 5 marathon/LightBridge VCL with TrgBoxLine Operator Usage

	12.15.11. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL
	12.15.11.1. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL Using Signal Operators and Operator CameraControl
	12.15.11.2. Line Scan Trigger for microEnable 5 VD8-CL/-PoCL with TrgBoxLine Operator Usage

	12.15.12. Line Scan Trigger for microEnable 5 marathon VCX QP
	12.15.12.1. Line Scan Trigger for microEnable 5 marathon VCX QP Using Signal Operators
	12.15.12.2. Line Scan Trigger for microEnable 5 marathon VCX QP with TrgBoxLine Operator Usage

	12.15.13. Line Scan Trigger for imaFlex CXP-12 Quad
	12.15.13.1. Line Scan Trigger for imaFlex CXP-12 Quad Using Signal Operators
	12.15.13.2. Line Scan Trigger for imaFlex CXP-12 Quad with TrgBoxLine Operator Usage

	12.15.14. Line Scan Trigger for microEnable 5 VQ8-CXP6
	12.15.14.1. Line Scan Trigger for microEnable 5 VQ8-CXP6 Using Signal Operators
	12.15.14.2. Line Scan Trigger for microEnable 5 VQ8-CXP6 with TrgBoxLine Operator Usage

	13. Operator Examples
	13.1. Functional Example for Specific Operators of Library Accumulator and Library Logic
	13.2. Functional Example for Specific Operators of Library Synchronization: Dynamic Append and Cut
	13.3. Functional Example for Specific Operators of Library Memory and Library Signal
	13.4. Functional Example for Specific Operators of Library Memory and Library Signal
	13.5. Functional Example for Specific Operators of Library Signal
	13.6. Functional Example for Specific Operators of Library Synchronization, Base and Filter
	13.7. Functional Example for Specific Operators of Library Arithmentics: Trigonometric Functions
	13.8. Functional Example for Specific Operators of Library Color, Base and Memory
	13.9. Functional Example for Specific Operators of Library Signal, Logic, Filter and Parameters

	14. Parameter Library Examples
	14.1. Parameter Redirection
	14.2. Parameter Translation
	14.3. User Library Parameter
	14.4. Parameter Selection
	14.5. Link Parameter Translation

	15. Using Applets During Runtime
	15.1. Filling LUT with Content With the Basler Framegrabber API

	Part III. Operator Reference
	16. Introduction
	17. Library Overview
	18. Library Accumulator
	18.1. ColMax
	18.1.1. I/O Properties
	18.1.2. Supported Link Format
	18.1.3. Parameters
	18.1.4. Examples of Use

	18.2. ColMin
	18.2.1. I/O Properties
	18.2.2. Supported Link Format
	18.2.3. Parameters
	18.2.4. Examples of Use

	18.3. ColSum
	18.3.1. I/O Properties
	18.3.2. Supported Link Format
	18.3.3. Parameters
	18.3.4. Examples of Use

	18.4. Count
	18.4.1. I/O Properties
	18.4.2. Supported Link Format
	18.4.3. Parameters
	18.4.4. Examples of Use

	18.5. FrameMax
	18.5.1. I/O Properties
	18.5.2. Supported Link Format
	18.5.3. Parameters
	18.5.4. Examples of Use

	18.6. FrameMin
	18.6.1. I/O Properties
	18.6.2. Supported Link Format
	18.6.3. Parameters
	18.6.4. Examples of Use

	18.7. FrameSum
	18.7.1. I/O Properties
	18.7.2. Supported Link Format
	18.7.3. Parameters
	18.7.4. Examples of Use

	18.8. Histogram
	18.8.1. I/O Properties
	18.8.2. Supported Link Format
	18.8.3. Parameters
	18.8.4. Examples of Use

	18.9. ModuloCount
	18.9.1. I/O Properties
	18.9.2. Supported Link Format
	18.9.3. Parameters
	18.9.4. Examples of Use

	18.10. Register
	18.10.1. I/O Properties
	18.10.2. Supported Link Format
	18.10.3. Parameters
	18.10.4. Examples of Use

	18.11. RowMax
	18.11.1. I/O Properties
	18.11.2. Supported Link Format
	18.11.3. Parameters
	18.11.4. Examples of Use

	18.12. RowMin
	18.12.1. I/O Properties
	18.12.2. Supported Link Format
	18.12.3. Parameters
	18.12.4. Examples of Use

	18.13. RowSum
	18.13.1. I/O Properties
	18.13.2. Supported Link Format
	18.13.3. Parameters
	18.13.4. Examples of Use

	19. Library Arithmetics
	19.1. ABS
	19.1.1. I/O Properties
	19.1.2. Supported Link Format
	19.1.3. Parameters
	19.1.4. Examples of Use

	19.2. ADD
	19.2.1. I/O Properties
	19.2.2. Supported Link Format
	19.2.3. Parameters
	19.2.4. Examples of Use

	19.3. ARCCOS
	19.3.1. I/O Properties
	19.3.2. Supported Link Format
	19.3.3. Parameters
	19.3.4. Examples of Use

	19.4. ARCCOT
	19.4.1. I/O Properties
	19.4.2. Supported Link Format
	19.4.3. Parameters
	19.4.4. Examples of Use

	19.5. ARCSIN
	19.5.1. I/O Properties
	19.5.2. Supported Link Format
	19.5.3. Parameters
	19.5.4. Examples of Use

	19.6. ARCTAN
	19.6.1. I/O Properties
	19.6.2. Supported Link Format
	19.6.3. Parameters
	19.6.4. Examples of Use

	19.7. ClipHigh
	19.7.1. I/O Properties
	19.7.2. Supported Link Format
	19.7.3. Parameters
	19.7.4. Examples of Use

	19.8. ClipLow
	19.8.1. I/O Properties
	19.8.2. Supported Link Format
	19.8.3. Parameters
	19.8.4. Examples of Use

	19.9. COS
	19.9.1. I/O Properties
	19.9.2. Supported Link Format
	19.9.3. Parameters
	19.9.4. Examples of Use

	19.10. COT
	19.10.1. I/O Properties
	19.10.2. Supported Link Format
	19.10.3. Parameters
	19.10.4. Examples of Use

	19.11. DIV
	19.11.1. I/O Properties
	19.11.2. Supported Link Format
	19.11.3. Parameters
	19.11.4. Examples of Use

	19.12. MULT
	19.12.1. I/O Properties
	19.12.2. Supported Link Format
	19.12.3. Parameters
	19.12.4. Examples of Use

	19.13. RND
	19.13.1. I/O Properties
	19.13.2. Supported Link Format
	19.13.3. Parameters
	19.13.4. Examples of Use

	19.14. SCALE
	19.14.1. I/O Properties
	19.14.2. Supported Link Format
	19.14.3. Parameters
	19.14.4. Examples of Use

	19.15. ShiftLeft
	19.15.1. I/O Properties
	19.15.2. Supported Link Format
	19.15.3. Parameters
	19.15.4. Examples of Use

	19.16. ShiftRight
	19.16.1. I/O Properties
	19.16.2. Supported Link Format
	19.16.3. Parameters
	19.16.4. Examples of Use

	19.17. SIN
	19.17.1. I/O Properties
	19.17.2. Supported Link Format
	19.17.3. Parameters
	19.17.4. Examples of Use

	19.18. SQRT
	19.18.1. I/O Properties
	19.18.2. Supported Link Format
	19.18.3. Parameters
	19.18.4. Examples of Use

	19.19. SUB
	19.19.1. I/O Properties
	19.19.2. Supported Link Format
	19.19.3. Parameters
	19.19.4. Examples of Use

	19.20. TAN
	19.20.1. I/O Properties
	19.20.2. Supported Link Format
	19.20.3. Parameters
	19.20.4. Examples of Use

	20. Library Base
	20.1. BRANCH
	20.1.1. I/O Properties
	20.1.2. Supported Link Format
	20.1.3. Parameters
	20.1.4. Examples of Use

	20.2. CastBitWidth
	20.2.1. I/O Properties
	20.2.2. Supported Link Format
	20.2.3. Parameters
	20.2.4. Examples of Use

	20.3. CastColorSpace
	20.3.1. I/O Properties
	20.3.2. Supported Link Format
	20.3.3. Parameters
	20.3.4. Examples of Use

	20.4. CastKernel
	20.4.1. I/O Properties
	20.4.2. Supported Link Format
	20.4.3. Parameters
	20.4.4. Examples of Use

	20.5. CastParallel
	20.5.1. I/O Properties
	20.5.2. Supported Link Format
	20.5.3. Parameters
	20.5.4. Examples of Use

	20.6. CastType
	20.6.1. I/O Properties
	20.6.2. Supported Link Format
	20.6.3. Parameters
	20.6.4. Examples of Use

	20.7. CONST
	20.7.1. I/O Properties
	20.7.2. Supported Link Format
	20.7.3. Parameters
	20.7.4. Examples of Use

	20.8. ConvertPixelFormat
	20.8.1. I/O Properties
	20.8.2. Supported Link Format
	20.8.3. Parameters
	20.8.4. Examples of Use

	20.9. Coordinate_X
	20.9.1. I/O Properties
	20.9.2. Supported Link Format
	20.9.3. Parameters
	20.9.4. Examples of Use

	20.10. Coordinate_Y
	20.10.1. I/O Properties
	20.10.2. Supported Link Format
	20.10.3. Parameters
	20.10.4. Examples of Use

	20.11. Dummy
	20.11.1. I/O Properties
	20.11.2. Supported Link Format
	20.11.3. Parameters

	20.12. DynamicROI
	20.12.1. I/O Properties
	20.12.2. Supported Link Format
	20.12.3. Parameters
	20.12.4. Examples of Use

	20.13. EventToHost
	20.13.1. I/O Properties
	20.13.2. Supported Link Format
	20.13.3. Parameters
	20.13.4. Examples of Use

	20.14. EventDataToHost
	20.14.1. I/O Properties
	20.14.2. Supported Link Format
	20.14.3. Parameters

	20.15. ExpandToKernel
	20.15.1. I/O Properties
	20.15.2. Supported Link Format
	20.15.3. Parameters
	20.15.4. Examples of Use

	20.16. ExpandToParallel
	20.16.1. I/O Properties
	20.16.2. Supported Link Format
	20.16.3. Parameters
	20.16.4. Examples of Use

	20.17. GetStatus
	20.17.1. I/O Properties
	20.17.2. Supported Link Format
	20.17.3. Parameters
	20.17.4. Examples of Use

	20.18. HierarchicalBox
	20.18.1. I/O Properties
	20.18.2. Supported Link Format
	20.18.3. Parameters
	20.18.4. Examples of Use

	20.19. ImageNumber
	20.19.1. I/O Properties
	20.19.2. Supported Link Format
	20.19.3. Parameters
	20.19.4. Examples of Use

	20.20. KernelRemap
	20.20.1. I/O Properties
	20.20.2. Supported Link Format
	20.20.3. Parameters
	20.20.4. Examples of Use

	20.21. MergeComponents
	20.21.1. I/O Properties
	20.21.2. Supported Link Format
	20.21.3. Parameters
	20.21.4. Examples of Use

	20.22. MergeKernel
	20.22.1. I/O Properties
	20.22.2. Supported Link Format
	20.22.3. Parameters
	20.22.4. Examples of Use

	20.23. MergeParallel
	20.23.1. I/O Properties
	20.23.2. Supported Link Format
	20.23.3. Parameters
	20.23.4. Examples of Use

	20.24. MergePixel
	20.24.1. I/O Properties
	20.24.2. Supported Link Format
	20.24.3. Parameters
	20.24.4. Examples of Use

	20.25. NOP
	20.25.1. I/O Properties
	20.25.2. Supported Link Format
	20.25.3. Parameters
	20.25.4. Examples of Use

	20.26. PARALLELdn
	20.26.1. I/O Properties
	20.26.2. Supported Link Format
	20.26.3. Parameters
	20.26.4. Examples of Use

	20.27. PARALLELup
	20.27.1. I/O Properties
	20.27.2. Supported Link Format
	20.27.3. Parameters
	20.27.4. Examples of Use

	20.28. PseudoRandomNumberGen
	20.28.1. Usage
	20.28.2. Quality of the Generator Random Numbers
	20.28.3. VisualApplets Simulations with PseudoRandomNumberGen
	20.28.4. I/O Properties
	20.28.5. Supported Link Format
	20.28.6. Parameters
	20.28.7. Examples of Use

	20.29. SampleDn
	20.29.1. I/O Properties
	20.29.2. Supported Link Format
	20.29.3. Parameters
	20.29.4. Examples of Use

	20.30. SampleUp
	20.30.1. I/O Properties
	20.30.2. Supported Link Format
	20.30.3. Parameters
	20.30.4. Examples of Use

	20.31. SelectBitField
	20.31.1. I/O Properties
	20.31.2. Supported Link Format
	20.31.3. Parameters
	20.31.4. Examples of Use

	20.32. SelectComponent
	20.32.1. I/O Properties
	20.32.2. Supported Link Format
	20.32.3. Parameters
	20.32.4. Examples of Use

	20.33. SelectFromParallel
	20.33.1. I/O Properties
	20.33.2. Supported Link Format
	20.33.3. Parameters
	20.33.4. Examples of Use

	20.34. SelectROI
	20.34.1. I/O Properties
	20.34.2. Supported Link Format
	20.34.3. Parameters
	20.34.4. Examples of Use

	20.35. SelectSubKernel
	20.35.1. I/O Properties
	20.35.2. Supported Link Format
	20.35.3. Parameters
	20.35.4. Examples of Use

	20.36. SetDimension
	20.36.1. I/O Properties
	20.36.2. Supported Link Format
	20.36.3. Parameters
	20.36.4. Examples of Use

	20.37. SplitComponents
	20.37.1. I/O Properties
	20.37.2. Supported Link Format
	20.37.3. Parameters
	20.37.4. Examples of Use

	20.38. SplitKernel
	20.38.1. I/O Properties
	20.38.2. Supported Link Format
	20.38.3. Parameters
	20.38.4. Examples of Use

	20.39. SplitParallel
	20.39.1. I/O Properties
	20.39.2. Supported Link Format
	20.39.3. Parameters
	20.39.4. Examples of Use

	20.40. Trash
	20.40.1. I/O Properties
	20.40.2. Supported Link Format
	20.40.3. Parameters
	20.40.4. Examples of Use

	21. Library Blob
	21.1. Definition
	21.2. Definition of Object Features
	21.2.1. Area
	21.2.2. Bounding Box
	21.2.3. Center of Gravity
	21.2.4. Contour Length

	21.3. VisualApplets Operators
	21.4. Blob_Analysis_1D
	21.4.1. Explanation of the Operator's Functionality
	21.4.2. Generation of Output Frames - Flush, Empty Frames, Discarding Data
	21.4.3. Performance
	21.4.4. Latency
	21.4.5. Simulation of the Operator
	21.4.6. Input Ports
	21.4.7. Output Ports
	21.4.8. I/O Properties
	21.4.9. Supported Link Format
	21.4.10. Parameters
	21.4.11. Examples of Use

	21.5. Blob_Analysis_2D
	21.5.1. Performance
	21.5.2. Latency
	21.5.3. Input Ports
	21.5.4. Output Ports
	21.5.5. I/O Properties
	21.5.6. Supported Link Format
	21.5.7. Parameters
	21.5.8. Examples of Use

	22. Library Color
	22.1. BAYER3x3Linear
	22.1.1. I/O Properties
	22.1.2. Supported Link Format
	22.1.3. Parameters
	22.1.4. Examples of Use

	22.2. BAYER5x5Linear
	22.2.1. I/O Properties
	22.2.2. Supported Link Format
	22.2.3. Parameters
	22.2.4. Examples of Use

	22.3. ColorTransform
	22.3.1. I/O Properties
	22.3.2. Supported Link Format
	22.3.3. Parameters
	22.3.4. Examples of Use

	22.4. HSI2RGB
	22.4.1. I/O Properties
	22.4.2. Supported Link Format
	22.4.3. Parameters
	22.4.4. Examples of Use

	22.5. RGB2HSI
	22.5.1. I/O Properties
	22.5.2. Supported Link Format
	22.5.3. Parameters
	22.5.4. Examples of Use

	22.6. RGB2YUV
	22.6.1. I/O Properties
	22.6.2. Supported Link Format
	22.6.3. Parameters
	22.6.4. Examples of Use

	22.7. WhiteBalance
	22.7.1. I/O Properties
	22.7.2. Supported Link Format
	22.7.3. Parameters
	22.7.4. Examples of Use

	22.8. WhiteBalanceBayer
	22.8.1. I/O Properties
	22.8.2. Supported Link Format
	22.8.3. Parameters
	22.8.4. Examples of Use

	23. Library Compression
	23.1. ImageBuffer_JPEG_Gray
	23.1.1. I/O Properties
	23.1.2. Supported Link Format
	23.1.3. Parameters
	23.1.4. Examples of Use

	23.2. JPEG_Encoder_Gray
	23.2.1. I/O Properties
	23.2.2. Supported Link Format
	23.2.3. Parameters
	23.2.4. Examples of Use
	23.2.5. More Information

	23.3. JPEG_Encoder
	23.3.1. I/O Properties
	23.3.2. Supported Link Format
	23.3.3. Parameters
	23.3.4. Examples of Use
	23.3.5. More Information

	24. Library Debugging
	24.1. ImageAnalyzer
	24.1.1. I/O Properties
	24.1.2. Supported Link Format
	24.1.3. Parameters
	24.1.4. Examples of Use

	24.2. ImageStatistics
	24.2.1. I/O Properties
	24.2.2. Supported Link Format
	24.2.3. Parameters
	24.2.4. Examples of Use

	24.3. StreamAnalyzer
	24.3.1. I/O Properties
	24.3.2. Supported Link Format
	24.3.3. Parameters
	24.3.4. Examples of Use

	24.4. Scope
	24.4.1. I/O Properties
	24.4.2. Supported Link Format
	24.4.3. Parameters
	24.4.4. Examples of Use

	24.5. ImageInjector
	24.5.1. I/O Properties
	24.5.2. Supported Link Format
	24.5.3. Parameters
	24.5.4. Examples of Use

	24.6. ImageTimingGenerator
	24.6.1. I/O Properties
	24.6.2. Supported Link Format
	24.6.3. Parameters
	24.6.4. Examples of Use

	24.7. ImageFlowControl
	24.7.1. I/O Properties
	24.7.2. Supported Link Format
	24.7.3. Parameters
	24.7.4. Examples of Use

	24.8. StreamControl
	24.8.1. I/O Properties
	24.8.2. Supported Link Format
	24.8.3. Parameters

	24.9. ImageMonitor
	24.9.1. I/O Properties
	24.9.2. Supported Link Format
	24.9.3. Parameters
	24.9.4. Examples of Use

	25. Library Filter
	25.1. DILATE
	25.1.1. I/O Properties
	25.1.2. Supported Link Format
	25.1.3. Parameters
	25.1.4. Examples of Use

	25.2. ERODE
	25.2.1. I/O Properties
	25.2.2. Supported Link Format
	25.2.3. Parameters
	25.2.4. Examples of Use

	25.3. FIRkernelNxM
	25.3.1. I/O Properties
	25.3.2. Supported Link Format
	25.3.3. Parameters
	25.3.4. Examples of Use

	25.4. FIRoperatorNxM
	25.4.1. I/O Properties
	25.4.2. Supported Link Format
	25.4.3. Parameters
	25.4.4. Examples of Use

	25.5. HitOrMiss
	25.5.1. I/O Properties
	25.5.2. Supported Link Format
	25.5.3. Parameters
	25.5.4. Examples of Use

	25.6. LineNeighboursNx1
	25.6.1. I/O Properties
	25.6.2. Supported Link Format
	25.6.3. Parameters
	25.6.4. Examples of Use

	25.7. MAX
	25.7.1. I/O Properties
	25.7.2. Supported Link Format
	25.7.3. Parameters
	25.7.4. Examples of Use

	25.8. MEDIAN
	25.8.1. I/O Properties
	25.8.2. Supported Link Format
	25.8.3. Parameters
	25.8.4. Examples of Use

	25.9. MIN
	25.9.1. I/O Properties
	25.9.2. Supported Link Format
	25.9.3. Parameters
	25.9.4. Examples of Use

	25.10. NumberOfHits
	25.10.1. I/O Properties
	25.10.2. Supported Link Format
	25.10.3. Parameters
	25.10.4. Examples of Use

	25.11. PixelNeighbours1xM
	25.11.1. I/O Properties
	25.11.2. Supported Link Format
	25.11.3. Parameters
	25.11.4. Examples of Use

	25.12. SORT
	25.12.1. I/O Properties
	25.12.2. Supported Link Format
	25.12.3. Parameters
	25.12.4. Examples of Use

	26. Library Logic
	26.1. AND
	26.1.1. I/O Properties
	26.1.2. Supported Link Format
	26.1.3. Parameters
	26.1.4. Examples of Use

	26.2. CASE
	26.2.1. I/O Properties
	26.2.2. Supported Link Format
	26.2.3. Parameters
	26.2.4. Examples of Use

	26.3. CMP_AgeB
	26.3.1. I/O Properties
	26.3.2. Supported Link Format
	26.3.3. Parameters
	26.3.4. Examples of Use

	26.4. CMP_AgtB
	26.4.1. I/O Properties
	26.4.2. Supported Link Format
	26.4.3. Parameters
	26.4.4. Examples of Use

	26.5. CMP_AleB
	26.5.1. I/O Properties
	26.5.2. Supported Link Format
	26.5.3. Parameters
	26.5.4. Examples of Use

	26.6. CMP_AltB
	26.6.1. I/O Properties
	26.6.2. Supported Link Format
	26.6.3. Parameters
	26.6.4. Examples of Use

	26.7. CMP_Equal
	26.7.1. I/O Properties
	26.7.2. Supported Link Format
	26.7.3. Parameters
	26.7.4. Examples of Use

	26.8. CMP_NotEqual
	26.8.1. I/O Properties
	26.8.2. Supported Link Format
	26.8.3. Parameters
	26.8.4. Examples of Use

	26.9. IF
	26.9.1. I/O Properties
	26.9.2. Supported Link Format
	26.9.3. Parameters
	26.9.4. Examples of Use

	26.10. IS_Equal
	26.10.1. I/O Properties
	26.10.2. Supported Link Format
	26.10.3. Parameters
	26.10.4. Examples of Use

	26.11. IS_GreaterEqual
	26.11.1. I/O Properties
	26.11.2. Supported Link Format
	26.11.3. Parameters
	26.11.4. Examples of Use

	26.12. IS_GreaterThan
	26.12.1. I/O Properties
	26.12.2. Supported Link Format
	26.12.3. Parameters
	26.12.4. Examples of Use

	26.13. IS_InRange
	26.13.1. I/O Properties
	26.13.2. Supported Link Format
	26.13.3. Parameters
	26.13.4. Examples of Use

	26.14. IS_LessEqual
	26.14.1. I/O Properties
	26.14.2. Supported Link Format
	26.14.3. Parameters
	26.14.4. Examples of Use

	26.15. IS_LessThan
	26.15.1. I/O Properties
	26.15.2. Supported Link Format
	26.15.3. Parameters
	26.15.4. Examples of Use

	26.16. IS_NotEqual
	26.16.1. I/O Properties
	26.16.2. Supported Link Format
	26.16.3. Parameters
	26.16.4. Examples of Use

	26.17. NOT
	26.17.1. I/O Properties
	26.17.2. Supported Link Format
	26.17.3. Parameters
	26.17.4. Examples of Use

	26.18. OR
	26.18.1. I/O Properties
	26.18.2. Supported Link Format
	26.18.3. Parameters
	26.18.4. Examples of Use

	26.19. XNOR
	26.19.1. I/O Properties
	26.19.2. Supported Link Format
	26.19.3. Parameters
	26.19.4. Examples of Use

	26.20. XOR
	26.20.1. I/O Properties
	26.20.2. Supported Link Format
	26.20.3. Parameters
	26.20.4. Examples of Use

	27. Library Memory
	27.1. CoefficientBuffer
	27.1.1. Using the Operator with Maximum Performance
	27.1.1.1. Example for microEnable IV frame grabbers with a RAM cell width of 64 bit.

	27.1.2. Using the Operator as Simulation Source
	27.1.3. Bandwidth Optimization
	27.1.4. I/O Properties
	27.1.5. Supported Link Format
	27.1.6. Parameters
	27.1.7. Examples of Use

	27.2. FrameBufferMultiRoiDyn
	27.2.1. Overflow Management with InfiniteSource
	27.2.2. Restrictions
	27.2.3. Bandwidth Optimization
	27.2.4. I/O Properties
	27.2.5. Supported Link Format
	27.2.6. Parameters

	27.3. FrameBufferRandomRead
	27.3.1. Bandwidth Optimization
	27.3.2. I/O Properties
	27.3.3. Supported Link Format
	27.3.4. Parameters
	27.3.5. Examples of Use

	27.4. FrameBufferRandomRead (imaFlex)
	27.4.1. Overflow Management with InfiniteSource
	27.4.2. Restrictions
	27.4.3. Bandwidth Optimization
	27.4.4. I/O Properties
	27.4.5. Supported Link Format
	27.4.6. Parameters

	27.5. FrameMemory
	27.5.1. I/O Properties
	27.5.2. Supported Link Format
	27.5.3. Parameters
	27.5.4. Examples of Use

	27.6. FrameMemoryRandomRd
	27.6.1. I/O Properties
	27.6.2. Supported Link Format
	27.6.3. Parameters
	27.6.4. Examples of Use

	27.7. ImageBuffer
	27.7.1. Bandwidth Optimization
	27.7.2. I/O Properties
	27.7.3. Supported Link Format
	27.7.4. Parameters
	27.7.5. Examples of Use

	27.8. ImageBufferMultiRoI
	27.8.1. Bandwidth Optimization
	27.8.2. I/O Properties
	27.8.3. Supported Link Format
	27.8.4. Parameters
	27.8.5. Examples of Use

	27.9. ImageBufferMultiRoIDyn
	27.9.1. Bandwidth Optimization
	27.9.2. I/O Properties
	27.9.3. Supported Link Format
	27.9.4. Parameters
	27.9.5. Examples of Use

	27.10. ImageBufferSC
	27.10.1. Bandwidth Optimization
	27.10.2. I/O Properties
	27.10.3. Supported Link Format
	27.10.4. Parameters
	27.10.5. Examples of Use

	27.11. ImageBufferSpatial
	27.11.1. Bandwidth Optimization
	27.11.2. I/O Properties
	27.11.3. Supported Link Format
	27.11.4. Parameters

	27.12. ImageFifo
	27.12.1. I/O Properties
	27.12.2. Supported Link Format
	27.12.3. Parameters
	27.12.4. Examples of Use

	27.13. ImageSequence
	27.13.1. Bandwidth Optimization
	27.13.2. I/O Properties
	27.13.3. Supported Link Format
	27.13.4. Parameters
	27.13.5. Examples of Use

	27.14. KneeLUT
	27.14.1. I/O Properties
	27.14.2. Supported Link Format
	27.14.3. Parameters
	27.14.4. Examples of Use

	27.15. LineBuffer (imaFlex)
	27.15.1. Bandwidth Optimization
	27.15.2. I/O Properties
	27.15.3. Supported Link Format
	27.15.4. Parameters

	27.16. LineMemory
	27.16.1. I/O Properties
	27.16.2. Supported Link Format
	27.16.3. Parameters
	27.16.4. Examples of Use

	27.17. LineMemoryRandomRd
	27.17.1. I/O Properties
	27.17.2. Supported Link Format
	27.17.3. Parameters
	27.17.4. Examples of Use

	27.18. LUT
	27.18.1. I/O Properties
	27.18.2. Supported Link Format
	27.18.3. Parameters
	27.18.4. Examples of Use

	27.19. RamLUT
	27.19.1. Bandwidth Optimization
	27.19.2. I/O Properties
	27.19.3. Supported Link Format
	27.19.4. Parameters
	27.19.5. Examples of Use

	27.20. RamLUT (imaFlex)
	27.20.1. Bandwidth Optimization
	27.20.2. I/O Properties
	27.20.3. Supported Link Format
	27.20.4. Parameters

	27.21. ROM
	27.21.1. I/O Properties
	27.21.2. Supported Link Format
	27.21.3. Parameters
	27.21.4. Examples of Use

	28. Library Parameters
	28.1. EnumParamReference
	28.1.1. I/O Properties
	28.1.2. Supported Link Format
	28.1.3. Parameters
	28.1.4. Examples of Use

	28.2. EnumParamTranslator
	28.2.1. I/O Properties
	28.2.2. Supported Link Format
	28.2.3. Parameters
	28.2.4. Examples of Use

	28.3. EnumVariable
	28.3.1. I/O Properties
	28.3.2. Supported Link Format
	28.3.3. Parameters

	28.4. FloatFieldParamReference
	28.4.1. I/O Properties
	28.4.2. Supported Link Format
	28.4.3. Parameters
	28.4.4. Examples of Use

	28.5. FloatParamReference
	28.5.1. I/O Properties
	28.5.2. Supported Link Format
	28.5.3. Parameters
	28.5.4. Examples of Use

	28.6. FloatParamTranslator
	28.6.1. I/O Properties
	28.6.2. Supported Link Format
	28.6.3. Parameters
	28.6.4. Examples of Use

	28.7. FloatVariable
	28.7.1. I/O Properties
	28.7.2. Supported Link Format
	28.7.3. Parameters

	28.8. IntFieldParamReference
	28.8.1. I/O Properties
	28.8.2. Supported Link Format
	28.8.3. Parameters
	28.8.4. Examples of Use

	28.9. IntParamReference
	28.9.1. I/O Properties
	28.9.2. Supported Link Format
	28.9.3. Parameters
	28.9.4. Examples of Use

	28.10. IntParamTranslator
	28.10.1. I/O Properties
	28.10.2. Supported Link Format
	28.10.3. Parameters
	28.10.4. Examples of Use

	28.11. IntVariable
	28.11.1. I/O Properties
	28.11.2. Supported Link Format
	28.11.3. Parameters

	28.12. IntFieldVariable
	28.12.1. I/O Properties
	28.12.2. Supported Link Format
	28.12.3. Parameters

	28.13. LinkProperties
	28.13.1. I/O Properties
	28.13.2. Supported Link Format
	28.13.3. Parameters

	28.14. LinkParamTranslator
	28.14.1. I/O Properties
	28.14.2. Supported Link Format
	28.14.3. Parameters
	28.14.4. Examples of Use

	28.15. StringParamReference
	28.15.1. I/O Properties
	28.15.2. Supported Link Format
	28.15.3. Parameters
	28.15.4. Examples of Use

	28.16. ResourceReference
	28.16.1. I/O Properties
	28.16.2. Supported Link Format
	28.16.3. Parameters
	28.16.4. Examples of Use

	28.17. IntParamSelector
	28.17.1. I/O Properties
	28.17.2. Supported Link Format
	28.17.3. Parameters
	28.17.4. Examples of Use

	28.18. FloatParamSelector
	28.18.1. I/O Properties
	28.18.2. Supported Link Format
	28.18.3. Parameters
	28.18.4. Examples of Use

	29. Library Hardware Platform
	29.1. AppletProperties
	29.1.1. I/O Properties
	29.1.2. Supported Link Format
	29.1.3. Parameters
	29.1.4. Examples of Use

	29.2. BoardStatus
	29.2.1. I/O Properties
	29.2.2. Supported Link Format
	29.2.3. Parameters
	29.2.4. Examples of Use

	29.3. ActionCommand
	29.3.1. I/O Properties
	29.3.2. Supported Link Format
	29.3.3. Parameters
	29.3.4. Examples of Use

	29.4. CameraControl
	29.4.1. I/O Properties
	29.4.2. Supported Link Format
	29.4.3. Parameters
	29.4.4. Examples of Use

	29.5. BaseGrayCamera
	29.5.1. I/O Properties
	29.5.2. Supported Link Format
	29.5.3. Parameters
	29.5.4. Examples of Use

	29.6. BaseRgbCamera
	29.6.1. I/O Properties
	29.6.2. Supported Link Format
	29.6.3. Parameters

	29.7. MediumGrayCamera
	29.7.1. I/O Properties
	29.7.2. Supported Link Format
	29.7.3. Parameters
	29.7.4. Examples of Use

	29.8. MediumRgbCamera
	29.8.1. I/O Properties
	29.8.2. Supported Link Format
	29.8.3. Parameters

	29.9. FullGrayCamera
	29.9.1. I/O Properties
	29.9.2. Supported Link Format
	29.9.3. Parameters
	29.9.4. Examples of Use

	29.10. FullRgbCamera
	29.10.1. I/O Properties
	29.10.2. Supported Link Format
	29.10.3. Parameters

	29.11. CameraGrayArea
	29.11.1. I/O Properties
	29.11.2. Supported Link Format
	29.11.3. Parameters
	29.11.4. Examples of Use

	29.12. CameraGrayAreaBase
	29.12.1. I/O Properties
	29.12.2. Supported Link Format
	29.12.3. Parameters
	29.12.4. Examples of Use

	29.13. CameraGrayAreaFull
	29.13.1. I/O Properties
	29.13.2. Supported Link Format
	29.13.3. Parameters
	29.13.4. Examples of Use

	29.14. CameraGrayAreaMedium
	29.14.1. I/O Properties
	29.14.2. Supported Link Format
	29.14.3. Parameters
	29.14.4. Examples of Use

	29.15. CameraGrayLine
	29.15.1. I/O Properties
	29.15.2. Supported Link Format
	29.15.3. Parameters
	29.15.4. Examples of Use

	29.16. CameraGrayLineBase
	29.16.1. I/O Properties
	29.16.2. Supported Link Format
	29.16.3. Parameters
	29.16.4. Examples of Use

	29.17. CameraGrayLineFull
	29.17.1. I/O Properties
	29.17.2. Supported Link Format
	29.17.3. Parameters
	29.17.4. Examples of Use

	29.18. CameraGrayLineMedium
	29.18.1. I/O Properties
	29.18.2. Supported Link Format
	29.18.3. Parameters
	29.18.4. Examples of Use

	29.19. CameraRgbArea
	29.19.1. I/O Properties
	29.19.2. Supported Link Format
	29.19.3. Parameters
	29.19.4. Examples of Use

	29.20. CameraRgbAreaBase
	29.20.1. I/O Properties
	29.20.2. Supported Link Format
	29.20.3. Parameters
	29.20.4. Examples of Use

	29.21. CameraRgbAreaMedium
	29.21.1. I/O Properties
	29.21.2. Supported Link Format
	29.21.3. Parameters
	29.21.4. Examples of Use

	29.22. CameraRgbLine
	29.22.1. I/O Properties
	29.22.2. Supported Link Format
	29.22.3. Parameters

	29.23. CameraRgbLineBase
	29.23.1. I/O Properties
	29.23.2. Supported Link Format
	29.23.3. Parameters
	29.23.4. Examples of Use

	29.24. CameraRgbLineMedium
	29.24.1. I/O Properties
	29.24.2. Supported Link Format
	29.24.3. Parameters
	29.24.4. Examples of Use

	29.25. CLHSDualCamera
	29.25.1. I/O Properties
	29.25.2. Supported Link Format
	29.25.3. Parameters

	29.26. CLHSPulseIn
	29.26.1. I/O Properties
	29.26.2. Supported Link Format
	29.26.3. Parameters

	29.27. CLHSPulseOut
	29.27.1. I/O Properties
	29.27.2. Supported Link Format
	29.27.3. Parameters

	29.28. CLHSSingleCamera
	29.28.1. I/O Properties
	29.28.2. Supported Link Format
	29.28.3. Parameters

	29.29. CxpCamera
	29.29.1. I/O Properties
	29.29.2. Supported Link Format
	29.29.3. Parameters
	29.29.4. Examples of Use

	29.30. CxpCameraMultiTap
	29.30.1. I/O Properties
	29.30.2. Supported Link Format
	29.30.3. Parameters
	29.30.4. Examples of Use

	29.31. CxpAcquisitionStatus
	29.31.1. I/O Properties
	29.31.2. Supported Link Format
	29.31.3. Parameters

	29.32. CxpPortStatus
	29.32.1. I/O Properties
	29.32.2. Supported Link Format
	29.32.3. Parameters

	29.33. CxpRxTrigger
	29.33.1. I/O Properties
	29.33.2. Supported Link Format
	29.33.3. Parameters
	29.33.4. Examples of Use

	29.34. CxpTxTrigger
	29.34.1. I/O Properties
	29.34.2. Supported Link Format
	29.34.3. Parameters
	29.34.4. Examples of Use

	29.35. RS485
	29.35.1. I/O Properties
	29.35.2. Supported Link Format
	29.35.3. Parameters

	29.36. CXPDualCamera
	29.36.1. I/O Properties
	29.36.2. Supported Link Format
	29.36.3. Parameters
	29.36.4. Examples of Use

	29.37. CXPQuadCamera
	29.37.1. I/O Properties
	29.37.2. Supported Link Format
	29.37.3. Parameters
	29.37.4. Examples of Use

	29.38. CXPSingleCamera
	29.38.1. I/O Properties
	29.38.2. Supported Link Format
	29.38.3. Parameters
	29.38.4. Examples of Use

	29.39. DigIOPort
	29.39.1. I/O Properties
	29.39.2. Supported Link Format
	29.39.3. Parameters

	29.40. DmaFromPC
	29.40.1. I/O Properties
	29.40.2. Supported Link Format
	29.40.3. Parameters
	29.40.4. Examples of Use

	29.41. DmaToPC
	29.41.1. I/O Properties
	29.41.2. Supported Link Format
	29.41.3. Parameters
	29.41.4. Examples of Use

	29.42. GPI
	29.42.1. I/O Properties
	29.42.2. Supported Link Format
	29.42.3. Parameters
	29.42.4. Examples of Use

	29.43. GPO
	29.43.1. I/O Properties
	29.43.2. Supported Link Format
	29.43.3. Parameters
	29.43.4. Examples of Use

	29.44. LED
	29.44.1. I/O Properties
	29.44.2. Supported Link Format
	29.44.3. Parameters
	29.44.4. Examples of Use

	29.45. NativeTrgPortIn
	29.45.1. I/O Properties
	29.45.2. Supported Link Format
	29.45.3. Parameters

	29.46. NativeTrgPortInExt
	29.46.1. I/O Properties
	29.46.2. Supported Link Format
	29.46.3. Parameters

	29.47. NativeTrgPortOut
	29.47.1. I/O Properties
	29.47.2. Supported Link Format
	29.47.3. Parameters

	29.48. RxLink
	29.48.1. I/O Properties
	29.48.2. Supported Link Format
	29.48.3. Parameters
	29.48.4. Examples of Use

	29.49. TrgPortArea
	29.49.1. I/O Properties
	29.49.2. Supported Link Format
	29.49.3. Parameters
	29.49.4. Examples of Use

	29.50. TrgPortLine
	29.50.1. I/O Properties
	29.50.2. Supported Link Format
	29.50.3. Parameters
	29.50.4. Examples of Use

	29.51. TriggerIn
	29.51.1. I/O Properties
	29.51.2. Supported Link Format
	29.51.3. Parameters
	29.51.4. Examples of Use

	29.52. TriggerOut
	29.52.1. I/O Properties
	29.52.2. Supported Link Format
	29.52.3. Parameters
	29.52.4. Examples of Use

	29.53. TxLink
	29.53.1. I/O Properties
	29.53.2. Supported Link Format
	29.53.3. Parameters
	29.53.4. Examples of Use

	29.54. SignalToEvent
	29.54.1. I/O Properties
	29.54.2. Supported Link Format
	29.54.3. Parameters

	30. Library Prototype
	30.1. COUNTER
	30.1.1. I/O Properties
	30.1.2. Supported Link Format
	30.1.3. Parameters

	30.2. CustomSignalOperator
	30.2.1. I/O Properties
	30.2.2. Supported Link Format
	30.2.3. Parameters

	30.3. HWMULT
	30.3.1. I/O Properties
	30.3.2. Supported Link Format
	30.3.3. Parameters
	30.3.4. Examples of Use

	30.4. PackbitsRLE
	30.4.1. I/O Properties
	30.4.2. Supported Link Format
	30.4.3. Parameters
	30.4.4. Examples of Use

	30.5. TrgBoxLine
	30.5.1. I/O Properties
	30.5.2. Supported Link Format
	30.5.3. Parameters
	30.5.4. Examples of Use

	30.6. RGB2XYZ
	30.6.1. I/O Properties
	30.6.2. Supported Link Format
	30.6.3. Parameters

	30.7. XYZ2LAB
	30.7.1. I/O Properties
	30.7.2. Supported Link Format
	30.7.3. Parameters

	31. Library Signal
	31.1. DelayToSignal
	31.1.1. I/O Properties
	31.1.2. Supported Link Format
	31.1.3. Parameters
	31.1.4. Examples of Use

	31.2. Downscale
	31.2.1. I/O Properties
	31.2.2. Supported Link Format
	31.2.3. Parameters
	31.2.4. Examples of Use

	31.3. EventToSignal
	31.3.1. I/O Properties
	31.3.2. Supported Link Format
	31.3.3. Parameters
	31.3.4. Examples of Use

	31.4. FrameEndToSignal
	31.4.1. I/O Properties
	31.4.2. Supported Link Format
	31.4.3. Parameters
	31.4.4. Examples of Use

	31.5. FrameStartToSignal
	31.5.1. I/O Properties
	31.5.2. Supported Link Format
	31.5.3. Parameters
	31.5.4. Examples of Use

	31.6. Generate
	31.6.1. I/O Properties
	31.6.2. Supported Link Format
	31.6.3. Parameters
	31.6.4. Examples of Use

	31.7. GetSignalStatus
	31.7.1. I/O Properties
	31.7.2. Supported Link Format
	31.7.3. Parameters
	31.7.4. Examples of Use

	31.8. Gnd
	31.8.1. I/O Properties
	31.8.2. Supported Link Format
	31.8.3. Parameters
	31.8.4. Examples of Use

	31.9. LimitSignalWidth
	31.9.1. I/O Properties
	31.9.2. Supported Link Format
	31.9.3. Parameters
	31.9.4. Examples of Use

	31.10. LineEndToSignal
	31.10.1. I/O Properties
	31.10.2. Supported Link Format
	31.10.3. Parameters
	31.10.4. Examples of Use

	31.11. LineStartToSignal
	31.11.1. I/O Properties
	31.11.2. Supported Link Format
	31.11.3. Parameters
	31.11.4. Examples of Use

	31.12. PeriodToSignal
	31.12.1. I/O Properties
	31.12.2. Supported Link Format
	31.12.3. Parameters
	31.12.4. Examples of Use

	31.13. PixelToSignal
	31.13.1. I/O Properties
	31.13.2. Supported Link Format
	31.13.3. Parameters
	31.13.4. Examples of Use

	31.14. Polarity
	31.14.1. I/O Properties
	31.14.2. Supported Link Format
	31.14.3. Parameters
	31.14.4. Examples of Use

	31.15. PulseCounter
	31.15.1. I/O Properties
	31.15.2. Supported Link Format
	31.15.3. Parameters
	31.15.4. Examples of Use

	31.16. RsFlipFlop
	31.16.1. I/O Properties
	31.16.2. Supported Link Format
	31.16.3. Parameters
	31.16.4. Examples of Use

	31.17. RxSignalLink
	31.17.1. I/O Properties
	31.17.2. Supported Link Format
	31.17.3. Parameters
	31.17.4. Examples of Use

	31.18. Select
	31.18.1. I/O Properties
	31.18.2. Supported Link Format
	31.18.3. Parameters
	31.18.4. Examples of Use

	31.19. SetSignalStatus
	31.19.1. I/O Properties
	31.19.2. Supported Link Format
	31.19.3. Parameters
	31.19.4. Examples of Use

	31.20. ShaftEncoder
	31.20.1. I/O Properties
	31.20.2. Supported Link Format
	31.20.3. Parameters
	31.20.4. Examples of Use

	31.21. ShaftEncoderCompensate
	31.21.1. I/O Properties
	31.21.2. Supported Link Format
	31.21.3. Parameters
	31.21.4. Examples of Use

	31.22. SignalDebounce
	31.22.1. I/O Properties
	31.22.2. Supported Link Format
	31.22.3. Parameters
	31.22.4. Examples of Use

	31.23. SignalDelay
	31.23.1. I/O Properties
	31.23.2. Supported Link Format
	31.23.3. Parameters
	31.23.4. Examples of Use

	31.24. SignalEdge
	31.24.1. I/O Properties
	31.24.2. Supported Link Format
	31.24.3. Parameters
	31.24.4. Examples of Use

	31.25. SignalGate
	31.25.1. I/O Properties
	31.25.2. Supported Link Format
	31.25.3. Parameters
	31.25.4. Examples of Use

	31.26. SignalToDelay
	31.26.1. I/O Properties
	31.26.2. Supported Link Format
	31.26.3. Parameters
	31.26.4. Examples of Use

	31.27. SignalToPeriod
	31.27.1. I/O Properties
	31.27.2. Supported Link Format
	31.27.3. Parameters
	31.27.4. Examples of Use

	31.28. SignalToPixel
	31.28.1. I/O Properties
	31.28.2. Supported Link Format
	31.28.3. Parameters
	31.28.4. Examples of Use

	31.29. SignalToWidth
	31.29.1. I/O Properties
	31.29.2. Supported Link Format
	31.29.3. Parameters
	31.29.4. Examples of Use

	31.30. SignalWidth
	31.30.1. I/O Properties
	31.30.2. Supported Link Format
	31.30.3. Parameters
	31.30.4. Examples of Use

	31.31. SyncSignal
	31.31.1. I/O Properties
	31.31.2. Supported Link Format
	31.31.3. Parameters
	31.31.4. Examples of Use

	31.32. TxSignalLink
	31.32.1. I/O Properties
	31.32.2. Supported Link Format
	31.32.3. Parameters
	31.32.4. Examples of Use

	31.33. Vcc
	31.33.1. I/O Properties
	31.33.2. Supported Link Format
	31.33.3. Parameters
	31.33.4. Examples of Use

	31.34. WidthToSignal
	31.34.1. I/O Properties
	31.34.2. Supported Link Format
	31.34.3. Parameters
	31.34.4. Examples of Use

	32. Library Synchronization
	32.1. AppendImage
	32.1.1. I/O Properties
	32.1.2. Supported Link Format
	32.1.3. Parameters
	32.1.4. Examples of Use

	32.2. AppendImageDyn
	32.2.1. I/O Properties
	32.2.2. Supported Link Format
	32.2.3. Parameters
	32.2.4. Examples of Use

	32.3. AppendLine
	32.3.1. I/O Properties
	32.3.2. Supported Link Format
	32.3.3. Parameters
	32.3.4. Examples of Use

	32.4. AppendLineDyn
	32.4.1. I/O Properties
	32.4.2. Supported Link Format
	32.4.3. Parameters
	32.4.4. Examples of Use

	32.5. CutImage
	32.5.1. I/O Properties
	32.5.2. Supported Link Format
	32.5.3. Parameters
	32.5.4. Examples of Use

	32.6. CutLine
	32.6.1. I/O Properties
	32.6.2. Supported Link Format
	32.6.3. Parameters
	32.6.4. Examples of Use

	32.7. CreateBlankImage
	32.7.1. I/O Properties
	32.7.2. Supported Link Format
	32.7.3. Parameters
	32.7.4. Examples of Use

	32.8. ExpandLine
	32.8.1. I/O Properties
	32.8.2. Supported Link Format
	32.8.3. Parameters
	32.8.4. Examples of Use

	32.9. ExpandPixel
	32.9.1. I/O Properties
	32.9.2. Supported Link Format
	32.9.3. Parameters
	32.9.4. Examples of Use

	32.10. ImageValve
	32.10.1. I/O Properties
	32.10.2. Supported Link Format
	32.10.3. Parameters
	32.10.4. Examples of Use

	32.11. InsertImage
	32.11.1. I/O Properties
	32.11.2. Supported Link Format
	32.11.3. Parameters
	32.11.4. Examples of Use

	32.12. InsertLine
	32.12.1. I/O Properties
	32.12.2. Supported Link Format
	32.12.3. Parameters
	32.12.4. Examples of Use

	32.13. InsertPixel
	32.13.1. I/O Properties
	32.13.2. Supported Link Format
	32.13.3. Parameters
	32.13.4. Examples of Use

	32.14. IsFirstPixel
	32.14.1. I/O Properties
	32.14.2. Supported Link Format
	32.14.3. Parameters
	32.14.4. Examples of Use

	32.15. IsLastPixel
	32.15.1. I/O Properties
	32.15.2. Supported Link Format
	32.15.3. Parameters
	32.15.4. Examples of Use

	32.16. PixelReplicator
	32.16.1. I/O Properties
	32.16.2. Supported Link Format
	32.16.3. Parameters
	32.16.4. Examples of Use

	32.17. PixelToImage
	32.17.1. I/O Properties
	32.17.2. Supported Link Format
	32.17.3. Parameters
	32.17.4. Examples of Use

	32.18. RemoveImage
	32.18.1. I/O Properties
	32.18.2. Supported Link Format
	32.18.3. Parameters
	32.18.4. Examples of Use

	32.19. RemoveLine
	32.19.1. I/O Properties
	32.19.2. Supported Link Format
	32.19.3. Parameters
	32.19.4. Examples of Use

	32.20. RemovePixel
	32.20.1. I/O Properties
	32.20.2. Supported Link Format
	32.20.3. Parameters
	32.20.4. Examples of Use

	32.21. ReSyncToLine
	32.21.1. I/O Properties
	32.21.2. Supported Link Format
	32.21.3. Parameters
	32.21.4. Examples of Use

	32.22. RxImageLink
	32.22.1. I/O Properties
	32.22.2. Supported Link Format
	32.22.3. Parameters
	32.22.4. Examples of Use

	32.23. SourceSelector
	32.23.1. I/O Properties
	32.23.2. Supported Link Format
	32.23.3. Parameters
	32.23.4. Examples of Use

	32.24. SplitImage
	32.24.1. I/O Properties
	32.24.2. Supported Link Format
	32.24.3. Parameters
	32.24.4. Examples of Use

	32.25. SplitLine
	32.25.1. I/O Properties
	32.25.2. Supported Link Format
	32.25.3. Parameters
	32.25.4. Examples of Use

	32.26. SYNC
	32.26.1. The Timing Synchronization
	32.26.2. The Image Dimension Synchronization
	32.26.2.1. 2D to 2D SyncToMin
	32.26.2.2. 2D to 2D SyncToMax
	32.26.2.3. 1D to 1D SyncToMin
	32.26.2.4. 1D to 1D SyncToMax
	32.26.2.5. 0D to 0D SyncToMin / SyncToMax
	32.26.2.6. 2D to 1D SyncToMin
	32.26.2.7. 2D to 1D SyncToMax
	32.26.2.8. 2D to 0D SyncToMin / SyncToMax
	32.26.2.9. 1D to 0D SyncToMin / SyncToMax
	32.26.2.10. 2D to 1D to 0D SyncToMin / SyncToMax

	32.26.3. I/O Properties
	32.26.4. Supported Link Format
	32.26.5. Parameters
	32.26.6. Examples of Use

	32.27. TxImageLink
	32.27.1. I/O Properties
	32.27.2. Supported Link Format
	32.27.3. Parameters
	32.27.4. Examples of Use

	32.28. Overflow
	32.28.1. I/O Properties
	32.28.2. Supported Link Format
	32.28.3. Parameters
	32.28.4. Examples of Use

	33. Library Transformation
	33.1. FFT
	33.1.1. I/O Properties
	33.1.2. Supported Link Format
	33.1.3. Parameters
	33.1.4. Examples of Use

	Appendix A. Device Resources
	A.1. Hardware Configuration of Supported Platforms
	A.1.1. microEnable IV and PixelPlant
	A.1.2. microEnable 5 ironman
	A.1.3. LightBridge and microEnable 5 marathon
	A.1.4. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

	A.2. Device Resources of Supported Platforms
	A.2.1. microEnable IV and PixelPlant
	A.2.2. microEnable 5 ironman
	A.2.3. LightBridge and microEnable 5 marathon
	A.2.4. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta

	A.3. Shared Memory Concept
	A.3.1. microEnable 5 marathon and LightBridge
	A.3.2. imaFlex CXP-12 Quad and imaFlex CXP-12 Penta
	A.3.2.1. RAM Size Distribution Across RAM Ports
	A.3.2.2. RAM Bandwidth Distribution Across RAM Ports

	Glossary
	Bibliography
	Index

